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Abstract

Fungi are essential components of ecosystems, serving not only as decomposers and pathogens but
also as vital contributors to plant growth, soil health, and food security. With the growing global
demand for sustainable and environmentally friendly agriculture, the role of fungi has become
increasingly important. This review explores the diverse and expanding applications of fungi in
modern green agriculture and assesses their ecological mechanisms, agronomic advantages, and
potential implementation challenges. From ancient agriculture to the present, mycorrhizae play a
central role in regenerative agriculture. These symbiotic relationships are essential for the survival of
most plants, while in crops, they significantly improve productivity. This concept has been further
expanded to utilise mycorrhizal symbiosis in soil rehabilitation. Recent advancements in fungi as
plant growth promoters have shown significant effects in green agriculture. From simple volatile
organic compounds to metabolites, fungi enhance and facilitate nutrient solubilization and
availability. The application of fungi as biofertilizers, growth promoters, and biological control
agents is not a single-directional process. Fungal antagonism involves not only pathogen suppression
but also increased plant resistance coupled with growth promotion. For instance, application of
Trichoderma species comes with a number of benefits. The use of entomopathogenic fungi has a long
history and is now expanding towards the control of viruses and phytoplasma. Moving forward, the
involvement of mushrooms in circular agriculture has been highly productive in many regions. In
addition, fungi are gaining recognition in aquaculture and livestock production, waste recycling,
fungal protein production, mycelium leather, and mulching. However, there are still many barriers to
overcome, and the environmental adaptability and evolutionary dynamics of fungi pose ongoing
challenges. Recent advancements in gene editing offer promising solutions, yet policy adoption and
public acceptance remain hard barriers to overcome. In the era of artificial intelligence (Al), we
believe that Al and machine learning will further enhance fungal applications, especially in disease
epidemiology and crop management. Overall, this review serves as a comprehensive reference for
researchers, farmers, and policymakers, providing insights and future directions while emphasising
the urgent need for integrated, nature-based solutions. Fungi are poised to be key drivers in achieving
regenerative, resilient, and decentralised food systems amid global climate and food security
challenges.

Keywords — Bioremediation — Climate change —Entomopathogenic —Plant growth promotion — Soil
degradation

INTRODUCTION
The global demand for agricultural products is escalating rapidly. This is mostly driven by continuous
population growth as the global population is expected to reach 8.5 billion by 2030, 9.7 billion by
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2050, and 10.4 billion by the end of the century (United Nations). To meet the food requirements of
this expanding population, agricultural production must increase by approximately 60% by 2050
(FAO 2017). Despite the significant advancement in agricultural technology and intensification,
global hunger and food insecurity continue to rise (Fig. 1). According to FAOSTAT (2025), nearly
30% of the global population experienced moderate or severe food insecurity in 2022, lacking reliable
access to nutritious food (Fig. 2). Malnutrition remains a significant challenge among children in
underdeveloped regions, while rising obesity rates are widespread elsewhere, reflecting unbalanced
dietary norms. Moreover, healthy diets remain unaffordable for around three billion people,
particularly in low-income regions (FAO, IFAD, UNICEF, WFP & WHO 2023). Under these
circumstances, global food production faces a complex set of interconnected challenges that threaten
both productivity and sustainability.

 Demand for food
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Figure 1 — An overview of challenges in global food production

Climate change is one of the most pervasive threats to agricultural productivity. The rising
average temperatures (Fig. 2) accelerate crop development but reduce yields of staple crops such as
wheat, maize, and rice (Zhao et al. 2017, Neupane et al. 2022). Precipitation patterns have shifted
over the years, with both unprecedented flooding and prolonged droughts, simultaneously affecting
global food production (Trenberth 2005, Zhang et al. 2015, Hou et al. 2024). Recent studies indicate
that up to 70% of the crop yield reductions can be attributed to human-mediated climate change
(Allan et al. 2023). In the tropics, the impact could be more severe (Parry et al. 2010, Tito et al. 2018).
For instance, Muluneh (2021) reported that African agricultural yields could decline by over 30%,
potentially pushing millions into food insecurity.

Apart from climate change, soil degradation and erosion are among the major limiting factors
in agriculture (Lal et al. 2001). Over 33% of global soils are moderately to highly degraded (Smith
et al. 2024) primarily due to erosion, contamination (Ahmad et al. 2015, Rashid et al. 2023), nutrient
depletion (Tan et al. 2005, Holloway et al. 2008), acidification (Du et al. 2024b), and salinisation
(Ondrasek et al. 2011). These processes have ultimately resulted in declining soil fertility and reduced
land availability (Kopittke et al. 2024, Dixit et al. 2024). They are also strongly associated with the
excessive use of synthetic chemicals such as fertilisers and pesticides, which influence soil
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biodiversity (Tripathi et al. 2020, Nath et al. 2023). Insect pests and pathogens are responsible for
20—-40% of global crop losses annually (FAO 2021). Pest and disease incidences have increased over
the years, which is a direct reflection of global warming, as these pests and pathogens are expanding
into new geographical ranges, making the formerly temperate regions more vulnerable (Roos et al.
2011, Gu et al. 2018, Skendzi¢ et al. 2021, Zhao et al. 2023c). Therefore, this latitudinal and
altitudinal shift in agricultural pests and diseases (Bebber et al. 2013) represents one of the most
urgent challenges. Moreover, the widespread occurrence of pests and diseases is associated with the
intense use of chemical pesticides. The excessive use of synthetic chemicals leads to the development
of resistance (Hahn 2014, Kole et al. 2019), affects non-target and beneficial insects (pollinators),
contaminates soil and water resources, and results in residual accumulation in humans and animals
(Hashimi et al. 2020, Elhamalawy et al. 2024). For instance, fungicides such as chlorothalonil and
mancozeb have been detected in water bodies and shown to affect aquatic life and disrupt endocrine
systems (Zubrod et al. 2019, Seshoka et al. 2021).

Population  Climate Pestand  Degraded
Growth Change Diseases Soil

2100
m 2050
m2030

Relative Impact (%)

Global Issues

Figure 2 —Global food insecurity index based on regions. Mean temperature change of the
meteorological year. Use of Agricultural Pesticides. Adaptation from FAQO's State of Food Security
and Nutrition report, available online at www.fao.org/interactive/state-of-food-security-nutrition/en/
and Adaptation from FAOSTAT available at www.fao.org.

In response to these interconnected challenges, sustainable agriculture emerged as a vital
framework. It emphasises maintaining productivity while preserving the environment and
biodiversity and promoting social equality (Kamakaula 2024, Yadav & Singh 2024). Over the years,
sustainable agricultural practices have continued to evolve to address the ecological, economic, and
social dimensions of the modern food system.

In sustainable agriculture, the use of beneficial microorganisms has emerged as one of the
most promising tools (Higa et al. 1994, Javaid 2010, Ray et al. 2020). Among these microorganisms,
fungi play a key role in delivering essential ecosystem services and provide a wide range of
agronomic benefits (Hyde et al. 2019). They provide vital components in improving soil health, and
as mycorrhizal symbionts, in improving phosphorus, nitrogen, and water uptake (Martinez-Garcia et
al. 2017, Wahab et al. 2023, Yasanthika et al. 2025), while saprobic fungi decompose organic matter,
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releasing nutrients back into the soil (Tennakoon et al. 2022, Niego et al. 2023b). Over the years,
these ecological benefits of fungi have been elucidated, and numerous beneficial fungal groups have
been identified. For instance, Trichoderma species are widely recognised as effective plant growth
promoters and biocontrol agents exhibiting several promising agricultural traits (Rao et al. 2022, Joo
et al. 2022). Entomopathogenic fungi such as Beauveria bassiana and Metarhizium anisopliae act as
natural insecticides, while many other fungi are used as antagonists to plant pathogens (Meyling &
Eilenberg 2007, Chen et al. 2019). Moreover, certain fungi can degrade pesticides, heavy metals, and
other environmental pollutants, thereby contributing to cleaner, more sustainable agroecosystems
(Hyde et al. 2019).

Hyde et al. (2019) have outlined 50 diverse applications of fungi across industries, emphasising
their vast biotechnological potential. Fungi produce a broad spectrum of enzymes, antibiotics,
secondary metabolites, pigments, and bioactive compounds (Hyde et al. 2019, Niego et al. 2023a),
many of which can be harnessed as biopesticides, growth promoters and fertilisers. Interestingly,
these applications offer low-toxicity, biodegradable, and cost-effective alternatives to synthetic
agrochemicals, aligning with global efforts to reduce greenhouse gas emissions and environmental
pollution.

This review explores the potential of fungi to advance sustainable agriculture. It presents and
discusses current and emerging applications of fungi, evaluates the associated challenges and
knowledge gaps, and proposes future directions for research and implementation. By highlighting
fungal solutions, this review contributes to the broader discourse on creating resilient, low-impact,
and future-ready farming systems.

The paper begins with the oldest fungal plant association, the mycorrhizae association and its
crucial role in green agriculture. We then explore various applications, including plant growth
promotion, biofertilizers, and biocontrol, followed by emerging insights into their roles in circular
farming systems and agroforestry. Subsequently, we investigate the applications of fungi in livestock
and aquaculture, as well as other innovative uses, such as myco-filters and bio-fumigation. Given the
limitations of fungi as biological control agents, we examine the potential of genetically modified
fungal organisms using gene-editing technologies, particularly the CRISPR system. In the context of
the modern Al era, we also discuss how artificial intelligence can be integrated to support and
optimise sustainable agricultural practices. Examples and illustrations support each section to
enhance understanding, while critically evaluating both the positive and negative implications.
Furthermore, we emphasise that green does not always mean safe, noting potential drawbacks of
fungal inoculations. Finally, our concluding remarks offer predictions on how fungi may be
employed in the next decade to further advance sustainable agricultural practices.

1. Role of mycorrhizae for green agriculture

The relationship between plants and arbuscular mycorrhizal fungi (AMF) is one of the most important
factors in the evolution of terrestrial plants (Helgason & Fitter 2005, Guo et al. 2024). Arbuscular
mycorrhizal symbiosis predates the evolution of plant roots (Kuyper & Jansa 2023). The earliest
fossil evidence of arbuscular mycorrhizal fungi is of isolated spores from the Ordivician of
Wisconsin, dated 460 million years ago (Mya), in early Devonian Rhynie Chert, where features
similar to extant Glomus species (Redecker et al. 2000). Hyphal and arbuscular structures were found
in the protostele roots of Rhynia and Asteroxylon, the earliest vascular plant species (Remy et al.
1994). One of the most important of these partnerships is the interaction between plant roots and
arbuscular mycorrhizae. Many crops species partner with them, though crops in the Brassicaceae and
Chenopodiaceae are exceptions and generally do not form mycorrhizal associations (Newman &
Reddell 1987). The arbuscular mycorrhizae can provide up to 80% of the nutrients and water a plant
needs to grow, and the plants in return provide up to 30% of the photosynthates; the food substance
made through photosynthesis, that the fungi utilise (Averill et al. 2019).
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Symbiosis

Mycorrhizae are divided into two main categories: ecto- and endo-mycorrhizae. Ectomycorrhizal
fungi do not penetrate plant cell walls; instead, they form a net-like structure around the plant root,
popularly known as the ‘Hartig net’ (Kariman et al. 2018). Endo-mycorrhizal fungi penetrate the
cortical cells of a plant. The majority of endophytic mycorrhizae are of the arbuscular mycorrhizal
type; monophyletic, belonging to the Glomeromycota, and are capable of increasing plant nutrient
concentrations in plant leaves, roots, and litter (Brundrett 2009). It has been elucidated that the type
of root-associated fungi present has a more influence on a plant's nutrient levels than its associations
with nitrogen-fixing bacteria or support from plant leaf traits (Hestrin et al. 2019). Arbuscular
mycorrhizal fungal associations that live below ground have proven capable of making one of the
largest influences on plant tissue nutrient status, a symbiosis referred to as the mother of all plant root
symbioses and surpassing the contributions of ectomycorrhizal fungi (Kuyper & Jansa 2023). More
than 70% of higher plants establish associations with these fungi (Chandwani et al. 2023). Mutualistic
associations enable the plant to absorb nutrients better, particularly phosphorus. Plants sometimes
get up to 90% of their phosphorus through these soil fungi (Averill et al. 2019). Those plants in
symbiosis with mycorrhizal fungi are more tolerant of biotic and abiotic stresses, such as insect
attacks, pathogens, and drought.

Leaf detections

It has been known for a while that blumenol C (plant hormone) derivatives are produced
exclusively in roots after colonisation by mutualistic fungi (Maier et al. 1999, Wang et al. 2018,
Walther 2021). Plants like wild tobacco Nicotiana attenuata produce blumenol C derivatives in their
roots when they have established a functional symbiosis with arbuscular mycorrhizal fungi (Wang et
al. 2018a). Blumenols are most likely produced in the roots and then transported to other parts of the
plants (Walther 2021). When this substance is transported into leaves, it can serve as a foliar marker
for the detection of fungal associations (Wang et al. 2018). Most ecological interactions are highly
species-specific. Scientists have shown blumenol accumulation in leaf tissues of other plant species,
including important crop varieties and vegetables (Walther 2021). The ubiquity of markers in the
shoot across distant plant families is likely due to the long common history of mycorrhizal fungi and
plants (You et al. 2023), suggesting that these markers play an essential role for plants colonised with
arbuscular mycorrhizal fungi.

Roles of AMF

The primary function of AMF is their contribution to plant nutrition, particularly phosphorus
(P) (Arachchige et al. 2021), often a limiting resource, and, similarly, to quite a few other
micronutrients (Clark & Zeto 2000), especially in nutrient-deficient and constrained soils. Among
the number of micronutrients that have gone in records as being supported by AMF are; sodium (Na),
zinc (Zn), selenium (Se), rubidium (Rb) and strontium (Sr) (Suzuki et al. 2001); iron (Fe) (Caris et
al. 1998); copper (Cu) (Marschner & Dell 2006); calcium (Ca) and magnesium (Mg) (Li et al. 2006);
sulphur (S) (Allen & Shachar-Hill 2009), in situations delimited by certain environmental conditions.

Reduction of root invasion by soil-borne microbial plant pathogens (Filho 2022) plays an
inimitable secondary role, as attributed to arbuscular mycorrhizal fungi. Reduction in plant uptake of
phytotoxic heavy metals (Gohre & Paszkowski 2006), improved host plant water balance in periods
of both, too much water and drought (Auge 2001), soil particle aggregation through the cohesive
action of a water-stable glycoprotein (Glomalean) (Rillig & Mummey 2006), reduction in insect
herbivory by induced plant response (Bennett et al. 2009), increase in insect pollination (Gange &
Smith 2005), percentage increase in F; generation seed germination (Srivastava & Mukerji 1995),
are some of the other notable observations to date. There is also sufficient evidence to suggest that
AM fungi play a significant role in soil N and C cycles (Govindarajulu et al. 2005, Jones et al. 2009)
and make a considerable contribution to terrestrial ecosystem C sinks (Wright & Upadhyaya 1998).
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AMF in plant breeding

Knowing which genes control root colonisation could help breeders to develop certain crop cultivars
with a higher affinity for mycorrhizal fungi, to ensure improved nutrient uptake, drought tolerance,
and disease resistance (De Vita et al. 2018). Pawlowski et al. (2020) have already identified trait loci
associated with mycorrhizal colonisation through whole genome sequencing, using soybeans. The
novel diagnostic marker (blumenol C) for the colonisation of AM fungi can be very useful in the
study of mycorrhizal associations (Mindt et al. 2019), not only for breeding purposes, which rely on
high-throughput screenings, but also for basic research into the fundamental questions about the
information transferred from plant to plant through fungal networks (You et al. 2023).

AMF in weed suppression

Weeds pose one of the most serious problems in crop production, with potential crop losses of up to
34% each year (Oerke, 2006). In conventional farming systems, actual losses to losses have been
kept at low levels, mainly through intensive tillage and herbicide application. With the increasing
restrictions on chemical use (e.g., EU 91/414/EEC), the emergence of ecologically more sound
farming systems (e.g., organic farming) and the recognition of the importance of weeds to maintain
and/or enhance on farm biodiversity (Arachchige et al. 2021, Grundy et al. 2010), focus has shifted
to sustainable alternative approaches to chemical weed management. The use and manipulation of
organisms that selectively damage weeds have long been recognised as one such alternative, but little
attention has been paid to soil biota despite its known influence on weed biology and ecology
(Boyetchko 1996). Common weeds that support Arbuscular mycorrhizal colonisation in each
respective locality can be utilised to maintain threshold AMF populations during fallow periods
between successive crops (Fig. 3) (Arachchige et al. 2021).

Figure 3 — Some common weed/crop plants were observed to harbour ample colonisation of AMF
in the dry zone of Sri Lanka. a. Euphorbia heterophylla (dicot weed) - showing vesicles, arbuscules
and hyphae, b. Eleusine indica (monocot weed) — showing arbuscules and hyphae, ¢. Sesamum
indicum (dicot dry zone crop) — showing vesicles, arbuscules and hyphae. (Magnifications x 400)
[photo credit: Arachchige LID].

Arbuscular mycorrhizal fungi can also negatively influence the growth of some weespecies,
indicating that they have the potential to determine weed community structure (Rinaudo et al. 2010).
It has been recognised that mycorrhizal weed growth reductions can be amplified in the presence of
a crop (Rinaudo et al. 2010, Veiga et al. 2011). Rinaudo et al. (2010) showed that arbuscular
mycorrhizal fungi suppressed weeds grown in the community and that this effect was even stronger
in the presence of a crop plant like sunflower, a reaction similar to phytoremediation in action (above)
how the individual weed species respond to arbuscular mycorrhizal fungi and how such the presence
or absence of a crop lie in the hands of enthusiastic future agriculturists influences individual
responses.
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AMF in farming

Many crops are mycorrhizal, and there is widespread evidence that crop plants benefit from
the arbuscular mycorrhizal associations in the same way as any other plant (Weber 2014, Chen et al.
2018). However, many agricultural practices, including the use of fertilisers and biocides, tillage, and
monocultures affect the arbuscular mycorrhizal formation and reduce it over time (Mohamed et al.
2023, Li et al. 2024). Furthermore, growing non-mycorrhizal crops, for instance, some members of
the Brassicaceae family, such as cabbage, broccoli, and cauliflower, are detrimental to arbuscular
mycorrhizal fungi and have reduced them over the decades, only to assist in polluting the
environment (Trautwig et al. 2023). There is an increasing interest in finding sustainable ways to
reap agricultural produce without depending much on agricultural chemicals.

Improved
water &
nutrient uptake

Improved p!ant , Mycelia & exudates 1k soluln!nzmg
growth & yield bacteria

Glomalin Organic acids Phosphatase

Protect soil from erosion. Enhanced soil
Improve soil structure & microbial activities
carbon sequestration

P availability

Improved soil
nutrient availability

Improved soil fertility

Figure 4 —-How Mycorrhizae Improve Soil Fertility and Plant Growth (as adapted from Fall et al.
2022).

Arbuscular mycorrhizal fungi provide one potential example of alternative biologicals, with a range
of associated advantages. There is no doubt that farmlands often harbour a multitude of pathogens
which are ready to infect plants, just adding to the losses. It has proven positive to inoculate soils
with mycorrhizal fungi to help maintain and, more often, to improve yields without relying on
additional fertilisers or pesticides. The latest in a series, a Zurich research team in a large-scale field
trial, has shown this possibility with an increased plant yield of up to 40% (Lutz et al. 2023). In
addition, it was further disclosed that the inoculation of AMF functioned best when there were many
fungal pathogens already present in the soil. What else can be more promising? In other words,
mycorrhizal fungi had only a minor influence on fields that were not contaminated with pathogens.
With just a few soil indicators (mainly soil fungi), the team was able to predict the success of
inoculation in nine out of 10 fields, and so was the prediction of crop yields ahead of the harvesting
season. This no doubt underpins that for the optimum plant nutrition, plant growth, and sustainable
crop yields; one needs to harness the best of mycorrhizal associations by effectively incorporating
them into the agricultural and management frameworks.

There is a point to ponder though; several crops including alfalfa, bitter gourd, cotton, corn,
rice, sorghum, sesame, soybeans, and wheat are already known to form associations with
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endomycorrhizal fungi, while there is a group (sugar beet, mustard, canola, buckwheat, cabbage,
cauliflower, Brussels sprout, and broccoli) who do not associate with mycorrhizal fungi.

AMF in Organic Farming

It 1s evident that arbuscular mycorrhizal fungi provide several beneficial ecosystem services.
Organic farming systems could understandably be less detrimental to AMF because they exclude the
use of water-soluble synthetic fertilisers and most biocides, along with diverse crop rotations. The
evidence available suggests that this can lead to increased AMF inoculum in soils, greater crop
colonisation and enhanced nutrient uptake (Gosling et al. 2006). Arbuscular mycorrhizal fungi might
therefore be able to supplement organic systems for the absence of fertiliser and biocide inputs.
Evidence on increased yields is scant, likely due to direct, high rates of AMF presence, especially in
the short run. Arbuscular mycorrhizal associations cannot be regarded in absolute isolation as a mere
input; they are a part of the agro ecosystem, very much, and the success rate depends on how farm
management practices are diverted in the management of this naturally available but extremely
valuable asset, particularly in the long-term sustenance of agriculture.

2. Fungi in plant growth promotion

Associations between plants and plant growth-promoting fungi greatly benefit plant health and
development. These fungi promote seed germination, shoot and root growth, photosynthetic
efficiency, biomass production, flowering, and yield, while contributing to plant protection by
inducing systemic resistance against phytopathogens (Hossain et al. 2017). The modes of action of
these plant growth-promoting fungi include the mineralisation of essential macro- and
micronutrients, the production of volatile organic compounds needed for plant growth, and the
amelioration of abiotic stresses. They also produce phytohormones and defence-related enzymes that
help inhibit attacks by pathogenic microbes (Hossain et al. 2017, Hossain & Sultana 2020,
Thambugala et al. 2020, Adedayo & Babalola 2023). Among the fungi that promote plant growth,
mycorrhizal and endophytic fungi play a significant role (Baron & Rigobelo 2022, Adedayo &
Babalola 2023).

Rhizosphere, the narrow zone of soil surrounding plant roots, is a natural habitat for numerous
beneficial microorganisms, including fungi. Some rhizosphere-resident fungi act as plant growth-
promoting fungi. This group of fungi is one of the main sources of biotic inducers, known to confer
many advantages to their host plants, and they play a significant role in sustainable agriculture
(Hossain et al. 2017, Murali et al. 2021). As given in the previous section, mycorrhizae are one of
the main groups associated with plant growth-promoting fungi (Chauhan et al. 2023). Plant growth-
promoting rhizobacteria (PGPR) also interact with arbuscular mycorrhizal fungi to enhance plant
growth (Chauhan et al. 2023). Other rhizosphere-inhabiting fungi, Trichoderma, Fusarium,
Penicillium and fungi-like species such as Phytophthora tend to have a positive effect on the plant
growth of various crop plants by enhancing their innate immunity (Murali et al. 2021, Thambugala
et al. 2022, Adedayo & Babalola 2023, Chauhan et al. 2023).

Endophytic fungi are a fascinating group of host-associated fungal communities that colonise
the intercellular or intracellular spaces of host tissues, offering benefits to their hosts while
simultaneously deriving advantages for themselves (Alam et al. 2021, Liao et al. 2025). Among the
mechanisms of growth promotion by plant growth-promoting endophytic fungi, the most important
are the acquisition of nutrients and the production of phytohormones, tolerance to biotic and abiotic
stresses, and combat against phytopathogens (Baron & Rigobelo 2022). These fungi enhance nutrient
acquisition by plants through various mechanisms, including solubilising phosphate, promoting
nitrogen fixation, and increasing the root system surface area (Hossain & Sultana 2020). These fungi
promote plant growth by producing and providing phytohormones, including auxins, cytokines, and
gibberellins, suggesting that they can regulate host signalling to influence physiological and
metabolic activities (Fite et al. 2023). The common genera of plant growth-promoting endophytic
fungi include Aspergillus, Chaetomium, Cladosporium, Fusarium, Penicillium, Sarocladium, and
Trichoderma (Alam et al. 2021, Raut et al. 2021, Garcia-Latorre et al. 2023). In this section, we have
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provided two case studies: one on volatile organic compounds produced by Trichoderma and
Cladosporium, and the other on seed growth promotion by orchid mycorrhizal fungi.

2.1 Volatile organic compounds from 7richoderma and Cladosporium for plant growth
promotion

Trichoderma is one of the most widely researched genera of filamentous fungi with numerous
applications in agriculture, environment, and industry (Tyskiewicz et al. 2022, Guzman-Guzman et
al. 2023, Woo et al. 2023). Trichoderma species produce and emit volatile organic compounds
(VOCs) of agricultural significance (Vinale et al. 2008, Lee et al. 2015, 2016, Nieto-Jacobo et al.
2017, Salwan et al. 2019, Phoka et al. 2020). The VOCs, commonly referred to as volatile
metabolites, are characterised by their low molecular mass, high vapour pressure (>0.01 kPa), low
boiling point, and low polarity (Insam & Seewald 2010). These compounds constitute various groups
of chemicals, including hydrocarbons, alcohols, ketones, aldehydes, alkanes, alkenes, esters,
aromatic compounds, which are capable of promoting plant growth and inducing defence
mechanisms (Table 1) (Lee et al. 2016, Fincheira & Quiroz 2018, Salwan et al. 2019, da Silva et al.
2021). Trichoderma aggressivum, T. asperellum, T. asperelloides, T. atroviride, T. azevedoi, T.
brevicompactum, T. harzianum, T. inhamantum, T. koningiopsis, T. longibrachiatum, T.
pseudokoningii, T. stromaticum, T. virens, and T. viride have been reported to produce VOCs (Lee
et al. 2016, Nieto-Jacobo et al. 2017, Phoka et al. 2020, Wonglom et al. 2020, da Silva et al. 2021,
Dini et al. 2021, Kong et al. 2022). Previous studies have shown the effectiveness of VOC mixtures
produced by Trichoderma species in improving the growth of various plants (Table 1). For instance,
Arabidopsis plants exposed to VOCs produced by T. asperelloides PSU-P1, T. asperellum GJS 02-
65, T. atroviride IMI206040 and GJS 01-209, T. harzianum CECT 2413, and T. koningiopsis T-51
resulted in higher plant growth than unexposed plants (Lee et al. 2015, 2016, Nieto-Jacobo et al.
2017, Phoka et al. 2020, You et al. 2022, Rubio et al. 2023). VOCs produced from 7. asperellum T1
and 7. azevedoi CEN1241 can promote lettuce growth (Wonglom et al. 2020, da Silva et al. 2021).
Early seed germination and plant biomass of radish were improved by exposure to VOCs produced
by T. harzianum KNU1 (Joo & Hussein 2022). Tomato seedlings exposed to VOCs produced by T.
atroviride 1L.Z42 exhibited longer primary roots and a greater total dry weight of roots compared to
unexposed plants (Rao et al. 2022). The 6-pentyl-2H-pyran-2-one, in VOC mixtures produced by
Trichoderma species, is a key element in growth promotion (Vinale et al. 2008, Garnica-Vergara et
al. 2015, Lee et al. 2015, Nieto-Jacobo et al. 2017, Rao et al. 2022). Although not all Trichoderma
species produce 6-pentyl-2H-pyran-2-one, this suggests that 6-pentyl-2H-pyran-2-one is not the only
factor in plant growth promotion (Kottb et al. 2015, Lee et al. 2016, Nieto-Jacobo et al. 2017, Joo &
Hussein 2022).

Cladosporium species are a common occurrence and ubiquitous (Dugan et al. 2004, Bensch et
al. 2012, Ogorek et al. 2012). In plant associations, Cladosporium species can be found as
endophytes, phylloplane fungi, saprobes, and pathogens (Tibpromma et al. 2018, Bensch et al. 2012,
Baron & Rigobelo 2021, Costa et al. 2022, Yang et al. 2023). Some Cladosporium species have been
reported to produce VOCs with agricultural significance, benefiting plants by promoting plant
growth. Li et al. (2019) found that VOCs produced by C. sphaerospermum TCO9, C. cladosporioides
CL-1, and C. halotolerans NGPF1 enhanced the growth of tobacco seedlings and increased
productivity in peppers, resulting in early flowering and increased fruit yield (Paul & Park 2013,
Jiang et al. 2021b). Tomato seedlings exposed to VOCs produced by Cladosporium sp. T1, T2, and
T3 exhibited higher total weight, plant height, and root length, as well as larger leaf size than those
unexposed plants (Raut et al. 2021). Moreover, tomato, kimchi cabbage, bok choy, and broccoli
seedlings exposed to VOCs produced by C. halotolerans NGPF1 had higher shoot length, root
biomass, and chlorophyll content than unexposed seedlings (Jiang et al. 2021b). B-caryophyllene, 2-

methyl-butanal and 3-methyl-butanal in VOC mixtures produced from Cladosporium species have
been reported to play an important role in promoting plant growth (Naznin et al. 2013, Lee et al.
2015, Jiang et al. 2021b, Walther et al. 2021).
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The production of VOCs in Trichoderma and Cladosporium is directly influenced by both the
species and the strain, as well as by growth conditions, developmental stage, and the abiotic or biotic
cues received from the environment (Lee et al. 2015, 2016, Dini et al. 2021, Rubio et al. 2023).
Depending upon the above, VOCs from the same Trichoderma and Cladosporium species and strain
can either stimulate plant growth or induce toxicity (Lee et al. 2016, Salwan et al. 2019). Furthermore,
key considerations for the utilisation of fungal volatiles in promoting plant growth include their
efficacy, specificity, potential ecological impacts, practical application methods, and safety in terms
of human health.

Table 1. Examples of the use of VOCs produced from Trichoderma and Cladosporium for plant
growth promotion.

Trichoderma strains  Major volatile organic Treated plant  Result Reference
compounds
T. asperellum strain 6-Pentyl-2H-pyran-2-one Lettuce Enhanced plant Wonglom et al.
Tl Succinic acid, 2-(2- (Lactuca growth (biomass, (2020)
chlorophenoxy) ethyl ester sativa) number of shoots
and roots, fresh and
dry weight),
chlorophyll content
and induced
defence response
T. asperellum strain 6-Pentyl-2H-pyran-2-one Arabidopsis Enhanced plant Lee et al. (2016)
GJS 02-65 Ethyl 2-methylbutyrate (Arabidopsis growth and
Octadecane thaliana) chlorophyll content
T. harzianum strain y-Cadinene Radish Enhanced the early ~ Joo & Hussein
KNUI 2-Methyl-6-methylene-1,7- (Raphanus seed germination (2022)
ctadiene sativus) and increased plant
Allo-aromadendren biomass
T. azevedoi strain 1-Octen-3-ol Lettuce Enhanced plant da Silva et al.
CEN1241 y-Muurolene (Lactuca growth and biomass (2021)
1-Isopropyl-4,8- sativa)
dimethylspiro [4,5] dec8-en-7-
0
T. atroviride strain 1-Octen-3-ol Arabidopsis Increased shoot Nieto-Jacobo et
IMI206040 3-Octanone (Arabidopsis height, root length al. (2017)
6-Pentyl-2H-pyran-2-one thaliana) and total biomass
T. atroviride strain 6-Pentyl-2H-pyran-2-one Tomato Enhanced length of  Rao et al. (2022)
LZ42 2-pentylfuran (Solanum the primary roots

lycopersicum)

and total root dry
weight

T. asperelloides 2-Methyl-1-butanol Arabidopsis Enchanted fresh Phoka et al.
strain PSU-P1 6-Pentyl-2H-pyran-2-one (Arabidopsis weight, root length,  (2020)
thaliana) and total
chlorophyll content
and induced
defense responses
T. atroviride strain 6-Pentyl-pyran-2-one Arabidopsis Enhanced plant Lee et al. (2015)
GJS 01-209 (Arabidopsis growth
thaliana)
T. harzianum strain 6-Pentyl-2H-pyran-2-one Arabidopsis Induced plant Rubio et al.
CECT 2413 (Arabidopsis development, (2023)
thaliana) jasmonic acid- and
salicylic acid-
dependent defences
T. harzianum strain Harzianic acid Olive Enhanced VOCs Dini et al.
M10, T22, and TH1,  6-Pentyl-a-pyrone trees (Olea production and (2021)
T. asperellum strain europaea) affected
KV906, and T. virens methylerythritol

strain GV41
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Trichoderma strains  Major volatile organic Treated plant  Result Reference

compounds
1-phosphate, lipid-
signalling, and
shikimate pathways

T. koningiopsis strain ~ B-Phellandrene Arabidopsis Enchanted rosette You et al. (2022)

T-51 1,3,6,10- (Arabidopsis diameter, root
cyclotetradecatetraene,3,7,11- thaliana) length, and fresh
trimethyl-14-(1-methylethyl)-, weight.

[S-(E, Z,E, E)]-

T. viride Isobutyl alcohol Arabidopsis Increase plant fresh ~ Hung et al.
Isopentyl alcohol (Arabidopsis weight, lateral root  (2013)
3-methylbutanal thaliana) growth, and total

chlorophyll
concentration

C. cladosporioides a-Pinene Tobacco Improved the Paul & Park

strain CL-1 B-Caryophyllene (Nicotiana growth of (2013)

tabacum) seedlings, root
development, and
biomass

C. halotolerans strain ~ 2-Methyl-butanal Tobacco Increased shoot, Jiang et al.

NGPF1 3-Methyl-butanal (Nicotiana root biomass and (2021b)

benthamiana),  chlorophyll content
tomato

(Solanum

lycopersicum),

kimchi

cabbage

(Brassica

rapa), bok

choy (Brassica
chinensis), and
broccoli
(Brassica
oleracea)

It is obvious that VOC:s, particularly those produced by Trichoderma and Cladosporium species,
have emerged as powerful bioactive agents in sustainable agriculture. They offer significant promise
for promoting plant growth and enhancing stress resistance. However, several knowledge gaps
remain that limit further applications and potential use of these compounds. Given the priority, to
date, there is limited understanding of VOCs biosynthetic pathways, plant recognition mechanisms,
and the strain-specific variability in VOCs profiles. Identification of these pathways will help in the
mass production and industrialisation of these compounds. Integrating knowledge on genomics,
metabolomics, and synthetic biology will help to enhance VOCs yield and consistency and field-
compatible formulations.

The VOCs production is highly sensitive to environmental conditions, and it is also strain-
specific, with inconsistent efficacy under field scenarios. Concerns surrounding ecological impacts,
non-target effects, and human health safety further highlight the need for comprehensive
ecotoxicological assessments. Establishing regulatory frameworks and conducting multi-site field
trials will be crucial to translating these microbial metabolites into commercially viable,
environmentally friendly crop enhancement tools.

2.2 Seed germination and seedling growth promotion of Gastrodia elata Blume by symbiotic
fungi Mycena and Armillaria species

Symbiotic fungi, particularly orchid mycorrhizal fungi (OMF), play a crucial role in promoting seed

germination for many orchid species through nutrient supplementation, degradation of the seed coat,

and promotion of protocorm formation (Jin et al. 2024). These fungi provide essential nutrients that

are vital for the early development of orchid seedlings. Most orchid mycorrhizal fungi form pelotons
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inside the cells of adult roots or protocorms and seedlings (Liu et al. 2024). Most orchid species that
are mycoheterotrophic during seed germination and seedling development maintain distinct
associations with members of a restricted group of fungal partners throughout their lifetimes. In
contrast, others switch symbionts while transitioning from the protocorm to the seedling adult stage
(Desjardin et al. 2008, 2010, Dearnaley et al. 2016, Naranjo-Ortiz & Gabaldon 2019, Li et al. 2024).

Gastrodia elata Blume is a rootless and leafless heterotrophic orchid, unable to perform
photosynthesis to produce nutrients (Shan et al. 2021). It relies on symbiotic interactions with fungi
to obtain nutrients necessary for its complex life cycle (Liu et al. 2024). The seeds of G. elata are
dust-like, structurally simple, and lack nutritional reserves, making seed germination under natural
conditions entirely dependent on fungi such as Mycena (Park et al. 2012). The poor germination of
G. elata seeds is primarily due to the hydrophobic barrier formed by the seed coat, which restricts
water uptake, and the accumulation of germination inhibitors such as phenolics and abscisic acid
(ABA) (Miyoshi & Mii 1988; Yamazaki & Miyoshi 2006). The seed coat of G. elata is primarily
composed of lignin. Therefore, degrading the lignin layer is crucial for promoting seed germination
(Li et al. 2016).

The germination of orchid seeds is highly dependent on their symbiotic association with specific
orchid mycorrhizal fungi (OMFs), as well as on environmental conditions. Due to their extremely
small size, lack of endosperm, absence of internal nutrient reserves, and a hydrophobic seed coat,
most orchid seeds have limited ability to absorb water and nutrients, which suppresses seed
germination. Consequently, both seed germination and subsequent seedling development rely on
exogenous nutrients supplied by OMFs (Dearnaley et al. 2016). Studies have shown that more than
99% of orchids in nature are myco-heterotrophic during at least part of their life cycle, and over 200
species have been found unable to photosynthesise and completely dependent on nutrients from their
fungal symbionts throughout their whole life histories (Li et al. 2024). Therefore, orchid seed
germination and subsequent growth rely on exogenous nutrients such as carbon, nitrogen, phosphorus,
minerals, and vitamins provided by symbiotic mycorrhizal fungi (Naranjo-Ortiz & Gabaldon 2019).

Seeds Germinated seeds

Mature capsuley
”
Bolting

¥ -
N,
e

Flowering

Protocorm (A) ‘ Juvenile tuber (B)

Gastrodia elara Mature tuber (D) Immature tuber (C)
Figure 5 -The life cycle of Gastrodia elata with Mycena species and Armillaria species
Mycena (Pers.) Roussel is a genus in Mycenaceae (Agaricales) with Mycena galericulata (Scop.)

Gray., which serves as the type species with about 600 species (He et al. 2024). Members of this
genus are distributed worldwide and include both saprotrophic and pathogenic fungi (Liu et al.
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2022a). The fruiting bodies of Mycena are rarely more than a few centimetres in width and are
characterised by a small conical or bell-shaped cap and a thin, fragile stem (Liu et al. 2022a). Most
species are grey or brown, and many Mycena species are bioluminescent, with 52 bioluminescent
species currently identified. Several bioluminescent Mycena species have shown the ability to
enhance seed germination in Orchidaceae, particularly by promoting the germination of G. elata
seeds (Desjardin et al. 2010). Gastrodia elata seeds are small and lack endosperm; therefore, they
have limited nutrition for germination. Mycena species provide essential nutrients to the seeds,
facilitating their germination and early development.

Mpycena species produce lignin-degrading enzymes such as manganese peroxidase and laccase,
which facilitate hyphal invasion into the seeds (Ren et al. 2021) and break down this barrier, enabling
the seeds to absorb water and nutrients more effectively. In addition, Mycena species also promote
the formation of protocorms, which are the initial growth stage of orchid seedlings (Desjardin et al.
2010). This is a critical step in the orchid life cycle. Different Mycena species can vary in their
effectiveness at promoting orchid seed germination. For example, Mycena osmundicola, M.
orchidicola, M. anoectochila, and M. dendrobii have all been identified as effective in promoting the
germination of G. elata seeds.

Mycena species occupy orchid seeds by penetrating the seed coat first, then moving through the
suspensor remnant, stipe cell, peloton cells, and digestive cells (Fan et al. 1999). Within the
embryonic cells, Mycena hyphae form a highly branched network that eventually develops into
specialised peloton structures (Zhao et al. 2024). These pelotons, as key structures for nutrient
exchange, either transfer organic carbon, water, and inorganic nutrients absorbed by the fungi to the
seed or are digested to provide the essential nutrients for seed growth (Yeh et al. 2019). After
receiving nutrients from Mycena hyphae, orchid seeds undergo vigorous cell division, causing the
embryo to expand, break through the seed coat, germinate, and form protocorms (Fig. 5). In the early
developmental stages of G. elata, Mycena species supply essential nutrients required for seed
germination, protocorm growth, and differentiation (Yuan et al. 2025). As protocorms develop into
vegetative propagation corms, Armillaria species gradually become the dominant symbiotic partners,
supporting tubular enlargement, flowering, and fruit development (Tsai et al. 2016).

Armillaria (Fr.) Staude (Basidiomycota, Physalacriaceae) is widely distributed worldwide and
impacts more than 500 host species. Throughout the growth of G. elata, symbiotic Armillaria
functions as the sole nutrient source, and its growth characteristics directly influence the quality and
yield of the plant. Its hyphae absorb nutrients, whereas rhizomorphs formed under stress or during
later stages facilitate the transport of water, nutrients, and oxygen, as well as the exploration of new
nutrient sources (Wong et al. 2019).

Before invading G. elata, Armillaria species form rhizomorphs that attach to the plant’s
epidermis. Hyphae within these rhizomorphs mechanically penetrate the epidermal cells and directly
reach a layer of cortical cells located outside the endodermis, where internal colonisation is
established (Xu 2001). The vegetatively propagated corms of G. elata then derive nutrients and
energy from Armillaria to develop into mature tubers. Research has shown that G. elata induces
Armillaria colonisation by secreting specific compounds such as strigolactones, and subsequently
produces enzymes including glycoside hydrolases, carbohydrate-binding modules, and glycosyl-
transferases that degrade fungal tissue to obtain energy (Hua et al. 2024). These enzymes contribute
to cell wall degradation and the biosynthesis of secondary metabolites, both essential for the
establishment and maintenance of the symbiotic relationship. Alternatively, Armillaria may directly
invade immature tubers and subsequently colonise new tubers along the vascular bundles (Irwin et
al. 2007).

The symbiotic relationship among G. elata, Mycena, and Armillaria offers a promising model
for fungal-based crop production, where plants rely entirely on fungal nutrient provision rather than
soil fertilisation. While this system holds great potential for sustainable agriculture and industrial
applications, several key research gaps must be addressed. First, the host specificity and fungal
diversity of Mycena species remain poorly understood, with most studies limited to M. osmundicola.
Broader sampling and identification of new Mycena species with enhanced enzymatic activity and
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symbiotic efficiency are essential. Furthermore, there has been no exploration of how these
symbioses develop at the level of functional genomics. Transcriptomic, proteomic, and metabolomic
studies are needed to investigate fungal-host signalling, peloton formation, and metabolite exchange.
Such knowledge could expand the application of Mycena and related species to other economically
important crops beyond orchids. To date, no cross-species trials have been conducted to evaluate
broader agricultural potential. Additionally, Mycena species produce industrially valuable enzymes
such as peroxidase and laccase, which, through appropriate fermentation and industrial protocols,
could be harnessed for bioremediation and eco-friendly bleaching. There is also scope for developing
commercial Mycena based seed germination enhancers, especially for high-value medicinal,
horticultural, and endangered plants.

The Gastrodia—Mycena—Armillaria is a unique system that showcases fungal symbioses to
support nutrient self-sufficiency, overcome germination barriers, and sustain long-term plant growth
without photosynthesis. Industrialising such fungal associations for seed germination, enzyme
production, and regenerative agriculture could revolutionise soilless farming, land rehabilitation, and
low-input agriculture. However, this requires a deeper functional understanding alongside ecological
and environmental monitoring to ensure safety, sustainability, and scalability.

3. Biofertilizer

Biofertilizers are living microorganisms that enhance both soil fertility and plant growth.
They improve soil fertility by nitrogen fixation, phosphorus solubilisation, or stimulating nutrient
uptake (Itelima et al. 2018, Gulshan et al 2022). In this process, beneficial microbes improve soil
health. In contrast, these introduced organisms are involved in the recycling of organic matter (Ortiz
& Sansinenea 2022), in which fungi, as a source of biofertilizers, are mainly utilised as decomposers
to release N, P, K, and trace elements (Panda 2022, Kumar et al. 2023a). Nutrient exchange, on the
other hand, is a mutual nutrient trade between fungi and plants (Behie & Bidochka, 2014). Most of
the mycorrhizal associations are categorised here (Miller & Allen 1992, Fabianska et al. 2019). Fungi
secrete enzymes to break down lignin and cellulose, which are major components of plant litter,
proteins into amino acids and then to nitrogen and phosphate and organic phosphorus into inorganic
phosphate (Kjoller & Struwe 2002, Pritsch & Garbaye 2011). Fungi are actively involved in
enzymatic activities by secreting laccase, cellulase, xylanase, protease, and phytase (EI-Gendi et al
2021, McKelvey & Murphy 2011). Ecologically, biofertilizers reduce dependency on synthetic
fertilisers and thus minimise pollution and soil degradation. Economically, they lower farming costs,
enhance crop yields sustainably and support long-term agricultural resilience.

In the following section, we discuss the application of fungi as biofertilizers to enhance soil,
improve nutrition, and facilitate recycling and exchange. We have provided case studies on
Aspergillus and Penicillium as mineral solubilisers, the potential of fungal-bacterial biofilm bio-
fertilisers, and, finally, the challenges and future directions.

3.1 Application of mineral-solubilising Aspergillus and Penicillium as biofertilizer in
agriculture
Soil minerals play a crucial role in plant development, growth, and productivity. Typically, around
95-99% of soil minerals are present in insoluble forms, including carbonates, phosphates, oxides,
and complex forms (Lian et al. 2008, Gadd 2010). Thus, only 1 to 5% of the soil samples contained
minerals readily available for plant uptake. Mineral-solubilising fungi are commonly found in soil
and often associated with plant rhizospheres (Shrivastava et al. 2018, Khuna et al. 2021). Their
presence has a significant impact on providing the essential soluble minerals required for plant uptake
(Gyaneshwar et al. 2002, Sharma et al. 2013). Previous studies have demonstrated that mineral-
solubilising fungi constitute approximately 0.1% to 0.5% of the total fungal populations present in
soil (Kucey 1983, Sharma et al. 2013). These fungi possess the capability to solubilise a range of
insoluble minerals including calcium, copper, cobalt, iron, manganese, magnesium, phosphorus,
potassium, and zinc. This comes from their ability to reduce pH levels by secreting organic acids
(e.g., citric, gluconic, 2-ketogluconic, malic, oxalic, succinic, and tartaric acids), as well as through
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mechanisms such as chelation, exchange reactions, and mineralisation (Jain et al. 2014, Mendes et
al. 2014, Pawar & Thaker 2009, Singh & Reddy 2011, Khuna et al. 2023, Mayadunna et al. 2023).
Typically, the fungal genera Aspergillus and Penicillium are the predominant mineral-
solubilising fungi found in soil (Wakelin et al. 2004, Sharma et al. 2013, Kumar et al. 2018, Islam et
al. 2019). Aspergillus aculeatus, A. amstelodami, A. awamori, A. brasiliensis, A. brunneoviolaceus,
A. candidus, A. clavatus, A. fischeri, A. flavus, A. foetidus, A. fumigatus, A. hydei, A. nidulans, A.
niger, A. sclerotiorum, A. sydowii, A. tamarii, A. terreus, A. terricola, A. tubingensis, and A.
versicolor have been reported as mineral-solubilizing fungi (Gupta et al. 1994, Jain et al. 2012, Singh
& Reddy 2012, Saxena et al. 2013, Mendes et al. 2014, Baron et al. 2018, Doilom et al. 2020, Khalil
et al. 2021, Li et al. 2021, Balogun et al. 2022, Bhatnagar & Yadav 2023). In addition, P. albidum,
P. arenicola, P. aurantiogriseum, P. brevicompactum, P. canescens, P. chrysogenum, P. claviformis,
P. crustosum, P. decumbens, P. expansum, P. frequentans, P. funiculosum, P. glabrum, P.
guaibinense, P. islandicum, P. italicum, P. janthinellum, P. jensenii, P. lividum, P. melinii, P.
miczynskii, P. olsonii, P. pinophilum, P. purpurogenum, P. restrictum, P. rugulosum, P. soli, P.
solitum, P. thomii, P. variable, P. verruculosum, and P. waksmanii were also were also reported to
have mineral solubilizing properties (El-Azouni 2008, Morales et al. 2011, Saxena et al. 2013,
Mendes et al. 2014, Doilom et al. 2020, Khalil et al. 2021, Arias et al. 2023; Bhatnagar & Yadav
2023). Numerous studies have demonstrated the efficacy of mineral-solubilising Aspergillus and
Penicillium fungi in enhancing the growth, yield, and quality of many crops, as evidenced by
experiments conducted either in controlled greenhouse conditions or through field trials (Table 2).
Inoculation with these fungi has been shown to improve soil nutrient availability and plant uptake.

Mineral-solubilising fungi as biofertilizer

Mineral-solubilising Aspergillus and Penicillium species are being increasingly recognised for
their potential as biofertilizers in agriculture (David et al. 2023, Mayadunna et al. 2023). Application
of these fungi as biofertilizers offers several advantages in agricultural systems. Firstly, these fungi
contribute to the sustainable management of soil fertility by releasing bound minerals, thereby
reducing dependence on chemical fertilisers (Igbal et al. 2023). This approach corresponds to organic
farming principles and helps alleviate the negative environmental effects associated with chemical
fertilisers, including soil degradation and water pollution. Secondly, these biofertilizers contribute to
the development of resilient cropping systems by enhancing plant tolerance to abiotic stresses such
as drought, salinity, and temperature extremes (Pang et al. 2024).

Examples of commercially available phosphate-solubilising biofertilizer products for liquid
applications include Agright™ (Aspergillus sp.), BIOFERT (Aspergillus sp.), Green Awamori
(Aspergillus awamori), JumpStart® (Penicillium bilaiae), Shayona (Aspergillus spp.), and Rootnet
(Aspergillus spp.). Additionally, Mn Sol B® (Penicillium citrinum) is a commercially available
product of powdered and liquid manganese solubilising biofertilizer. Several previous investigations
have reported that the utilisation of JumpStart® has the potential to enhance the growth and yield of
various crops such as Indian mustard (Sheoran & Chander 2013), maize (Leggett et al. 2015, Gomez-
Muiioz 2018), rice (Geethalakshmi & Sangameshwari 2021), switchgrass (Simpson et al. 2020), and
wheat (Sanchez-Esteva et al. 2016), while also improving phosphorus uptake.

Table 2 Examples of mineral-solubilising Aspergillus and Penicillium on plant growth promotion

Fungal species Treated plant Effect on the plant References
A. brunneoviolaceus (HZ23 Eggplant (Solanum Increased leaf size, length and biomass Lietal

and HZ10) and Penicillium melongena L.) of seedlings and roots, and affected (2021)
oxalicum (HZ06) early flowering

A. chiangmaiensis (SDBR- Arabidopsis - Increased dried biomass of shoot and Khuna et al.
CMUI4), (Arabidopsis root, chlorophyll content, and cellular (2021, 2023)
A. pseudopiperis (SDBR- thaliana), cassava inorganic phosphate content in all plants

CMUI1), and A. (Manihot esculenta - Increased leaf number and leaf length
pseudotubingensis (SDBR- Crantz), onion in both Arabidopsis and onion plants

CMUO2) (Allium cepa L.), and
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Fungal species Treated plant Effect on the plant References
sugarcane and improved the yield and quercetin
(Saccharum content of onion bulbs
officinarum L.) - Increased root lengths of cassava and

A. flavus Maize (Zea mays L.)  Increased seed germination percentage, = Omomowo et
shoot length, plant height, leaf number, al. (2020)
cob length, 100 grain weight, grain
yield, and mineral contents

A. niger (PM- Maize (Zea mays L.)  Enhanced plant height, cob length, Naeem et al.

4) biological yield, grain yield, and (2021)
phosphorus content

A. niger (K7) Soybean (Glycine Increased seed germination percentage, Saxena et al.

max L.) shoot and root length, shoot and root (2016)
biomass, leaf number, root nodulation,
yield, and phosphorus uptake in plants
A. niger (S36) and Mung bean (Vigna Increased shoot and root length, leaf Jain et al.
A. tubingensis (S33) radiata cv. RMG number, dried biomass, yield, and (2014)
492) phosphorus content

A. niger (AY028) and P. Rice (Oryza sativa Increased plant height David et al.

chrysogenum (AY005) L) (2023)

A. niger (AUMC 14260) and P. Wheat (Triticum Increased growth, biochemical status, Dawood et al.

chrysogenum (AUMC 14100)

aestivium Cv.
Gemmiza 9)

sugarcane

nutrient contents, and yield

(2022)

P. brevicompactum Coffee (Coffea Increased coffee bean weight Arias et al.
arabica var. Costa (2023)
Rica)

P. chrysogenum (T8) Tomato (Solanum Increased shoot and root length, and Javed et al.
lycopersicum L.) total chlorophyll content of seedlings (2019)

P. commune (MCC 1720) Black gram (Vigna Increased seed germination percentage, = Banerjee &
mungo (L.) Hepper)  seedling vigour index, root and shoot Dutta (2019)

P. expansum (NAUG-B1)

Brinjal (Solanum

length, biomass, and chlorophyll content
Increased germination percentage, shoot

Panchal et al.

melongena L.) and root length, dried biomass, (2015)
chlorophyll and phosphorus content
P. guanacastense (JP-NJ2) Masson pine (Pinus Increased shoot length and root crown Qiao et al.
massoniana Lamb.) diameter of seedlings (2019)
P. menonorum (KNU-3) Cucumber (Cucumis  Increased dry biomass of roots and Babu et al.
sativus L.) shoots, chlorophyll content, total starch,  (2015)
protein content, and phosphorus content
P. oxalicum (I1) Maize (Zea mays L.)  Increased yield Gong et al.
(2014)
P. oxalicum (y2) Rape (Brassica Improved fresh and dry weight, root Wang et al.
napus L.) length, and root dry weight (2021b)

Genetic and Biochemical Basis of Mineral-solubilising Fungi

The mineral-solubilising capabilities of Aspergillus and Penicillium species are linked to their genetic
makeup and biochemical mechanisms that enable them to obtain essential nutrients from insoluble
mineral forms. Among these main components is the biosynthesis of organic acids such as citric,
oxalic, and gluconic acids. For instance, 4. niger produces citric, gluconic, oxalic, and malic acids,
which were regulated by glucose oxidase, gdh (gluconate dehydrogenase), and oahA (oxaloacetate
hydrolase). In Penicillium, particularly P. bilaiae, citric and oxalic acids are involved, and those are
mediated by genes regulating the TCA cycle, oxalate biosynthesis, and acid transporters. These acids
are secreted into the rhizosphere, where they dissolve insoluble phosphates and metal oxides.
Furthermore, it has been shown that, under nitrogen-limited conditions, citric acid production is
enhanced, while oxalic acid is favoured under carbon-limited conditions. This further emphasises the
importance of these genera in regenerative agriculture.

Additionally, these mineral-solubilising fungi possess secondary metabolite biosynthetic
gene clusters such as polyketide synthases and non-ribosomal peptide synthetases. Aspergillus niger
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has been reported to produce over 20 cryptic biosynthetic gene clusters, which regulate the synthesis
of bioactive compounds that may aid in mineral solubilization and microbial competition.
Furthermore, these genes contribute to microbial competitiveness and mineral transformation.
Proton-translocating ATPases further support acid secretion through electrochemical gradients, while
siderophore-producing genes like sidA, sidC, and sidD enhance iron solubilization.

Genomic studies reveal that 4. niger and P. bilaiae exhibit mitochondrial genome plasticity and
harbour genes for phosphate transporters and acid tolerance. These abilities reinforce their
adaptability and efficacy as biofertilizers. These integrated pathways collectively enable mineral-
solubilising fungi to play a pivotal role in sustainable nutrient cycling and plant nutrition.
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Figure 6 — Mechanisms of mineral solubilization in Aspergillus and Penicillium fungi. The diagram
highlights the mobilisation of nutrients through organic acid secretion, proton efflux, and secondary
metabolite production. Genes involved in acid biosynthesis, siderophore formation, and phosphate
transport support mineral dissolution. Genomic adaptability and biosynthetic gene clusters further
enhance their effectiveness as biofertilizers.

However, challenges remain in scaling up the production and application of mineral-solubilising
Aspergillus and Penicillium for widespread agricultural use. Issues such as formulation optimisation,
shelf-life stability, and compatibility with existing farming practices need to be addressed to ensure
the successful application of these biofertilizers on a larger scale. Moreover, further research is
needed to better understand the long-term effects of fungal inoculation on soil health, interactions
between plants and microbes, and the dynamics of ecosystems.

3.2 Fungal-bacterial biofilm biofertilizers and commercial aspects in Sri Lanka

Introduction to biofilm biofertilizers (BFBFs)

Fungal-bacterial biofilm-based biofertilizers, known as biofilm biofertilizers (BFBFs), represent a
novel concept in biofertilizer technology introduced to global agriculture (Seneviratne 2003,
Seneviratne et al. 2007). Numerous studies have demonstrated that BFBFs exhibit superior efficacy
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compared to conventional biofertilizers, particularly for non-leguminous crops (Triveni et al. 2012;
Hassani et al. 2013, Korniichuk & Zayarnyuk 2013, Swarnalakshmi et al. 2013, Santos et al. 2017,
Velmourougane et al. 2017, Sudadi et al. 2018, Ricci et al. 2019, Singhalage et al. 2021). This
enhanced effectiveness is attributed to the greater biochemical diversity secreted by biofilms
compared to mono- or mixed-culture microbial inoculants, which helps restore the function and
sustainability of degraded agroecosystems by breaking the dormancy of the soil microbial seed bank
(Meepegamage et al. 2021, Buddhika et al. 2013, Herath et al. 2017).

Fungal-bacterial biofilms are structured microbial communities formed through the
attachment of bacterial cells to fungal hyphae, embedded within a protective extracellular polymeric
substance (EPS) matrix. This biofilm architecture facilitates enhanced metabolic cooperation,
nutrient exchange, and stress resilience for both organisms. Fungi provide a stable biotic surface and
carbon-rich exudates, while bacteria contribute nitrogen compounds and protective EPS. The
synergistic interaction leads to upregulated gene expression, improved colonisation efficiency, and
greater biochemical diversity compared to monocultures. These traits underpin the superior
performance of biofilm biofertilizers (BFBFs) in restoring degraded soils and boosting crop
productivity.

Agronomic and soil benefits of BFBF's

Application of BFBFs, combined with reduced chemical fertiliser (CF) rates, has been shown to
increase soil nutrient content and enhance microbial community diversity (Meepegamage et al. 2021;
Premarathna et al. 2021, Rathnathilaka et al. 2022). This reinstates complex interactions among soil,
plant, and microbial parameters, ultimately resulting in ca. 20-30% higher rice grain yields than CF-
only practices (Premarathna et al. 2021, Rathnathilaka et al. 2022). A significant correlation between
a developed soil quality index and grain yield was observed exclusively in the BFBF treatments,
highlighting the critical role of soil quality in eco-friendly rice cultivation supported by biofertilizers
(Rathnathilaka et al. 2022). Conversely, CF alone appears insufficient to overcome the rice yield
barrier in degraded soils, emphasising the necessity of BFBF-induced microbial activity. Furthermore,
it has also been reported to improve rice grain quality by reducing toxic heavy metal content, lowering
estimated daily intake and hazard quotients (Warnakulasooriya et al. 2025), enhancing antioxidant
composition and capacity (Rathnathilaka et al. 2024), and modulating primary metabolite profiles
(Pathirana et al. 2023).

Carbon sequestration and environmental impact

The gross carbon pool in soil, which partly emits CO- during tillage, plays a vital role in increasing
preserved soil carbon stocks over time; a phenomenon observed only under BFBF treatment
(Premarathna et al. 2021). Remarkably, the BFBF application sequestered ca. 30% more carbon in
just 1.5 years with only 2.5 L/ha, whereas conventional farming practices require bulky organic
matter inputs (~10 t/ha) to achieve comparable carbon sequestration (Jayasekara et al. 2022). This
increase is primarily due to enhanced root growth and depth, promoting microbial carbon assimilation
in the root zone. Furthermore, BFBF-treated plants exhibit higher photosynthetic rates, leading to
greater rhizodeposition of fresh carbon into the soil than CF-only practices (Premarathna et al. 2023).
These factors contribute to increased soil microbial biomass, mineral-reactive metabolites, organo-
mineral complexes, and aromatic carbon availability, collectively stabilising soil carbon, reducing
priming effects, and lowering soil respiration rates (Premarathna et al. 2023).

Table 3. Comparison between conventional biofertilizers and BFBF

Feature Biofilm Biofertilizers (BFBFs) Conventional Biofertilizers
Mlcmbla}l. Multi-species biofilm (fungi + bacteria) Single or mixed microbial cultures
Composition
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Feature Biofilm Biofertilizers (BFBFs) Conventional Biofertilizers

Embedded in the extracellular polymeric matrix

Structure (EPS) Free-living or loosely associated microbes
Stability & Survival ~ High resilience to environmental stress Lower survival under adverse conditions
Nutrient Exchange Synergistic interactions enhance nutrient cycling Limited interspecies cooperation
lonization L Lo . . L . .
](E:?ﬁ?:iencyo Strong root colonisation via biofilm adhesion Variable colonisation depending on strain

Rich metabolite profile from cooperative

Biochemical Diversit .
ochetme ersity metabolism

Narrower range of metabolites

Impact on Soil

. . Reactivates dormant microbial seed bank Minimal effect on native microbial diversity
Microbiome

Promotes deep root growth and microbial carbon

Carbon Sequestration .
assimilation

Limited impact on soil carbon dynamics

Crop Yield & Quality 20-30% higher yields; improved grain quality Moderate yield improvement; limited

quality effects
Environmental Reduces chemical input, improves soil health, = Reduces fertiliser use, but has less impact on
Benefits and mitigates runoff soil restoration

Requires formulation consistency and farmer Easier to produce and apply, but less

Adoption Challenges training effective long-term

The journey of BFBF in Sri Lanka

The development of Biofilm Biofertilizers (BFBFs) in Sri Lanka represents a significant step
toward reducing reliance on chemical fertilisers and promoting sustainable agriculture. Initially
introduced as a natural alternative to synthetic fertilisers, BFBFs underwent extensive research,
particularly in paddy cultivation. This research demonstrated that BFBF application could reduce
chemical fertiliser use by up to 50% while boosting yields by 20-30% (Premarathna et al. 2021,
Rathnathilaka et al. 2022). Notably, over 16% of Sri Lanka’s total rice cultivation area has adopted
the BFBF practices (Ekanayake et al. 2023).

From an economic perspective, local production of the BFBFs has empowered smallholder
farmers by providing affordable, eco-friendly inputs. However, the initial adoption phase posed
challenges, highlighting the need for farmer training and ongoing technical support. Environmentally,
the BFBFs promote soil microbial diversity, mitigate the harmful effects of chemical overuse, and
improve nutrient cycling and soil structure, factors essential for maintaining long-term soil fertility.
Additionally, the BFBFs reduce nutrient runoff and water contamination, enhance carbon
sequestration, and contribute to climate resilience in agriculture. In addition, the BFBF practice aligns
well with the Colombo Declaration of 2019, which aims to halve nitrogen waste in agriculture by
2030 (Ekanayake et al. 2024). Overall, the BFBFs present a scientifically and environmentally
valuable, eco-friendly, and economically viable alternative to excessive nitrogen fertiliser use,
compromising rice yields. Despite these benefits, challenges remain in formulation consistency and
quality control, underscoring the importance of regulatory oversight and ongoing scientific
refinement.

3.3 Use of Pisolithus and Scleroderma as biofertilizer in forestry

Globally, the area used for commercial forestry output is rapidly growing. It is estimated that the
area of commercial forests worldwide would have grown by 20% to 50% by 2030 (FAO 2010).
However, one of the biggest issues facing forest nurseries is the continued supply of high-quality
seedlings for commercial forestry applications. Thus, the growth and development of seedlings at an
early stage in nurseries is essential to the commercial propagation processes. To propagate seedlings,
it is necessary to address and advance nutrient management, a fundamental practice for ensuring their
quality. In this context, ectomycorrhizal fungi are a valuable tool for seedling propagation, as they
contribute to the success and sustainability of nutrient availability for plant seedlings (Smith & Read
2010, Mello & Balestrini 2018, Policelli et al. 2020).
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The ectomycorrhizal (ECM) symbiosis is a significant component of forest ecosystems in the
boreal, temperate, subtropical, and tropical climatic zones (Brundrett 2004, 2009, Tedersoo et al.
2010, 2012, Brundrett & Tedersoo 2018). It is a type of mycorrhizal symbiosis which is characterised
by a lack of intracellular hyphae, the development of a hyphal sheath (called the mantle) surrounding
the root surface, and the presence of an intercellular hyphal network (called the Hartig net) (Brundrett
2004, 2009, Smith and Read 2010, Montesinos-Navarro et al. 2018). Of the estimated 20,000 fungal
species identified, over 250 genera have been listed as ECM fungi, most belonging to Basidiomycota
(within families Amanitaceae, Boletaceae, Cantharellaceae, Cortinariaceae, Hydnaceae,
Inocybaceae, Paxillaceae, Russulaceae, Suillaceae, and Tricholomataceae) and some to Ascomycota
(orders Pezizales and Tuberales) (Tedersoo et al. 2010, Tedersoo & Smith 2013, Clasen et al. 2018).
The ECM fungi typically produce fruiting bodies in the Rhizosphere soil of the host plant, some of
which are known to be edible and valuable for their medicinal properties on humans (Hall et al. 2007,
Zambonelli & Bonito 2012).

Various species of ECM fungi in the genera Pisolithus and Scleroderma, which form ECM
associations with a wide range of hosts, have been used as biofertilizers to promote plant growth,
especially in the seedling stage of forestry plants, including plant genera Acacia, Quercus,
Eucalyptus, Nothofagus, Pinus, and Shorea, as they produce a large number of spores (Brundrett
2004, 2009, Chen et al. 2006, Aggangan et al. 2010, Sebastiana et al. 2018, Zuo et al. 2022). These
spores have been mostly used for seedling inoculation at concentrations ranging from 10°-10’
spores/ml (Chen et al. 2006, Bruns et al. 2009, Aggangan et al. 2010). Numerous studies have
concluded that inoculating spores of Pisolithus and Scleroderma improves the growth of various
seedling plants (Table 4 and Fig. 7).
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Figure 7 — Fruiting body of Pisolithus albus in a plantation of Fucalyptus camaldulensis in Thailand.
(A); spore suspension of Pisolithus albus (B); and Eucalyptus camaldulensis seedlings inoculated
and uninoculated with Pisolithus albus spores (C). Scale bars A and C = 50 mm; B =25 mm.
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The spore inoculation of Scleroderma albidum, S. areolatum, S. cepa, and S. citrinum, could
enhance height, shoot diameter, and dry biomass of Eucalyptus globulus and E. urophylla seedlings
(Chen et al. 2006). Inoculation of Lithocarpus urceolaris seedlings with spores of S. citrinum, S.
columnare, and S. sinnamariense resulted in taller stems with a thicker diameter compared to
uninoculated seedlings (Alamsjah et al. 2015). The inoculation of S. citrinum and S. columnare spores
showed potential to improve the growth of Parapiptadenia rigida (red angico) and Shorea javanica
seedlings, respectively (Steffen et al. 2017, Handayani et al. 2018). Ouatiki et al. (2021) found that
the growth and survival rates of Pinus halepensis in polymetallic-contaminated soil were improved
by inoculation with Scleroderma sp. spores. Additionally, the growth performance, nutrient uptake,
and survival rate of Acacia mangium and Pinus arizonica seedlings were improved by inoculation
with Pis. tinctorius spores (Aggangan et al. 2010, Quifionez-Martinez et al. 2023). Shorea seminis
seedlings injected with P. arhizus spores displayed greater shoot height, plant biomass, and shoot
nitrogen and phosphorus uptake (Turjaman et al. 2006). Notably, most Pisolithus and Scleroderma
species are easy to isolate, grow quickly in culture, and have mycelia that can be used as inoculum
for a variety of plants.

Mycelia of Pis. tinctorius and S. sinnamariense displayed phosphate-solubilising activities due
to the production of organic acids, phosphomonoesterases (alkaline and acid phosphatases),
phosphodiesterases, and phytases (Jayakumar & Tan 2005, Bechem 2011, Zhang et al. 2014a, Ruess
etal. 2019, Tedersoo & Bahram 2019). Yuan et al. (2004) found that Pis. microcarpus, Pis. tinctorius,
and Pisolithus sp. XC1 could mobilise potassium from clay minerals. Pure cultures of Pis. albus and
S. sinnamariense were able to demonstrate detoxification by solubilising various toxic metals (Al,
Co, Cd, Cu, Pb, and Zn) contained in minerals (Kumla et al. 2014). Pure cultures of Pis. albus, Pis.
tinctorius, Pis. orientalis, and S. sinnamariense have been reported for their ability to produce indole-
3-acetic acid (IAA), a phytohormone involved in mycorrhizal associations and promoting plant
growth (Kumla et al. 2014, 2020, Niemi et al. 2002, Siri-in et al. 2014, Splivallo et al. 2009). Ditengou
et al. (2000) found that the pure culture of Pis. tinctorius produced hypaphorine (an indole alkaloid
compound) that regulates root hair elongation during ECM development.

Mycelial inoculants derived from pure cultures of Pisolithus and Scleroderma can be prepared
using various methods, such as mycelial plugs, mycelial suspensions, and substrate carriers like
cereal grains, peat moss, vermiculite, and alginate beads (Sanchez-Zabala et al. 2013, Gandini et al.
2015, Kumla et al. 2016, Wagner et al. 2019, Zuo et al. 2022). The inoculation of mycelial inoculants
derived from Pisolithus and Scleroderma species enhanced the growth, drought tolerance, nutrient
uptake, and survival rate of seedling plants, as shown in Table 3. These applications are mostly
involved in plants such as Eucalyptus grandis, Nothofagus dombeyi, and Quercus suber (Alvarez et
al. 2009, Canton et al. 2016, Sebastiana et al. 2018), Acacia mangium and E. globulus (Aggangan et
al. 2010, Jourand et al. 2010), P. pinaster, E. urophylla, Coccoloba uvifera and P. wallichiana
seedlings (Bandou et al. 2006, Sanchez-Zabala et al. 2013, Itoo & Reshi 2014, Gandini et al. 2015).
However, before applying Pisolithus and Scleroderma species to target plants, it's important to
consider and understand the specific associations between host plant species and the selected species
that are known to form compatible ECM associations to assure the supply of high-quality seedlings
for forestry (Kumla et al. 2016, Lofgren et al. 2018, Kennedy et al. 2020).

Table 4 Examples for the use of Pisolithus and Scleroderma treated on plants for forestry.

Fungal taxa Type of inoculant Treated plant Result Reference
Scleroderma Myecelia entrapped in  Eucalyptus Enhanced plant growth ~ Gandini et al.
areolatum alginate beads urophylla and nitrogen, (2015)

phosphorus and
potassium uptake of

seedlings
Pisolithus sp. Mycelia on agar Pinus densiflora  Protected seedlings Chen et al.
under a toxic (2015)

concentration of copper
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Fungal taxa Type of inoculant Treated plant Result Reference
Pisolithus Myecelia on agar Nothofagus Enhanced shoot and Alvarez et al.
tinctorius dombeyi root dry weights, foliar  (2009)

Nand P

concentrations, and

root enzyme activities

of seedlings
Scleroderma Mycelia on agar Pinus Increased shoot height, Itoo & Reshi
citrinum wallichiana and  needle number, shoot (2014)

Pisolithus arhizus

Pisolithus albus

Pisolithus
tinctorius

Pisolithus
tinctorius

Pisolithus
tinctorius

Scleroderma
bermudense

Scleroderma
cepa,
Scleroderma
citrinum,
Scleroderma
albidum,
Scleroderma
areolatum
Scleroderma sp.

Scleroderma
columnare

Scleroderma
citrinum

Scleroderma sp.

Scleroderma
sinnamariense,
Scleroderma
columnare and

Mycelia on a mixture
of vermiculite and
peat moss

Myecelia on a mixture
of vermiculite and
peat moss

Mycelia on a mixture
of vermiculite and
peat moss

Spore suspension

Myecelia on agar

Myecelia on a mixture
of vermiculite and
peat moss

Spore suspension

Myecelia in liquid
medium

Spore suspension

Spore suspension

Spore suspension

Spore suspension

Cedrus deodara

Pinus pinaster

Acacia
holosericea

Quercus suber
Acacia
mangium
Eucalyptus
grandis
Coccoloba
uvifera
Eucalyptus

globulus and E.
urophylla

Castanea henryi

Shorea javanica

Parapiptadenia
rigida
Pinus

halepensis

Lithocarpus
urceolaris

and root biomass and
survival of seedlings
Increased shoot height,
shoot diameter, shoot
and root biomass of
seedlings

Enhanced shoot and
root biomass of
seedlings

Increased drought
tolerance of seedlings

Enhanced height, shoot
diameter and dry
biomass of seedlings
Protected seedlings
under a toxic
concentration of
manganese

Increased salt tolerance
and phosphorus uptake
of seedlings

Enhanced plant growth
of seedlings

Enhanced plant growth
of seedlings and
increased nitrogen,
phosphorus, and
potassium uptake in
roots, stems, and
leaves,

Improved plant growth,
plant height, shoot dry
weight, total dry
weight, and total leaf
area

Enhanced plant growth,
plant height and stem
diameter

Enhanced plant growth
and increased survival
rate in polymetallic
contaminated soil
Enhanced height, and
shoot diameter of
seedlings

Sanchez-Zabala
etal. (2013)

André et al.
(2004)

Sebastiana et al.
(2018)

Aggangan et al.
(2010)

Canton et al.
(2016)
Bandou et al.

(2006)

Chen et al.
(2006)

Zuo et al. (2022)

Handayani et al.
(2018)

Steffen et al.
(2017)

Quatiki et al.

(2021)

Alamsjah et al.
(2015)




Fungal taxa Type of inoculant Treated plant Result Reference

Scleroderma
citrinum
Pisolithus albus Myecelia in liquid Eucalyptus Enhanced plant growth ~ Jourand et al.
solution globulus and tolerance of nickel  (2010)
Pisolithus arhizus ~ Spore suspension Shorea seminis  Increased shoot height, Turjaman et al.
biomass, shoot nitrogen  (2006)
content and phosphorus
uptakes
Pisolithus Spore suspension Pinus arizonica  Enhanced survival rate  Quifiénez-
tinctorius and mineral uptake Martinez et al.

(2023)

3.4 Future directions in fungal biofertilizers: challenges and advancements

Fungal biofertilizers are showing benefits in terms of crop production and ecosystem stability.
Overall, they are the most promising input to the agricultural field. However, the application process
and its sustainability are always challenged. One of the main concerns is that fungal biofertilisers are
sensitive to environmental conditions. They require specific soil conditions such as pH, moisture,
and organic matter for optimal activity (Herndndez-Fernandez et al. 2021, Ferreyra-Suarez et al.
2024). This limits their effectiveness in degraded or heavily fertilised soils. Another challenge is that
fungal fertiliser requires time to establish. As fertilisers are introduced to living organisms, these
fungi require time to colonise roots and develop a symbiotic relationship. Therefore, the application
of biofertilizers delays visible growth benefits, which are slower than those of commercial chemical
fertilisers. Also, for the optimum results, long-term application is required (Carvajal-Mufioz et al.
2012, Chakraborty & Akhtar 2021). The limit is to establish trust in biofertilizers and move farmers
from conventional chemical fertilisers.

Mass production of fungal inocula is challenging since it is required to maintain viability, or
else improper storage can reduce the shelf life (Herrmann and Lesueur 2013, Malusa et al 2016,
Bagga et al. 2024, Fadiji et al. 2024) and lack of quality control has resulted in poor products, which
affect the confidence of farmers (Herrmann & Lesueur 2013). Ecologically, these introduced fungi
might have to compete with the native microbial community. However, one of the main problems
with biofertilizers is a poor understanding of interactions between these introduced fungal species
with other microbes and plants (Malusa et al. 2016). The competition with the native microbial
community will be a struggle and could reduce the success of the inoculation (Causevi¢ et al. 2024,
Kong et al. 2025). However, developing fungal inoculants from the same environment will help to
overcome this matter.

Recent advancements have been made to address these challenges, based on genetic
engineering policies and farmer adaptation strategies. Using genetic and metabolic engineering,
fungal strains are being developed to improve nutrient solubilization, stress tolerance, and symbiotic
efficiency. Likewise, Aspergillus niger strains with modified phosphatase genes have shown higher
phosphate release (Peng et al. 2022, Ma et al. 2025). In addition, fungal species isolated from extreme
environments could be utilised to develop beneficial microbes in degraded soils. For instance, Khan
et al. (2022) showed that Aspergillus terreus from saline soils promotes barley growth under salt
stress. Future work is open to incorporating CRISPR-Cas9 editing to knock out fungal genes that
inhibit symbiosis and to genetically engineer fungi that confer solubilization, pathogen resistance,
and other important traits (Yang et al. 2024).

To enhance the inoculant viability in introduced environments, nano-coating and biochar-
based carriers are being used. For instance, use of nano-coated Trichoderma harzianum spores,
coated with biodegradable polymers, to enhance their survival in acidic soils (Brondi et al. 2022,
2025). In addition, Biochar can serve as a favorable physical niche for arbuscular mycorrhizal fungi,
facilitating colonization of biochar particles and providing protected microhabitats. Studies have
shown direct AMF colonization of biochar and slower viability loss of inoculated spores in biochar
substrates under controlled conditions (Minkosse et al. 2023, Neuberger et al. 2024). However,
biofilm-biofertiliser, a combination of both fungi and bacteria, will be the best combatant to
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overcome inoculant survival. Co-inoculation of Rhizophagus intraradices, which is an arbuscular
mycorrhizal fungus, with Azospirillum brasilense has been shown to increase maize yield by 20%
compared to single inoculants (Rodriguez et al. 2023). Similarly, when Piriformospora indica, an
endophytic fungus, was paired with Azotobacter, has increased wheat growth in nitrogen-deficient
soils (Sing et al. 2022, Li et al. 2023). Therefore, future research should focus more on combining
fungi with bacteria or other microbes to create multifunctional biofertilizers. Smart nanocarriers
which release fungi only when root exudates are detected will be another approach for future
advancements.

Even when such advancements are made, policies and farmers' acceptance are important facets in
the future of biofertilizers. It is necessary to develop small-scale implementations to overcome
farmers' acceptance. In India, the small-scale project, Paramparagat Krishi Vikas Yojana (PKVY),
which subsidises AMF inoculants for organic farming, is an example of successful implementation
(Acharya et al. 2020, Khobragade et al. 2024). Another example is promoting biofertilizers in the
Great Mekong Region (GMR: China, Vietnam, Myanmar, Thailand, Cambodia and Lao PDR), where
the majority of the population relies on agriculture and related industries (Atieno et al. 2020). Since
this is an era of digitalisation and Al, digital platforms have to be essentially promoted for the
required knowledge dissemination (Yadav et al. 2024).

4. Biocontrol agents

Biological control is currently making a huge impact on the agricultural sector as it moves towards
organic and sustainable farming, particularly fungal biocontrol agents that play an important role by
suppressing pests, pathogens, and weeds through diverse mechanisms (Peng et al. 2021, Pérez-Piza
et al. 2024). These fungi act as antibacterial and antifungal agents (Xu et al. 2015, Hyde et al. 2019,
Liao et al. 2025), entomopathogenic fungi (Hyde et al. 2019, Wang et al. 2024), nematode-trapping
fungi (Berhanu et al. 2024), and emerging agents for controlling mycoplasmas and viruses as well.
Moreover, bioherbicidal fungi target weeds through phytotoxic compounds or direct tissue invasion
(Htet et al. 2022), which is also an important aspect in the fungal biopesticide industry.

Ecologically, fungal biocontrol agents enhance biodiversity by reducing chemical pesticide use
and promoting beneficial microbes (Barratt et al. 2018, Ayaz et al. 2023, Chaudhary et al. 2024). It
also contributes by preventing soil and water contamination (Satapathy 2018). Biological control
fungi reduce resistance development, which is a major problem associated with chemical pesticides
(Rauf 2024, Wang et al. 2024, Diepenbrock et al. 2024). Therefore, the incorporation of fungal
biological control agents not only promotes long-term agricultural sustainability but also lowers
production costs and ecological sustainability.

Even though biological control is currently making a huge entrance, it is not a new strategy.

Fungi as biological control agents have a long history. In the 1800s, silkworm populations in Europe
and Asia were naturally decimated by Beauveria bassiana. This has led to the recognition of B.
bassiana as a potential insect pathogen. Based on this, in the late 19th century, studies were conducted
to understand its effect on crop pests like the Colorado potato beetle. In the late 1800s, Russian
scientist Ilya Mechnikov identified the Metarhizium anisopliae as an entomopathogen of wheat
cockchafer beetles. In the early 20th century, field trials in Australia and Africa demonstrated the
effectiveness of M. anisopliae against locust plagues, which was the foundation for myco-
insecticides. Colletotrichum gloeosporioides was the first commercially developed myco-herbicide.
In the 1980s, the USDA developed "Collego" to control northern jointvetch weed in rice fields. In
the 1950s—60s, researchers observed that Arthrobotrys and Dactylella species formed trapping
structures to capture nematodes. These observations led to the protection of crops from root-knot and
cyst nematodes without the use of chemicals. As an antibacterial agent, Trichoderma viride was
among the first fungi to be identified for its antagonistic effects. It has shown an antagonistic effect
against soil-borne plant pathogens. By the 1970s, commercial formulations of 7richoderma were
developed for seed treatment and soil application. These major historical milestones highlight the
ecological and economic value of fungi in sustainable agriculture.
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4.1 The mode of action

Biological control agents have special characteristics/mechanisms to reduce/eradicate target
organisms. The type of these variable mechanisms/characteristics is determined by both the
biocontrol agent and the target organism and is categorised into four modes of action: competition,
parasitism, antibiosis, and induced resistance (Junaid et al. 2013, Ko6hl et al. 2019). In theory, these
modes could be specific, yet a given biocontrol agent might use one or more actions to control the
target organism (Stiling & Cornelissen2005). These diverse mechanisms suppress pathogens and
enhance plant health via direct and indirect interactions
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Figure 8 — Milestones of development of biocontrol agents.

1. Direct interactions

a. A. Antagonism: Antibiosis is the process by which biological control agents
produce antimicrobial metabolites. The metabolites include a wide range of
antibiotics, toxins, and VOCs. Antibiotics such as gliotoxin and penicillin directly
inhibit pathogens, and toxins like beauvericin and destruxins disrupt cellular
functions. The VOCs act as long-distance inhibitors. Enzymes, including
chitinases and proteases, degrade pathogen structures. Trichoderma produces
chitinases and B-1,3-glucanases that hydrolyse Fusarium hyphae, and also,
Trichoderma spp., secrete gliotoxin and viridin, suppressing Fusarium and
Rhizoctonia (Vinale et al. 2008). Pseudozyma flocculosa produces flocculosin,
effective against powdery mildew (Avis et al. 2001).

b. Mycoparasitism or Hyperparasitism: Mycoparasitism is the process by which a
fungus parasitises another fungus, which leads to its suppression or death. This
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involves several key steps: (i) sensing and growth toward the target and then
binding to the host hyphae via lectins or hydrophobic proteins. The pathogenic
fungus uses enzymes (chitinases, proteases, -1,3-glucanases) to breach the cell
wall, followed by intracellular colonisation, leading to the death of the target
fungus. As for the previous examples, Trichoderma species are one of the best
examples of well-studied mycoparasites. They attack pathogens like Rhizoctonia
solani, Fusarium oxysporum, Pythium spp., and Sclerotinia sclerotiorum using
hyphal coiling, enzymatic activities, and antimicrobial peptides (Howell 2003).
Ampelomyces Quisqualis produce haustoria to penetrate powdery mildew fungi
belonging to Podosphaera, Erysiphe, and Blumeria (Németh 1991). Similarly,
Pythium oligandrum also produced appressoria to penetrate Pythium ultimum,
Fusarium spp. (Benhamou et al. 2012). Coniothyrium minitans attacks survival
structures, sclerotia of Sclerotinia sclerotiorum by infecting and producing cell
wall-degrading enzymes Whippset al. 2008). Lecanicillium species can act as dual
biocontrol agents against Aphid Pathogens and Powdery Mildew, penetrating
fungal spores and hyphae (Askary et al. 1998).

c. Competition for nutrition and space: All organisms are in continuous competition
for nutrients and space on their hosts. Although the competition is difficult to
study, the metabolic patterns of yeasts related to Nitrogen, Iron and Sulphur make
it easier to understand the mechanism of competitiveness (Freimoser et al. 2019).
The antimicrobial fungi also compete with pathogenic species for nutrients and
space. Most biocontrol agents rapidly and aggressively colonise plant surfaces,
outcompeting pathogens for available resources. For example, Trichoderma
compete with Fusarium for root niches (Alabouvette et al. 2009). Similarly,
Trichoderma is a fast-growing fungus that occupies root niches, thereby blocking
pathogen establishment. Additionally, Trichoderma upregulates sugar
transporters (MSTs) to outcompete pathogens for root exudates.

2. Indirect mechanisms

a. Induce systemic resistance: The innate immune system in plants recognises and
responds to the presence of microorganisms (Chisholm et al. 2006, Jones & Dangl
2006) which induces the resistance systemically. This was used to develop the
biocontrol agents and the fortifiers (Gozzo & Faoro 2013, Pieterse et al. 2014).
Biocontrol agents can produce jasmonic acid, salicylic acid-like compounds that
prime plant defence genes, enhancing resistance to subsequent pathogen infections.
Trichoderma species secrete small effector proteins (e.g., Sm1/Epl1) that bind to plant
receptors and activate MAPK cascades. This leads to the upregulation of
pathogenesis-related (PR) genes (e.g., PR-1, PDFI.2), which enhance lignin
deposition and phytoalexin production.

b. Endophytic colonisation: Fungi with biological control characteristics could colonise
intercellular spaces as endophytes. These species live inside the plant without causing
any physical symptoms, while helping the plant through induced systemic resistance,
antibiosis, the secretion of insecticidal metabolites, and the induction of tree tolerance.
For example, entomopathogenic fungi like Beauveria bassiana colonise plants
including Maize, cotton, coffee, and cocoa, as endophytes and produce beauvericin
and oosporein, which kill all armyworms, and aphids and upregulate jasmonic acid
(JA) defence pathways of the host (Donga et al. 2018). Sasan & Bidochka (2013) has
shown that Metarhizium robertsii, which is an entomopathogenic fungus, could
enhance drought tolerance in plants. Furthermore, endophytic colonisation of
Trichoderma in maize roots has shown its potential to induce systemic resistance
against Fusarium wilt (Harman et al. 2004). Epichloé (=Neotyphodium) species are
well-known grass endophytes, which could produce alkaloids such as lolitrem B and

4962



peramine that are toxic to livestock pests. Because of this, Epichloé coenophiala has
been commercially applied to pasture grasses (Schardl & Leuchtmann 2005). Non-
pathogenic Fusarium oxysporum strains have shown hypovirulence against
pathogenic F. oxysporum f. sp. cubense, causing Panama disease (Alabouvette et al.
2009)

c. Disruption of pathogen signalling: Biological control fungi could interfere with
pathogens by secreting inhibitory compounds, competition for signalling molecule
receptors by disrupting their ability to coordinate virulence, sporulation, or biofilm
formation. For instance. Trichoderma produce N-Acyl Homoserine Lactones (AHLs),
which prevent bacterial virulence gene expression (Uroz et al. 2009). Ampelomyces
quisqualis interferes with the mating-type (MAT) gene signalling of cucurbit powdery
mildew (Kiss et al. 2004). Clonostachys rosea blocks protein signalling pathways and
lowers toxin contamination in grains by Fusarium graminearum (Kosawang et al.
2014). Moreover, Saccharomyces cerevisiae degrades oxylipins, which regulate
aflatoxin synthesis and sporulation of Aspergillus flavus (Affeldt et al. 2012, Yan et
al. 2015).

3. Hypovirulence:

Virus-mediated attenuation in fungal biocontrol. In here, the pathogenicity of fungi is
reduced due to infection by mycoviruses. These infections lead to decreased sporulation,
growth rate, toxin production, and impaired host colonisation. These mycoviruses disrupt
signalling pathways, including those involved in secondary metabolite synthesis.
Cryphonectria hypovirus 1 (CHV1) is a mycovirus belonging to Hypoviridae that affects
Cryphonectria parasitica, which is the chestnut blight pathogen. Nuss (2005) has shown
that CHV1 reduces fungal virulence by more than 90%, suppressing pigmentation and
sporulation.

Nematode-trapping fungi are a fascinating group that employs specialised structures and

biochemical strategies to capture and digest nematodes. These traps are categorised into two forms:

1. Adhesive Traps - sticky hyphae secrete extracellular polymers that immobilise nematodes.
These hyphae may further develop adhesive knobs or branched networks to increase surface
area. For example, Arthrobotrys oligospora expresses adhesins (e.g., AoMadl) on hyphal
surfaces, mediated by G-protein signalling.

2. Constricting Rings - mechanical traps that rapidly inflate when nematodes pass through,
effectively strangling them. After capturing the nematodes, the fungi secrete cuticle-
degrading enzymes and produce nematocidal metabolites that may paralyse the nematodes
before hyphal invasion.

Some fungi also exhibit endoparasitic strategies, producing spores that adhere to nematodes and then
colonise them internally.

Compared to other biocontrol agents, entomopathogenic fungi have a well-defined pathogenic
cycle. Initially, spores (conidia) attach to the insect cuticle via hydrophobic interactions or mucilage.
Under favourable humidity and temperature, the spores germinate, forming germ tubes and
appressoria. These structures secrete proteases, chitinases, and lipases that degrade the insect’s
exoskeleton. The appressoria also exerts mechanical pressure that aids penetration. Once inside, the
hyphae switch to yeast-like blastospores and rapidly colonise the insect tissues. During this infection,
the fungi escape insect immunity by masking their cell walls with hydrophobins. Upon successful
colonisation, the fungi produce various toxins that kill the insect. After the host dies, hyphae emerge
from the cadaver and produce new spores under high-humidity conditions.

4963



4.2 Trichoderma as a biological control agent

Trichoderma is a cosmopolitan fungal genus belonging to Sordariomycetes (Hyde et al. 2024, Tan
et al. 2025). They are abundant in high-humid ecosystems such as agricultural soils, forests, and
grasslands (Zhao et al. 2023b, Tan et al. 2024, Hyde et al. 2024). With the exponential expansion in
the field of taxonomy, as many as 50 new Trichoderma species are being identified annually (Cai &
Druzhinina 2021, Huang et al. 2024b), reflecting their important roles in various fields. Trichoderma
has experienced significant ecological and evolutionary shifts. It has transitioned from a parasite of
plant-decomposing fungi to a saprotroph, then to a mycoparasite, and finally to a plant symbiont
(Woo et al. 2023). Over time, it has become an opportunistic plant coloniser (Woo et al. 2023). These
transitions have led to the acquisition of genes for carbohydrate hydrolysis and the ability to parasitise
a diversity of fungi, nematodes, and even some insects. Trichoderma species are highly adept at
colonising plant roots and acting as endophytes. Their opportunistic nature allows them to thrive in
various environments, competing for resources and modifying ecological conditions to their
advantage (Druzhinina et al. 2011, Woo et al. 2023).
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Trichoderma is increasingly recognised as a key component in sustainable agricultural practices,
contributing to eco-sustainable agriculture by reducing the need for chemical pesticides and
fertilisers. Commercial formulations of Trichoderma are widely used as biopesticides, biostimulants,
and biofertilizers, enhancing crop yields and quality. Trichoderma harzianum T-22 (renamed as
Trichoderma afroharzianum) is widely used as a biocontrol agent in agriculture to protect crops
against various soil-borne diseases such as damping-off caused by Pythium spp., Rhizoctonia root
rot, Fusarium wilt, and Sclerotinia rot (Harman et al. 2004). Other Trichoderma species such as T.
citrinoviride, T. ghanense, T. guizhouense, T. koningiopsis, T. virens, also show great potential in
controlling plant diseases, especially some soil-borne diseases (Luo et al. 2023, Tao et al. 2023a,
Woo et al. 2023). Research continues to explore the potential of Trichoderma to improve soil health,
remediate contaminated sites, and promote crop resilience to climate change. The development of
innovative formulations and application methods, such as seed coatings and time-release
technologies, further enhances the practical use of Trichoderma in modern agriculture (Ramirez-
Valdespino et al. 2019). By leveraging Trichoderma's ability to induce systemic resistance and
promote plant growth, their applications not only enhance crop productivity but also contribute to
environmental sustainability.
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Trichoderma functions as a direct biological control agent by parasitising pathogens and
producing secondary metabolites that inhibit their growth. These species secrete cell wall-degrading
enzymes and volatile organic compounds that can suppress pathogens and even attract natural
enemies of insect pests. For example, Trichoderma species produce chitinases, glucanases, and
proteases that degrade the cell walls of pathogenic fungi, thereby reducing their virulence.
Additionally, Trichoderma can produce secondary metabolites such as gliovirin and trichothecenes,
which have antimicrobial properties and can inhibit the growth of various plant pathogens (Howell
& Stipanovic, 1983, Malmierca et al. 2012). Klaiklay et al. (2019) isolated 13 trichothecenes
compounds from 7. brevicompactum. Malmierca et al. (2016) proved that trichothecenes and
aspinolides produced by 7. arundinaceum can regulate the expression of Botrytis cinerea genes
involved in virulence and growth. Competition for ecological niches and resources is also important
for Trichoderma's biocontrol efficacy, contributing to its colonisation of soil, rhizosphere, and even
endosphere. Luo et al. (2023, 2025) found that both 7. koningiopsis (Tk905) and T. azadirachtae
(Ta3302) can grow quickly and compete with pathogens for the ecological niches in soil, rhizosphere
and even for the colonisation of the host plant.
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Figure 10 —Direct and indirect mode of action of Trichoderma as a biocontrol agent.

Indirectly, Trichoderma primes plant defences, enhancing systemic resistance through the
activation of phytohormone pathways. This priming allows plants to respond more rapidly and
effectively to subsequent pathogen attacks. Trichoderma species also promote plant growth by
producing phytohormones and improving nutrient uptake, contributing to overall plant health and
stress tolerance (Pieterse et al. 2014). The elicitors produced by Trichoderma, such as xylanase (EIX)
and cerato-platanin (Sm1l), act as signalling molecules that trigger the plant's immune responses.
These elicitors activate pattern recognition receptors (PRRs) in plant cells, leading to the production
of reactive oxygen species (ROS), antimicrobial secondary metabolites, and pathogenesis-related
proteins (PRs) (Boller & Felix, 2009, Dodds & Rathjen, 2010).

Trichoderma plays a crucial role in enhancing plant defence mechanisms through the induction
of systemic resistance. This process involves the activation of phytohormone pathways, particularly
jasmonic acid (JA) and ethylene (ET), which prime plants to respond more rapidly and effectively to
subsequent pathogen attacks (Pieterse et al. 2014). Trichoderma species have been shown to induce
systemic resistance in various crops, including cucumber, maize, and tomato (Segarra et al. 2007,
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Martinez-Medina et al. 2017). The development of high-throughput sequencing technologies, gene
editing tools, and multi-omics approaches has provided new tools and methods to study complex
interactions. These advancements enable a deeper understanding of the signalling pathways and
molecular mechanisms involved in Trichoderma-induced resistance. Further research into the
tripartite interactions of “7Trichoderma-pathogen-host plant” will not only elucidate the underlying
mechanisms of Trichoderma's biocontrol activity but also pave the way for the development of more
effective and sustainable biocontrol strategies in agriculture.

4.3 Chaetomium is at the beginning of a new era in biological control

Chaetomium (Chaetomiaceae, Sordariales, Sordariomycetes, Ascomycota) accommodate around
50 species known for producing various bioactive secondary metabolites (Ibrahim et al. 2021,
Dwibedi et al. 2023). The first reported application of Chaetomium as an antagonist to control plant
pathogens was by Tveit & Moore (1954), who found that C. globosum and C. cochliodes grown on
the surface of oat seeds could control Helminthosporium victoriae. To date, Chaetomium has
emerged as a source of a wide range of bioactive natural chemicals and over 500 compounds with
diverse chemistry have been isolated and identified, more than 100 secondary metabolites with varied
beneficial qualities, such as anticancer, cytotoxic, antimalarial, and enzyme inhibitory actions, have
been reported (Dwibedi et al. 2023, Rao et al. 2023). Among Chaetomium species, C. globosum is
one of the most extensively studied species in its bioactive potential (Ashwini 2019). Several
Chaetomium species are reportedly antagonistic to the growth of various phytopathogens, especially
soil-borne and seed-borne (Marwah et al. 2007, Zhang & Yang 2007).

Mechanism of biological control

Chaetomium species compete with phytopathogens for nutrients and space in the rhizosphere or on
plant surfaces through antagonism (Park 1960, Zhang & Yang 2007). They reduce pathogen
populations, limiting their ability to establish infections (Park 1960, Zhang & Yang 2007).
Competition for nutrients with Fusarium graminearum has been reported by Chang & Kommendahl
(1968) using C. globosum coated maize seeds. Di Pietro et al. (1992) reported evidence that C.
globosum can produce and release certain antibiotics to suppress the damping-off of sugar-beet
caused by Pythium ultimum. Chaetoblobosin C, produced by C. globosum, can suppress plant
pathogens' growth by disrupting cellular processes, while making this species a very potent
antagonist of various soil microbiota (Soytong et al. 2001, Dhingra et al. 2003, Aggarwal et al. 2004,
Abdel-Azeem 2020). Some Chaetomium species are capable of secreting hydrolytic enzymes
(chitinases and glucanases) to degrade the cell walls of phytopathogens (Liu et al. 2008).

Current trends

Endophyte Chaetomium strains are gaining attention as potential biocontrol agents and biofertilizers
due to their ability to colonise plant tissues and provide various benefits without harming the host
plant (Kaewchai et al. 2009, Elshahawy & Khattab 2022). Many such studies have reported
antagonistic ability of the endophytic Chaetomium strains toward various bacterial and fungal
pathogens, such as species of Alternaria, Botrytis, Erwinia, Fusarium, Lophodermium, Rhizoctonia,
Sclerotinia, Sphaeropsis, Pestalotiopsis, Phomopsis, Pseudomonas, Pythium, and Pyrenophora (Xu
et al. 2014, Abdel-Azeem et al. 2021, Nongthombam & Mutum 2024) in both in vitro and in vivo.
The root endophyte Chaetomium cupreum has been reported to promote plant growth and detoxify
aluminium when Miscanthus sinensis was grown at an acidic mine site (Haruma et al. 2018). The
endophyte, Chaetoimum globosum encourages the growth of maize plants and cucumbers
(Elshahawy & Khattab 2022, Tian et al. 2022). Antimalarial and cytotoxic compounds (Azaphilones
and Depsidones) were extracted from the fungus C. brasiliense and C. longirostre (Khumkomkhet et
al. 2009, Panthama et al. 2011). In addition, Chaetoimum species have also been reported to show
promising anticancer activity, such as C. cupreum extracts against human breast cancer (Wani et al.
2020), C. globosum natural product suppresses tumour growth and metastasis in gastric cancer (Guan
et al. 2023), and C. nigricolor against breast carcinoma cell line (Nongthombam & Mutum 2024).
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However, continued research and clinical studies are essential to fully understand their mechanisms
and translate these findings into effective cancer treatments.

State of the commercial application

Chaetomium-based biofungicides and biostimulants are used for integrated plant disease
management (Kaewchai et al. 2009, Soytong et al. 2021). Effective strains of Chaetomium have been
formulated into bio-pellets and bio-powders for the biological control of plant diseases. These
formulations are patented and registered under the names Ketomium® and BIOKUPRUM™
(Soytong et al. 2001, Mehnaz 2016). Ketomium® contains 22 strains of C. globosum and C. cupreum
in the form of spore powder or pellets. The recipe for BIOKUPRUM™ is a wettable powder
containing 2 X106 CFU/g. It can be applied either on seeds and tubers or as a foliar spray. In addition
to protecting plants from bacterial and fungal infections that cause rots, rusts, and leaf spots,
BIOKUPRUMTM and Ketomium® also produce substantial amounts of Ergosterol, which can
enhance the humus layer in soils, thereby increasing soil fertility (Soytong et al. 2001, Mehnaz et al.
2016).

Challenges

Chaetomium species share similar characteristics with other genera in Chaetomiaceae, such as
Achaetomiella, Arcopilus, Dichotomopilus, and Humicola (Wang et al. 2016b). Therefore, correct
species identification is necessary to develop Chaetomium species as biocontrol agents. Chaetomium
species exhibit complex, sometimes variable morphological characters, making them difficult to
identify solely on morphological grounds. However, current species identification is based on ITS,
LSU, rpb2, and tub2, and has shown considerable similarity among Chaetomium species, questioning
the current species delimitation methods. Thus, there is a necessity to develop a comprehensive
genomic database to overcome species delineation issues (Wang et al. 2022a, Yang et al. 2024).
Chaetomium is a cosmopolitan genus, despite its known significant ecological roles and diverse
habitats (Abdel-Azeem et al. 2020). Demonstrating the efficacy of Chaetomium-derived compounds
in vivo (in living organisms) can be challenging, and results from in vitro studies often do not directly
translate to in vivo systems (Harvey 2008). Like Chaetomium, the complex mechanisms behind its
antagonistic effects need to be further explored (Seethapathy et al. 2022). Meanwhile, when those
Chaetomium-derived metabolites are used as versatile weapons against numerous plant pathogens
and soil microorganisms, their potential indiscriminate use could threaten ecosystem stability, as
sterigmatocystin has been shown to become toxic, posing challenges to their use and requiring
thorough safety assessments (Rank et al. 2011).

4.4 Yeasts for sustainable disease management in agroecosystems

Yeast is a eukaryotic, unicellular fungal assemblage with a wide range of habits. The specific budding
ability of yeasts gave them unique characteristics to support their biocontrol ability. Due to the
symbiotic and antagonistic nature of the yeast, it became a good source for biocontrol (Freimoser et
al. 2019). Yeast has long been used as a model in biotechnology and medical mycology. However,
the yeast in agricultural aspects must be widely investigated. It is worth investigating the major
characteristics which support using yeasts in green agriculture. Yeasts are highly diverse and
distributed among a wide range of fungal taxa, naturally occurring as antagonists in the photosphere,
epiphytes, or mutuals (Freimoser et al. 2019). For green agricultural purposes, rapid generation,
genetic stability and rapid colonisation are important. As eukaryotes, yeasts show complex genetic
stability. Certain yeast strains contain a high-copy 2 pm plasmid, which can be important in
biotechnological aspects such as gene editing (Peter et al. 2018). However, several yeast strains do
not contain plasmids. Hence, unlike most bacteria, the yeasts do not transfer or acquire plasmids.
Thereby, yeasts do not exchange factors such as antibiotic resistance, pathogenicity (disease-causing
genes), and toxin production. Nevertheless, horizontal gene transfer is less frequent in yeasts. This
makes the yeasts safer and stable biocontrol agents. As a sum, rapid colonisation (increasing the
competition for nutrients), biofilm formation, antimicrobial compounds production (VOCs and
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toxins), secretion of enzymes, mycoparasitism and inducing the plant’s immunity make the yeast a
highly successful potent biocontrol agent for green agricultural purposes (Fanning & Mitchell 2012,
Pandin et al. 2017, Rossouw et al. 2018, Verstrepen & Klis 2006).

Mechanisms of disease suppression by Yeasts
Yeasts show different biocontrol mechanisms. The combined effects of these mechanisms increase
the efficiency of the biocontrol.

Competition for nutrients and space against phytopathogens — Metschnikowia reukaufi is a yeast
closely related to certain biocontrol species, reported with duplication of nitrogen transporter and
metabolism genes, causing priority effects and acting as a driver of competitiveness (Dhami et al.
2016). Synthesis of iron-binding molecules to deprive competing organisms is a common mechanism
among eukaryotes and prokaryotes (Barber & Elde 2015, Johnson 2008). Interestingly, the higher
demand for iron in biocontrol yeasts is recognised as an important mode of action (Spadaro & Droby
2016). Yeasts such as M. pulcherrima form cyclic dipeptide, pulcherriminic acid, which complexes
with iron (GoreLloyd et al. 2019). Several components of the sulphur assimilation pathways are
absent in certain yeasts, and these yeasts tend to acquire methionine from their prey (Junker et al.
2019), which also proves the competitiveness of yeasts in their habitat (Junker et al. 2019). Further,
yeasts are either strongly or weakly antagonistic against most fungi and control the mycobiome in
their habitat (Hilber-Bodmer et al. 2017).

Biofilm formation — The yeast biofilms initiate with the adhesion of individual cells on the desired
surface through cell wall modifications, secretion of an extracellular matrix, and often the formation
of hyphae or pseudohyphae (Cavalheiro & Teixeira 2018, Costa-Orlandi et al. 2017). The biofilm
formation on phyllo- and carpospheres is considered an important mode of action. Further, studies
by Millan et al. (2024) investigated the attachment of Pichia spp. to pathogenic Botrytis cinerea
mycelia. Hence, yeast biofilms on the host surface increase the competition for space and on wounds,
fasten the healing process or on the mycelium to suppress the pathogen (Millan et al. 2024).

Production of volatile compounds — Volatiles produced by Aureobasidium pullulans proved efficient
in reducing the growth and infection by Botrytis cinerea, Colletotrichum acutatum, Penicillium
expansum, P. digitatum and P. italicum both in vitro and in planta (D1 Francesco et al. 2014). Current
research on yeast VOC revealed that a plethora of Alternaria spp., Aspergillus spp., Fusarium spp.,
and Penicillium spp. suppressed, and the mycotoxin production was inhibited by VOC (Oufensou et
al. 2023). However, the mode of action is yet to be understood. Interestingly, Yeast VOCs are often
non-toxic, and most of them are recognised as GRAS (Generally Regarded as Safe) (Mari et al. 2016).

Toxin production — Due to their relatively low production of harmful secondary metabolites, yeasts
are considered as a safer biocontrol agent (Freimoser et al. 2019). The production of toxins causes
most of the antagonistic behaviours of yeasts. Certain compounds, such as aureobasidins, liamocins,
2-propylacrylic acid, 2-methylenesuccinic acid, are known as toxins which induce the antagonistic
behaviour of Aureobasidium pullulans against bacteria and fungi (Prasongsuk et al. 2018, Price et al.
2013, 2017, Takesako et al. 1991, Zain et al. 2009). Most of the toxins produced by biocontrol yeast
are proteinaceous killer toxins. Certain toxins inhibit or kill plant pathogenic fungi and are proposed
for plant protection (Corbaci & Ucar 2018, Liu et al. 2015, Marquina et al. 2002, Perez et al. 2016).
However, investigations are needed to understand the effects of these toxins on other beneficial
microorganisms (phyllosphere & soil microbiota), and to assess human consumption safety
(Freimoser et al. 2019).

Mycoparasitism — Recent studies by Millan et al. (2024) observed the strong adhesion of Pichia spp.

on pathogenic Botrytis cinerea mycelium. Similar effects were observed by Wisniewski et al. (1991),
and interestingly, Pichia guilliermondii caused the hyphal collapse in the plant pathogen Botrytis
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cinerea. The effect was assumed to be due to the hydrolytic enzymes, such as glucanases. Further,
Ustilaginomycete Pseudozyma aphidis parasitises on powdery mildew pathogen Podosphaera
xanthii and Botrytis cinerea (Calderon et al. 2019, Gafni et al. 2015). Parasitism through feeding on
the prey was observed in Saccharomycopsis feeding on Penicillium spp. (Junker et al. 2017, 2018,
2019, Lachance & Pang 1997, Pimenta et al. 2008). However, mycoparasitism is poorly studied in
yeast.

Induction of systemic resistance in plants — The biocontrol yeasts induce systemic resistance against
a broad range of pathogens (Freimoser et al. 2019). Candida saitoana, C. oleophila, Metschnikowia
spp., Rhodosporidium paludigenum, and Saccharomyces cerevisiae induce an innate immune
response against phyllosphere pathogens in fruits (Freimoser et al. 2019). The induction of the
resistance can be due to the production of reactive oxygen species (Macarisin et al. 2010) or yeast
cell components (De Miccolis et al. 2019). The dead yeast cells can also induce resistance. Resistance
inducers such as salicylic acid or rhamnolipids can also be formulated together with biocontrol agents
to enhance the activity (Freimoser et al. 2019).

Secretion of enzymes — Chitinolytic enzyme secretion was observed with Aureobasidium, Candida,
Debaryomyces, Metschnikowia, ~Meyerozyma, Pichia, Saccharomyces, Tilletiopsis, and
Wickerhamomyces. However, in certain cases, such as Saccharomycopsis, chitinase expression
requires the presence of prey cells (Freimoser et al. 2019). Chito-oligosaccharides from chitin
degradation are potent inducers of plant immune responses (Kombrink et al. 2011, Langner & Gohre
2015, Liu et al. 2012, 2014). Glucanases Glucans are a major component in fungal cell walls and
exoglucanases are involved in cell wall modification, cell adhesion, and killer toxin resistance
(Adams 2004, Jiang et al. 1995, Tsai et al. 2011, Xu et al. 2013). The glucanases activity was
observed through overexpression or deletion analyses. The deletion of genes involved in glucanase
production significantly reduced the biocontrol activity in certain yeasts such as Candida oleophila
and Wickerhamomyces anomalus (Bar-Shimon et al. 2004, Friel et al. 2007, Grevesse et al. 2003).
Exoglucanase activity is directly involved in antagonistic activity (Lopes et al. 2015; Zhang et al.
2011). Proteases are important virulence factors in entomopathogenic fungi. Certain studies have
suggested a concentration-dependent inhibitory effect of these pathogens on apple (Banani et al.
2014, Zhang et al. 2012). Protease activity has also been reported in the genera Metschnikowia,
Pichia, and Wickerhamomyces. The enzymatic activities of the yeast with biocontrol ability were
observed in various in vitro experiments. However, the mechanisms are yet to be identified.

Yeast biocontrol agents and products

Candida capable of inhibiting plant pathogens are readily available in natural habitats. Candida
oleophila was the first commercial biocontrol agent with multiple antifungal activities. Apart from
the competition for nutrients and space, secretion of hydrolytic enzymes: proteases, chitinases and
glucanases, and VOC production implicated in antifungal activity (Bar-Shimon et al. 2004, Huang et
al. 2011, Segal et al. 2002). Furthermore, biofilm formation, high osmotolerance, induction of host
resistance, and direct parasitism on the pathogen also contributed to the biocontrol activity of this
yeast (Droby & Chalutz 1994, Droby et al. 2002, ElI Ghaouth et al. 2003, Wisniewski et al. 1995,
2007). The activity of C. oleophila can be enhanced with buffers (calcium chloride, bicarbonate),
chitosan, or lysozyme (Droby et al. 1998, 2003a, b; El-Ghaouth &Wilson 2002; Scherm et al. 2003;
Wilson & El-Ghaouth 2002). Candida oleophila strains 1-182 was developed under Aspire® and
Nexy®, respectively. Nexy® was the first biocontrol yeast registered against a postharvest disease
(Wisniewski et al. 2007), and C. oleophila strain O has been approved as a plant protection agent in
Europe in 2013 (European Commission Health & Consumers Directorate-General 2013; European
Food Safety Authority (EFSA) 2015a).

Aureobasidium pullulans strains, DSM 14940 (CF 10) and DSM 14941 (CF 40), are registered
against the fireblight disease caused by Erwinia amylovora and postharvest diseases (European Food
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Safety Authority (EFSA) 2013). Two strains were formulated as a wettable powder under the product
name Blossom-Protect® and tested under field conditions at different sites and over several years
(Kunz 2004, Kunz & Haug 2006, Kunz et al. 2011, Seibold et al. 2004). These two strains were
further developed against postharvest diseases of apple under Boni-Protect® (Weiss & Mogel 2006).
They are further used against storage and rot diseases of strawberries; plum and sour cherries are
being studied (Holb & Kunz 2013, Weiss et al. 2014). The mode of action involves competition for
space and nutrients. However, proteases, chitinases might also be involved (Freimoser et al. 2019).

Antifungal activity of Metschnikowia mediated by a range of mechanisms: competition for
nutrients, secretion of glucanases and chitinases, and the production of VOCs (Banani et al. 2015,
Dhami et al. 2016, Gore-Lloyd et al. 2019, Hershkovitz et al. 2013, Saravanakumar et al. 2008,
Sipiczki 2006, Zajc et al. 2019). Inducing the oxidative burst in plant tissues activates the plant's
defined responses (Hershkovitz et al. 2012, Macarisin et al. 2010). Metschnikowia fructicola isolate
NRRL Y-30752 was developed and registered as a biocontrol product for preventing postharvest
diseases, particularly in sweet potato and carrot (Eshel et al. 2009, Kurtzman & Droby 2001,
Wisniewski & Droby 2012) and approved by the European Food Safety Authority (EFSA) (European
Food Safety Authority (EFSA) 2015¢, 2017).

Saccharomyces cerevisiae isolate BY4741 shows antifungal activity against filamentous fungi
(Hilber-Bodmer et al. 2017). The mycotoxin-removing activity of S. cerevisiae is due to adsorption
of toxins to cell walls, stress responses to the toxin, as well as transcriptional downregulation of
polyketide synthesis (Cubaiu et al. 2012, Oporto et al. 2019). Further, the killer toxin activity,
hydrolytic enzymes, as well as VOCs are involved. Saccharomyces cerevisiae shows biocontrol
activity against soilborne fungal pathogens such as Fusarium, Rhizoctonia or Sclerotium (Shalaby &
EINady 2008). The comprehensive transcriptome confirmed that strain LAS117 induces the gene
expression against fungal attack (De Miccolis Angelini et al. 2019). The registered products are
Romeo® and cerevisane® (European Food Safety Authority (EFSA) 2015b). These are used as
systemic resistance against powdery and downy mildew in grapes, fruits and vegetables.

With all regards, yeasts are highly effective biocontrol agents for green agriculture. However,
studies are needed in broad aspects to understand the mechanisms of their biocontrol activities
(Fernandez-San Millan et al. 2024). The biocontrol activities of yeasts are highly strain-specific
(Fernandez-San Millan et al. 2023). Further, their behaviour changes drastically from in vitro to in
vivo. The classic experiments, such as dual culture and inhibitory assays, screen the active strains.
However, a broader understanding of the mode of action is needed for developing effective and
efficient biocontrol products (Fernandez-San Millan et al. 2024). This addresses the requirement of
omics-based studies on yeast to develop effective biocontrol products towards green agriculture.

4.5 Entomopathogenic Beauveria bassiana, a silver bullet mycopesticide in today’s world

Beauveria bassiana: in the Loop

When it comes to the entomopathogenic fungi, no introduction is needed for Beauveria bassiana as
it is one of the most well-known and frequently recorded fungi with the ability to infect a wide range
of insects (over 700 species) along with their cosmopolitan distribution (Xiao et al. 2012, Irsad et al.
2023). Beauveria bassiana is an ascomycetous fungus that belongs to Cordycipitaceae (Hypocreales,
Sordariomycetes). Eighty-one Beauveria epithets are listed in Index Fungorum (August 2025), which
is higher than the previously known 25 species (Solano-Gonzalez et al. 2023). Beauveria bassiana
was first recognised for its entomopathogenic ability by the Italian scientist Agostinio Bassi in 1835
as the cause of the devastating muscardine disease of silkworms (Bombyx mori). In the 1880s,
Metchnikoff began working on Metarhizium anisopliae against grain beetles and was among the first
scientists to suggest the potential for managing insect pests with entomopathogenic fungi (Irsad et al.
2023). Like many other entomopathogenic fungi, B. bassiana infects the insects mainly through
cuticular penetration (Fig. 11). They produce numerous toxins such as bassianin, bassianolide,
beauvericin and analogues, beauverolides, calcium oxalate crystals, oosporein, oxalic acid, and
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tenellin increase their virulence and speed up the infection (Wang et al. 2021a). However, the exact
details of the mechanism of the fungus in destroying the insects are yet to be understood.

Nevertheless, the current understanding of its potential to kill a broad range of crop pests,
Beauveria bassiana, has been used in agricultural systems in many countries to control pests. As per
the latest experimental evidence based on molecular data, it has been recognised that B. bassiana
encompasses cryptic lineages adapted to specific hosts or ecologies and not exactly the generalist as
originally identified with a worldwide distribution (Wang et al. 2022b). In this section, we brief on
their potential applicability to controlling pests, current trends in pest control, commercial
applications, and challenges yet to be resolved.

Recent studies on Beauveria bassiana in controlling a wide variety of insect pests in agriculture
The application of Beauveria bassiana in the current agriculture field is extremely important not only
because of its zero or minimum environmental pollution but also for its superior toxicity against a
plethora of insect groups, further supplemented with easy application (Wang et al. 2022b). The use
of B. bassiana is more effective than that of other biocontrol agents like parasitoids (Saito and
Buitenhuis, 2024). Beauveria bassiana has been reported in its control over the main insect groups,
namely, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera (Singh et al. 2015a). In a
most recent study, Sarker et al. (2024) recognised that a new strain AAD16 of Beauveria bassiana,
can control the Japanese coleopterans. They have isolated the fungus from the Japanese rhinoceros
beetle, Allomyrina dichotoma (L.) (Coleoptera: Scarabaeidae) and found it to be effective in
controlling larvae of Allomyrina dichotoma, Monochamus alternatus, and Tenebrio molitor. Further,
Sarker et al. (2024) have compared the biocontrol ability of the new strain of the previously isolated
strain ARP14. The results showed that strain AAD16 was superior to the previously isolated strain.
Similarly, Zemek et al. (2021) recorded several new native strains that show very positive results in
controlling the Colorado potato beetle, Leptinotarsa decemlineata.

Aedes notoscriptus (Diptera), responsible for causing health issues for livestock animals, was
tested with B. bassiana by Paris et al. (2023). They have found that the mortality of the adult
mosquitoes was four times higher with the application of B. bassiana, suggesting a promising future.
In another study, Hajek et al. (2023) found that B. bassiana was able to control the Invasive
hemipteran Spotted Lanternfly, Lycorma delicatula. 1drees et al. (2022), Lopez et al. (2022), and
Soth et al. (2022) have shown the importance of the use of B. bassiana against lepidopteran pests,
Fall armyworm (Spodoptera frugiperda, Cydalima perspectalis), and diamondback moth (Plutella
xylostella), respectively.

Current study trends

Several studies have also shown the effectiveness of B. bassiana together with other biocontrol
agents. Wakil et al. (2023) tested B. bassiana along with the entomopathogenic nematode,
Steinernema carpocapsae. The results showed that co-infection shows higher mortality at all
exposure intervals than with single treatments over several pests, which include Cryptolestes
ferrugineus, Oryzaephilus surinamensis, Rhyzopertha dominica, Sitophilus oryzae, Tribolium
castaneum, and Trogoderma granarium. Further, a maximum mortality rate (over 90%) was recorded
on Rhyzopertha dominica (96.62%) and Sitophilus oryzae (90.48%). In contrast, Soth et al. (2022)
experimented with the combined application of different Beauveria species, viz. B. bassiana, B.
caledonica, B. malawiensis, and B. pseudobassiana, against P. xylostella. They have found that even
though the individual strains were of low virulence, the combined applications achieved higher
mortality rates by killing the targeted pest faster than the highly virulent combinations and isolates.
Further, the combined application of B. bassiana with other bacterial pathogens capable of causing
diseases on pests has been variously acknowledged (Johnson et al. 2019).

Mao et al. (2023) demonstrated the increase in the biocontrol ability of Beauveria bassiana using
CRISPR-Cas9-mediated gene editing. They have transformed the fungus with the get gene, which
plays arole in deactivating 20-hydroxyecdysone. The 20-hydroxyecdysone is a key hormone in insect
development, and the results were significant as they observed the transgenic fungus killing more
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silkworms of 2nd instar larvae than the wild-type with a shorter LTso time. Compared to the wild
type, larvae dropped to approximately 20% (day one of the second instar silkworm infection of B.
bassiana) and 26.4% (day two of the second instar silkworm infection of B. bassiana). Further, it
showed a higher mortality rate before moulting. Another trend in studies is the potential application
of the fungus in controlling pests and other phytopathogenic diseases (Sinno et al. 2021). Several
studies have also tested the field survivability and better substrates for the fungus to stay active for
the longest duration (Kaiser et al. 2019, Zamora-Avilés et al. 2022, Gu et al. 2023b).

Recent advances in genomics have significantly deepened the understanding of Beauveria
bassiana, revealing its genetic composition that underlies its ability to infect and kill a wide range of
insect hosts. Whole-genome sequencing has identified thousands of genes involved in virulence,
including those encoding hydrolytic enzymes such as chitinases, proteases, and lipases that facilitate
cuticular penetration. In addition to that, genes responsible for the biosynthesis of potent secondary
metabolites like beauvericin, bassianolide, oosporein, and tenellin, which disrupt insect physiology
and immune responses, have also been identified. Additionally, surface proteins such as
hydrophobins aid in spore adhesion and immune evasion, while stress response genes contribute to
fungal resilience under field conditions. Comparative genomic studies have revealed strain-specific
variations in these virulence factors, suggesting the existence of cryptic lineages adapted to particular
hosts or ecological niches.

This new insight helps in precise strain selection and targeted pest control. These genomic tools
not only allow for the development of more effective fungal strains but also enable the integration of
multi-omics strategies to better understand host-pathogen interactions.

State of the commercial application

The commercial application of Beauveria bassiana runs several decades behind; for example, the
Indian Insecticide Act of 1968 has amended its schedule to incorporate B. bassiana as a biopesticide
for commercial production. This revision was published in the Indian Gazette on March 26, 1999
(Singh et al. 2015a). However, the developments are still taking place, for instance, on 20 July 2017,
B. bassiana strain 203, a new active substance for bioformulation (under Article 7 of Regulation (EC)
No 1107/2009 of the European Parliament and the Council, the rapporteur Member State -RMS,
Netherlands) has been approved to be applied (EFSA et al. 2020). Nonetheless, there are plenty of
trade names available in the market having B. bassiana various strains, e.g., Agronova, Ballve ria,
Bb Moscas, Beauveria JCO, Biostop F, BotaniGard, Bouveriz WP, Bovebio, Bovemax EC, Boveril
WP PL63, Daman, Eco-Bb, Granada, Mirabiol, Mycotrol-O, Nativo 2 SC, Racer, Trichobass-L,
Trichobass-P, etc (Mascarin & Jaronski 2016).

Challenges

One of the main considerations would be the screening of selected fungal strains to recognise whether
they are species-specific or generalists, as some fungal strains could have negative effects on
beneficial insects such as honeybees (Omuse et al. 2022). Another challenge in the application of
Beauveria bassiana would be the reduction of its virulence over time. The virus infections can cause
hypovirulence in the fungus, causing resultant decreases in cuticular penetration, growth of hyphae,
and toxin metabolism (Zhang et al. 2023). Apart from that, changes in the microclimate, application
of other synthetic pesticides and fertilisers, and competition between other associated microflora
could impart reductions in efficacy. Overall, accounting, survivability, and stability of the fungus
under field conditions are difficult to predict, hindering complete acceptance of its usage in the field
(Gu et al. 2023Db).

Conclusions

For more than a century, the entomopathogenic fungus Beauveria bassiana has been reputed for its
biocontrol ability of insect pests. Despite the common drawbacks of using biocontrol agents, B.
bassiana has been formulated to be applied in commercial farming systems. So far, no considerable
negative impacts have been recorded in the use of this fungus. Therefore, along with other benefits,
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it has been recognised as a better alternative to synthetic pesticides more promising bio-controlling
results. Combined application with other biocontrol agents should be considered. Utilisation of
modern biotechnological approaches could become more advantageous for the development of more
virulent strains. Furthermore, it is required to develop quick and reliable methods to understand the
colonisation/spread, survival, and persistence of the fungus after application in the field. This would
be essential for the sustenance of biological control in pest management.

4.3 Metarhizium species as a microbial pesticide in green agriculture

Metarhizium belongs to Clavicipitaceae in Hypocreales (Sordariomycetes) (Chen et al. 2019,
Castrillo & Indexed 2020, Hyde et al. 2024). Metarhizium is a well-known entomopathogenic fungus
widely used as an alternative to chemical pesticides in agricultural pest management (Driver et al.
2000, Lovett & Leger 2015, Leger & Wang 2020). Approximately, there are over 700
entomopathogenic fungal species representing 90 genera belonging to different major fungal groups
of Ascomycota (Roberts & Humber 1981, Leger et al. 2011). Among those 700 species, only 12 have
been commercialised, with 34% of them being based on Metarhizium species (Sani et al. 2020, de
Faria & Wraight, 2007). The most researched and applied species as biopesticides include M.
anisopliae, M. brunneum, M. acridum, M. robertsii, and M. rileyi (Bischoff et al. 2009, Castro et al.
2018, Mongkolsamrit et al. 2020). The host specialisation and environmental adaptability of each
Metarhizium species are variable (Chen et al. 2017). Metarhizium can infect a wide range of insects.
For instance, M. robertsii is known to infect Coleoptera (beetles), Lepidoptera (butterflies and
moths), Diptera (flies), Hemiptera (true bugs), and Orthoptera (locusts and grasshoppers) (Wen et
al. 2015, 2017, Zha et al. 2020). In contrast, some species, such as M. acridum, are specialised in
infecting only grasshoppers and locusts (Wang et al. 2016a, Chen et al. 2017). Certain strains of
Metarhizium play a vital role in targeted biological control within sustainable agriculture,
contributing to environmentally friendly pest management strategies (Aw & Hue 2017, Zhang et al.
2024). The infection cycle of Metarhizium can be categorised into adhesion, germination,
appressorium formation, penetration and sporulation (Figure 11) (Fang et al. 2009, Gabarty et al.
2014, Muller et al. 2023). Fungi like Metarhizium live in soil near the plant roots and affect other
microorganisms. This means that Metarhizium not only kill insects, but it also has other important
roles in the soil there so they which need elaborating through more research (Liu et al. 2022b, Wei
et al. 2022).

Phylogenetic analyses suggest that Metarhizium originated from plant roots approximately 300
million years ago, with its pathogenicity against nematodes and insects evolving around 180 million
years ago (Gao et al. 2011, Moonjely & Bidochka 2019, Sheng et al. 2022). The potential of bio-
pesticides as a biological control agent (BCA) has been recognised for more than a century to reduce
the use of chemical pesticides (Hussain et al. 2022, Pednekar & Rajan 2024). Historically, the
application of Metarhizium as a biocontrol agent against agricultural pests has demonstrated the
environmental benefits over synthetic pesticides (Fang et al. 2012, Guo et al. 2024, Chowdhury et al.
2024). The mostly used entomopathogenic fungus is Metarhizium anisopliae, which was first
discovered by Metschnikoff in 1879 (Metschnikoff 1879). This got its place established as a
biocontrol agent in the green pesticide approach (Steinhaus 1956, Zimmermann et al. 1995,
Pattemore et al. 2014, Kobmoo et al. 2024). It was demonstrated that M. anisoplia infects more than
200 insect species in green agriculture. Most of the studies have reported that M. anisoplia has a 90%
to 97% mortality rate that causes infection in pests (Zhang et al. 2014b, Wang et al. 2019a).
Metarhizium species have a dual purpose in which they not only infect the insects but also promote
the growth of plants in agricultural environments (Elena et al. 2011). They play a crucial role in
biological pest control through the production of mycotoxins, which can effectively reduce pest
populations in agricultural areas. (Zhang et al. 2014b, Kepler et al. 2015, Sani et al. 2020).

Metarhizium species are used in a number of formulations, such as sprays and granules, in
managing pests that pose threats to crop health (Castro et al. 2018, Sani et al. 2020, Kamga et al.
2022, Liao et al. 2023). Innovative techniques like spray-drying and air-drying are being employed
to create stable powder formulations of M. robertsii, which exhibit prolonged efficacy under different
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environmental conditions (Iwanicki et al. 2021). The conidia of M. rileyi are now utilised as drones
for excellent pest control in large-scale agriculture (Faria et al. 2022). Combining Metarhizium with
other chemicals or biopesticides has been shown to enhance biocontrol efficacy and overall pest
management (Irsad et al. 2023). The infection process of Metarhizium begins with fungal spores
adhering to the insect's cuticle and secreting enzymes to penetrate it. Subsequently, the spores
germinate, penetrate the exoskeleton, and proliferate within the insect, ultimately causing its demise
(Figure 11) (Roberts & Leger 2004, Wang & Leger 2007a, Guo et al. 2017).
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Figure 11 — Application of Beauveria bassiana in the control of pests. The fungalus formulations
are available as emulsions or wettable powders. The conidia are generally included in the
formulations. With the field application, the conidia directly contact insects and start infecting them,
causing the death of the insects. The conidiospores emerge from insect cadavers, and the released
conidia start to disseminate through the wind, continuing the infection to the new hosts. The control
of insect pests in an eco-friendly manner leads to a better-quality harvest (adapted from Mascarin &
Jaronski 2016, Ortiz-Urquiza 2021, Pedrini 2022, Ma et al. 2024).

Historical applications of Metarhizium as a biocontrol agent

Metarhizium as a microbial pesticide in green agriculture

Metarhizium species have demonstrated the ability to effectively manage insect pests in
sustainable green agriculture, reducing reliance on chemical pesticides and promoting
healthier ecosystems and stronger agricultural practices (Fenibo et al. 2022, Yarzabal et
al. 2024). Particularly, species like M. anisopliae and M. brunneum have been utilised to
control severe agricultural pests like locusts, beetles, whiteflies, termites, and caterpillars
(Yitaferu et al. 2006, Aw & Hue 2017, Francis 2019, Gu et al. 2023a, Ma et al. 2024).
Metarhizium anisopliae and M. acridum are host-specific, killing only the targeted pest
without endangering non-target species and can control pest populations in green
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agriculture (Zhang et al. 2019a, 2023, Du et al. 2024a). Metarhizium insopliae ICIPE 18
and M. insopliae ICIPE 20 showed strong pathogenicity against adults of Phthorimaea
absoluta (Maingi et al. 2023). Metarhizium, when used in conjunction with other
biological control agents, can effectively suppress soil pests for extended periods,
creating a favourable environment for crops (Zhao et al. 2023a). The combination of M.
acridum with different weather conditions has shown promise in improving pest control
and reducing the need for harmful chemicals (Kamga et al. 2022).
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Figure 12 — Application of Metarhizium spp. for pest control in agricultural fields.

Metarhizium demonstrates high adaptability to various environmental conditions,
from tropical to temperate regions, making it an asset in biological control (Rodriguez &
Coy-Barrera 2023). Spores of Metarhizium are mostly found in undisturbed pasture soil
and waiting for a susceptible insect host (Roberts & Leger 2004, Leger 2008).
Metarhizium could utilise a variety of nutrients with the changing of soil structure (Leger
& Wang 2020, Stone & Bidochka 2020, Reingold et al. 2024). Metarhizium species
survive and withstand high-temperature fluctuation, UV radiation and changing moisture
(Liu et al. 2023a, Mishra et al. 2023, Yarzabal et al. 2024). Many studies highlight the
potential of Metarhizium as a supportable solution for insect pest control in diverse
climates (Kamga et al. 2022, Wei et al. 2024).

Current trends of Metarhizium in commercial application

Metarhizium is commercially available in the form of spores or fungal conidia, often
produced through genetic engineering for enhanced properties (Jaronsk & Mascarin 2017,
Sun et al. 2023). These products are used for soil treatment, pest infection, and reducing
the use of chemical pesticides (Zhou et al. 2020, Tudi et al. 2021, Nowak et al. 2024).
Biotechnological advancements have led to the development of Metarhizium strains with
rapid killing rates and adaptability to different climates (Guo et al. 2017, Tang et al.
2024). Scientists focus on genetic engineering to modify specific genes that produce
insecticidal peptides influencing host immunity, thus improving the virulence of M.
anisopliae (McGraw & O'neill 2013, Wang 2019c, Lovett 2019, Vidhate et al. 2021,
Peng et al. 2022b).

4975



Recent studies have witnessed the utilisation of 68 Metarhizium strains as biocontrol
agents in several countries (Tupe et al. 2017, Brunner-Mendoza et al. 2019, Villamizar et
al. 2021). Furthermore, M. anisopliae oil formulations have been shown to reduce
fertility and blood feeding in adult malarial vectors, i.e., Anopheles gambiae (Shoukat et
al. 2020, Peng et al. 2022b). Understanding how pests may develop resistance to fungal
infections is crucial for maintaining the effectiveness of Metarhizium products over time
(Leger & Wang 2020, Tang et al. 2024). To prevent the development of resistance,
different strains of Metarhizium can be rotated or combined with other control agents
(Beys-da-Silva et al. 2020).

Conclusion

Metarhizium is one of the entomopathogenic fungi that provides a clearer understanding
of biological pest control. It could efficiently target a wide variety of agricultural pests
while minimising harm to non-target species. Through historical application and ongoing
genetic research, Metarhizium has the potential to become a keystone of Integrated Pest
Management  strategies. Continuous research and development in genetic and
construction advancements will no doubt expand the potential applications of
Metarhizium in pest management. Its adaptability to various climates and compatibility
with other biocontrol agents enhance its utility in sustainable agriculture. However,
challenges such as pest resistance and the need for a deeper understanding of host-
pathogen interactions must be addressed. Further research must focus on maximising the
effectiveness of Metarhizium and its lifespan in agro ecosystems for its sustained use,
contributing more to the sustainable approaches to pest management in agriculture.

Future perspectives

Metarhizium has great potential for sustainable agriculture through its contribution as an
eco-friendly alternative to chemical pesticides, playing a key role in future pest
management approaches like Integrated Pest Management (Thakur et al. 2021). The
specificity and long-term insect pest control must allow Metarihzium to be a perfect
contender in the reduction of ecological impact (Hokkanen & Menzler-Hokkanen 2024).
Despite its advantages, there are still gaps in our understanding of Metarhizium, such as
host-pathogen coevolution, the effects of climate change on its efficacy, and its
interactions with soil microbiomes (Singh et al. 2015a). Investigating them is needed to
improve the adaptability and performance of Metarihizium in varied agroecosystems
(Dev et al. 2021). Further research is needed to explore modern biotechnological
approaches, such as gene transformation, in combination with chemical products and
entomopathogens, to enhance the effectiveness of Metarhizium.

4.7 Glomus species for the biocontrol of plant parasitic nematodes

Plant-parasitic nematodes represent a significant biotic threat to global agriculture,
severely limiting crop productivity and threatening food security worldwide (Bernard et
al. 2017, Feyisa 2021). These microscopic, worm-like pathogens (Schmitt & Sipes 1998)
primarily inhabit soil and cause extensive direct damage by feeding on plant roots and
also predisposing plants to secondary infections (Powell 2012). Globally, plant-parasitic
nematodes are estimated to reduce crop yields by 12.3%, resulting in annual economic
losses of approximately USD 157 billion (Singh et al. 2015b). In light of their devastating
impact, developing effective nematode management strategies 1is important for
safeguarding agricultural productivity and ensuring long-term food security.

The traditional method of controlling plant parasitic nematodes has primarily relied
upon chemically synthesised nematicides, which pose serious risks to both human health
and the environment (Mendoza-de Gives 2022, Ansari & Saleem 2023). Therefore, non-
chemical approaches, including crop rotation, fallowing, addition of soil organic
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amendments, resistant cultivars, and biological control, have been proposed as reduced-
risk approaches for managing plant parasitic nematodes (Mendoza-de Gives 2022). With
the advancement of green agriculture, biological control has emerged as a promising
strategy in plant parasitic nematode management (Mokrini et al. 2024), and several
microorganisms are being used as biological control agents in plant parasitic nematode
management (Ruanpanun & Chamswarng 2016, Ma et al. 2017, Haarith et al. 2020,
Mokrini et al. 2024).

Glomus species stands out as a multifunctional fungal group, representing the
predominant and largest genus in the phylum Glomeromycota (Rodrigues & Rodrigues
2020). Members of Glomeromycota are grouped into arbuscular mycorrhizal fungi
(AMF) as they establish symbiotic associations with plant roots, forming specific
structures known as arbuscules within the plant cells (Parniske 2008). In this section, we
discuss how Glomus species are utilised in the biocontrol of plant parasitic nematodes,
their underlying mechanisms, ecological impact, and economic implications in modern
farming, contributing to global food security and sustainable agriculture.

Glomus species used in the biocontrol of plant parasitic nematodes

Several Glomus species, including G. aggregatum, G. clarum, G. coronatum, G.
etunicatum, G. fasciculatum, G. intraradices, G. mosseae, G. versiforme, and G.
viscosum, have been shown to successfully control various plant parasitic nematodes on
different hosts (Table 5). Among these, G. intraradices and G. mosseae are widely
utilised in the biocontrol of plant parasitic nematodes. However, the selection of a
Glomus sp. for nematode biocontrol and its success may depend on the type of nematode,
plant species involved, environmental conditions, the time of application, and the
duration of exposure to the nematode (Talavera et al. 2001).

Studies have demonstrated that there are differences in the effectiveness of different
Glomus species on a particular host(s) affected by particular plant parasitic nematodes.
For instance, Zhang et al. (2008) showed that G. mosseae and G. versiforme are more
effective than G. intraradices in the suppression of Meloidogyne incognita on cucumber.
Forge et al. (2001) suggested that G. mosseae is more effective among G. aggregatum, G.
clarum, G. etunicatum, G. intraradices, and G. versiforme 1in the biocontrol of
Pratylenchus penetrans on apple. Also, there are some reports with no or insufficient
biocontrol effects of Glomus spp. on certain plant parasitic nematodes (Strobel et al.
1982; Elsen et al. 2003a; Rumbos et al. 2006). Considering the timing of application,
many studies recommend inoculating the biocontrol agent (Glomus sp.) during the
nursery stage, before exposure to the plant parasitic nematode in the field (Calvet et al.
2001, Talavera et al. 2001, Castillo et al. 2006). This allows Glomus spp. sufficient time
to establish within the root cells (Calvet et al. 2001), as they typically require 2-4 weeks
to penetrate plant roots, whereas nematodes can penetrate within a few hours (Talavera et
al. 2001). Furthermore, it is also crucial to evaluate Glomus spp. for their capacity to
improve nutrient absorption and promote growth, along with their effectiveness in
suppressing nematodes, before recommending them as biocontrol agents (Habte et al.
1999).

Table 5: Glomus spp. used in the biocontrol of plant parasitic nematodes on different
host plants

Glomus species Nematode Species Host plant Reference
G. aggregatum Pratylenchus penetrans Apple Forge et al. (2001)
G. clarum P. coffeae Coffee Vaast et al. (1997)
P. penetrans Apple Forge et al. (2001)
G. coronatum Meloidogyne incognita Tomato Diedhiou et al. (2003)
G. etunicatum P. penetrans Apple Forge et al. (2001)
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Glomus species Nematode Species Host plant Reference
G. fasciculatum Rotylenchulus reniformis Tomato Sitaramaiah & Sikora
(1982)
G. intraradices P. penetrans Apple Forge et al. (2001)
Meloidogyne incognita Cucumber Zhang et al. (2008)
Xiphinema index Grapevine Hao et al. (2012)
M. incognita and M. javanica Olive Castillo et al. (2006)

M. javanica

Peach almond
hybrid GF-677

Calvet et al. (2001)

Nacobbus aberrans Tomato Lax et al. (2011)
P. coffeae Carrot Elsen et al. (2003c)
G. mosseae M. incognita Banana Jaizme-Vega et al. (1997)
P. coffeae Banana Elsen et al. (2003a)
Radopholus similis Banana Elsen et al. (2003b)
M. incognita and M. javanica Olive Castillo et al. (2006)
M. incognita Tomato Talavera et al. (2001),
Vos et al. (2012a)
P. penetrans Tomato Vos et al. (2012b)
P. penetrans Apple Forge et al. (2001)
G. versiforme P. penetrans Apple Forge et al. (2001)
G. viscosum M. incognita and M. javanica Olive Castillo et al. (2006)

Mechanisms involved in nematode biocontrol of Glomus spp.

Understanding the underlying mechanisms of resistance against plant parasitic nematodes could
be utilised to enhance the efficacy of utilising Glomus species as biocontrol agents. Four main
mechanisms have been identified in the biocontrol of plant parasitic nematodes by AMF, including
enhanced plant tolerance, direct competition for nutrients and space, induced systemic resistance,
and altered rhizosphere interactions (Schouteden et al. 2015). Glomus spp., as a group of AMFs, also
employs these mechanisms in nematode biocontrol (Table 5).

Species belonging to Glomus can improve host tolerance and enhance plant resistance against
nematode infestations. This is an indirect mechanism, achieved by promoting the plant nutritional
state (Benedetti et al. 2021) and/or rendering root tissues unfavourable as a food source for plant
parasitic nematodes through physiological changes (Calvet et al. 2001). Glomus species compete
with plant parasitic nematodes for space and nutrients by early establishment within host root cells.
The limited space and malnutrition among females reduce the reproduction of plant parasitic
nematodes (Talavera et al. 2001). Induced systemic resistance is a plant-mediated response against
plant parasitic nematodes, where Glomus species induce biochemical changes in the plant, leading to
the production of defence compounds and signalling molecules. These changes trigger systemic
resistance throughout the plant, reducing its susceptibility to nematode attacks (Elsen et al. 2008, Vos
et al. 2012b). During symbiosis, Glomus species induce the secretion of specific root exudates that
alter the composition of the rhizosphere (Vos et al. 2012¢). Some of these exudates negatively impact
nematode host-finding behaviour and subsequent root penetration, providing pre-inflectional
protection against plant parasitic nematodes (Vos et al. 2012a). The mechanism involved may vary
depending on the specific nematode species involved, and the same Glomus sp. may exhibit different
mechanisms (Table 6).

Table 6: Different mechanisms involved in the nematode biocontrol of Glomus spp.

Mechanism Glomus sp. PPN involved Reference
Enhanced Improving plant nutrition G. intraradices P. vulnus Calvet et al.
plant (1995)
tolerance Improving plant growth G. intraradices, G. M. incognita and Castillo et al.
mosseae, and G. M. javanica (2006)
viscosum
Altering the root morphology G. intraradices, G. M. javanica Calvet et al.

mosseae and G.
etunicatum

(2001)
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Mechanism Glomus sp. PPN involved Reference

Competition ~ Reducing egg production of G. fasciculatum R. reniformis Sitaramaiah
for nutrients nematode by limiting available & Sikora
and space food resources (1982)
Suppressing reproduction by G. intraradices P. coffeae Elsen et al.
competition for penetration (2003¢)
and/or nutrient sites.
Induced Enhanced transcriptional ~ G. versiforme M. incognita Li et al
systemic activity of the class III chitinase (2006)
resistance gene
Up-regulation of host genes G. mosseae M. incognita (Vos et al
involved in defence, signal 2013)

transduction and protein
synthesis and modification

Up-regulation of defence- G. intraradices X. index Hao et al.

related host genes (2012)
Altered Inducing root exudates that G. mosseae and G. R. similis Vos et al
rhizosphere negatively affecting nematode intraradices (2012a)
interactions host finding and subsequent root

penetration

Reduction of root penetration G. mosseae M. incognita Vos et al

(2012¢)

Ecological and economic implications of Glomus spp. in nematode biocontrol in modern farming

In addition to managing plant parasitic nematodes, the use of Glomus species offers various
ecological benefits by promoting soil health and biodiversity. Glomalin, a soil protein secreted by
AMEF, originally discovered in soils associated with Glomus spp., plays a vital role in soil health by
enhancing soil aggregation (Gupta 2020). This improves soil structure, providing a stable
environment for microbial communities, enhancing nutrient cycling, and soil fertility (Pal & Pandey,
2014, Hamel 2004). A greenhouse experiment conducted by Siddiqui & Akhtar (2007) demonstrated
that better plant parasitic nematode control could be achieved by incorporating G. mosseae with
organic fertiliser. According to their findings, poultry manure along with G. mosseae proved to be
the most effective combination in controlling M. incognita in tomatoes. Furthermore, biological
control using Glomus species promotes biodiversity by reducing the need for synthetic nematicides,
in general.

Oyekanmi et al. (2007) demonstrated that the use of G. mosseae alone or in combination with
different biocontrol agents could achieve equal or better control of root-knot nematodes compared to
the synthetic nematicide carbofuran. This suggests that Glomus species could serve as a cost-effective
alternative for nematode control. Commercial bio-fertilisers containing Glomus spp. are available in
certain countries (Talavera et al. 2001), or farmers can produce their own inocula on-farm, using the
trap-culture method (Madhushan et al. 2021). Additionally, as previously mentioned, Glomus spp.,
being a multifunctional group of fungi, offers various benefits to host plants while managing plant
parasitic nematode populations. For example, G. mosseae, a well-known nematode biocontrol agent,
can enhance plant nutrition (Jaizme-Vega et al. 1997) and mitigate soil salinity (Sheng 2008, Al-
Khaliel 2010), drought stress (Ruiz-Lozano 1995, Ganjeali 2018), and heavy metal toxicity (Zhang
et al. 2006). Therefore, farmers could achieve increased crop yields and profits through enhanced
plant productivity and reduced nematode damage. Overall, Glomus species exhibit significant
potential in managing plant parasitic nematodes across various plant hosts. However, research on
Glomus spp. for nematode control seems relatively limited in the past decade. Moreover, the potential
of Glomus spp. in controlling nematodes affecting staple food crops remains largely unexplored.
Given the importance of nematode control and the ecological and economic benefits associated with
Glomus spp., they emerge as promising candidates for integration into sustainable agriculture. This
work will inspire further research and commercialisation of Glomus spp. for application in green
agriculture.
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4.7 Fungi against plant viruses and viroids

Plant viruses are obligate pathogens composed of single- or double-stranded RNA or DNA,
exhibiting diverse replication strategies, encapsulated within a protein shell, and lacking intrinsic
metabolism (Hull 2013). Viroids, in contrast, are exogenous, single-stranded, circular non-coding
RNAs (Randles 2003). Currently, around 1,600 plant virus species are recognised, classified into 158
genera and 22 families (ICTV 2023), whereas only 44 viroids have been identified, belonging to two
families: Pospiviroidae and Avsunviroidae (Ma et al. 2023). Both viruses and viroids are highly
infectious and cause significant yield and quality losses in wild and cultivated plants. Plant viral
diseases are estimated to cause global yield losses of 10—-15% (Savary et al. 2019), though losses can
range from 0% to 100% depending on infection sources, vector dynamics, and environmental
conditions (Rao & Reddy 2020). Viruses account for nearly 47% of emerging and re-emerging plant
pathogens worldwide (Anderson et al. 2004, Jones 2021). Unlike other pathogens, viruses cannot be
cured post-infection, and their spread is often rapid and unpredictable due to vector-dependent
transmission (Dietzgen et al. 2016, Dader et al. 2017, Jia et al. 2018). Thus, plant virus disease
management relies on preventive, cultural, genetic, and biotechnological strategies, with biological
control emerging as a sustainable alternative, particularly when host resistance or chemical
treatments are ineffective (Collinge et al. 2022). In this section, we explore the potential of fungi in
mitigating plant virus and viroid diseases.

Emerging plant viruses, including begomoviruses (Geminiviridae), criniviruses
(Closteroviridae), tospoviruses (Bunyaviridae), and potyviruses (Potyviridae), pose a growing threat
to global agriculture. These pathogens are primarily transmitted by insect vectors such as whiteflies,
thrips, and aphids. The spread of plant viruses is accelerated by viral genetic evolution, expanding
vector populations, agricultural intensification, and climate change (Navas-Castillo et al. 2011,
Tatineni & Hein 2023, Jeger et al. 2023). The whitefly Bemisia tabaci is a key vector, transmitting
over 400 plant viruses across multiple genera, including Begomovirus, Crinivirus, and Torradovirus
(Ghosh & Ghanim 2021, Thesnim et al. 2023). Effective management of B. tabaci can be achieved
using entomopathogenic fungi (EPF) such as Ashersonia spp., Beauveria bassiana, Isaria
fumosorosea, Metarhizium anisopliae, and Verticillium lecanii (Wang et al. 2007b, Panyasiri et al.
2007, Borisade 2015, Abdel-Raheem & Lamya 2016, Zhang et al. 2017). Additionally,
Akanthomyces muscarius, B. bassiana, I. javanica, and M. brunneum demonstrate significant
potential as biocontrol agents against aphids, inducing high mortality rates, with some strains
achieving up to 100% mortality within days of application. Their efficacy stems from direct infection
and the action of secondary metabolites with aphid-specific toxicity (Erol et al. 2020, Kang et al.
2018, Kim et al. 2013). Additionally, /. javanica, isolated from Q-type B. tabaci (the primary vector
of tomato yellow leaf curl virus, TYLCV), demonstrated degradation of the TYLCV capsid protein
(CP). Fungal fermentation with the virus resulted in higher CP degradation activity in the supernatant
than in the precipitate. Furthermore, treatment with /. javanica reduced the disease index in tomato
plants infected by viruliferous Q-type whiteflies (Sun et al. 2021).

Beyond direct application of fungi for virus vector control, emerging research on antiviral
properties of fungi has shown promising results. Several plant viruses, including barley yellow dwarf
virus (BYDV), cucumber mosaic virus (CMV), groundnut bud necrosis virus (GBNV), iris yellow
spot virus (IYSV), maize chlorotic mottle virus (MCMYV), pepper leaf curl virus (PeLCV), potato
virus X (PVX), potato virus Y (PVY), sugarcane mosaic virus (SCMV), tobacco mosaic virus
(TMV), tomato mosaic virus (ToMV), TYLCV, and zucchini yellow mosaic virus (ZYMYV), as well
as chrysanthemum stunt viroid (CSVd), have been studied in plant-fungi-virus interactions.

Recent studies have identified diverse fungal-derived compounds with potent antiviral activity
against plant viruses, particularly TMV, a major RNA-based plant pathogen. Peptaibols, such as
peptavirins A and B from an unidentified fungus (Yun et al. 2000) and Apiocrea sp. (Yeo et al. 2002),
inhibited TMV infection by 74-79% at 10 pg/mL. Similarly, Hripl, a hypersensitive response-
inducing protein from Alternaria tenuissima, triggered systemic acquired resistance against TMV
through multi-scale defence signalling (Kulye et al. 2012). Polysaccharides from Penicillium
chrysogenum (PCPS) and peptidogalactomannan (pGM) from Cladosporium herbarum upregulated
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phenylpropanoid (PAL, 4CL) and pathogenesis-related (PR-1a, PR-2, PR-3, PR-5) genes, enhancing
TMV resistance (Fu et al. 2020, Montebianco et al. 2020). Trichokonins from Trichoderma
pseudokoningii (Luo et al. 2010) and glucosylceramides (GlcCer) from Fusarium oxysporum
(Bernardino et al. 2020) further demonstrated antiviral efficacy by priming PAL, peroxidase (POD),
and PR gene expression. Additionally, P. oxalicum yielded 2-(4-hydroxybenzoyl) quinazolin-4(3H)-
one, a novel anti-TMV compound (Shen et al. 2013). These findings highlight fungi as rich sources
of antiviral agents acting via direct inhibition or host defence induction.

Notably, the pacl gene, encoding a dsSRNA-specific RNase from Schizosaccharomyces pombe,
has been successfully employed to engineer viral resistance in transgenic plants. Watanabe et al.
(1995) first demonstrated its efficacy against ToMV, CMV, and PVY, while Milosevic et al. (2013)
extended these findings by conferring resistance to tomato spotted wilt virus (TSWV) in transgenic
tobacco and Impatiens walleriana. Further expanding its utility, Ogawa et al. (2005) achieved dual
resistance against TSWV and CSVd in transgenic chrysanthemum, underscoring the broad-spectrum
potential of pac/-mediated RNA interference in plant pathogen defence.

Additionally, Elsharkawy (2019) reported that both barley grain inoculum and the cell-free
filtrate of Phoma sp. effectively reduced CMV severity in Arabidopsis thaliana and cucumber plants.
Similarly, culture filtrate from Penicillium simplicissimum was shown to mitigate CMV infection in
A. thaliana and tobacco (Nicotiana tabacum), correlating with upregulated expression of defence
genes in both salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) signalling pathways
(Elsharkawy et al. 2012). Marine fungi have also demonstrated antiviral activity, with crude extracts
from P. oxalicum and Neosartorya fischeri exhibiting inhibitory effects against TMV (Shen et al.
2009). These findings collectively underscore the broad-spectrum antiviral capabilities of fungal
metabolites, acting through both direct inhibition and host defence priming.

Aspergillus tubingensis from Brucea javanica and Phomopsis sp.-derived exopolysaccharides as
endophytes showed potent anti-TMV activity through metabolite production (Tan et al. 2015, 2017).
Vector-mediated viral transmission can also be disrupted, as demonstrated by Hypocrea lixii in onion
plants, which reduced Thrips tabaci populations and [YSV transmission via antixenotic effects and
suppressed viral replication (Muvea et al. 2014, 2018). Similarly, Neotyphodium uncinatum in
meadow ryegrass decreased aphid vectors and BYDV incidence (Lehtonen et al. 2006). Additional
studies show that Paecilomyces variotii extracts activate salicylic acid (SA)-mediated RNA silencing
against PVX and TMV (Peng et al. 2020), while endophytic B. bassiana in squash plants reduced
ZYMV severity (Jaber & Salem 2014). Collectively, these findings highlight endophytes'
multifaceted roles in antiviral defence, spanning direct pathogen inhibition, vector suppression, and
host immunity priming.

Studies demonstrate that Trichoderma species suppress viral infections through direct
antagonism and SR induction. For instance, 7. hamatum from tomato rhizosphere reduced Tomato
Mosaic Virus accumulation by 84.69% while upregulating defence-related genes (HQT, CHS, PR-1,
PR-7) in infected plants (Abdelkhalek et al. 2022). Similarly, endophytic 7. harzianum, T.
polysporum, and T. atroviride suppressed PeLCV via SA-mediated SAR and gliotoxin production
(Mukherjee et al. 2012, Rochal et al. 2021). Virus-specific effects were observed in maize, where 7.
harzianum and Metarhizium anisopliae reduced SCMV titers but not MCMV (Kiarie et al. 2020).
Further, 7. harzianum activates jasmonic acid/ethylene and SA pathways against CMV in tomato
(Vitti et al. 2016), while cell-free extracts of T. harzianum, T. viride, and T. longisporum inhibit TMV
in Nicotiana glutinosa, with combined acetone-ethyl alcohol extracts showing the highest efficacy
(Kolase & Sawant 2007). Collectively, these findings highlight the multifaceted antiviral
mechanisms of Trichoderma, involving induced resistance, secondary metabolites, and pathogen-
specific suppression.

Studies show that mushroom-derived metabolites have direct anti-virus activities. Purified lectin
AAL from edible mushroom Agrocybe aegerita inhibited TMV infection on Nicotiana glutinosa
(Sun et al. 2003). Fu et al. (2002, 2003) demonstrated TMV inhibition rates of protein extracts from
Pleurotus citrinopileatus (50%) and P. eryngii (upto 99%). Zhang et al. (2005) showed that
polysaccharides from edible fungi (Flammulina velutipes, Lentinula edodes, and Pleurotus ostreatus)
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inhibited TMV and CMYV infecting Chenopodium amaranticolor, with the highest inhibition of P.
ostreatus extracts. An alkaline protein (Y3; Wu et al. 2003) and a polysaccharide (Wu et al. 2007),
both purified from Coprinus comatus, have been documented to exhibit strong antiviral activity
against TMV. Wang et al. (2013) found that sulfated lentinan (SLNT) from Lentinus edodes showed
stronger dose-dependent antiviral activity against TMV than native LNT, demonstrating that
sulfation enhances its efficacy. Sangeetha et al. (2020) evaluated the antiviral activity of culture
filtrates from Coprinopsis cinerea, Ganoderma lucidum, and Lentinula edodes in cowpea and tomato
plants against GBNV. Among these, G. lucidum demonstrated the most promising inhibitory effects
against GBNV infection.

Despite promising laboratory results demonstrating fungal applications against plant viruses,
including direct antagonism, bioactive compound extraction, transgenic approaches, and endophytic
colonisation, field-scale implementation remains limited, with only entomopathogenic fungi (e.g., B.
bassiana) seeing widespread use for vector management. Key challenges include incomplete
mechanistic understanding modes of action of fungal metabolites (e.g., RNA degradation, immune
priming), strain- and host-dependent efficacy (e.g., anti-viral specificity of Trichoderma harzianum,
Kiarie et al. 2020), and variable endophyte colonisation under environmental stresses. Field
performance is further hindered by fungal metabolite instability (e.g., UV sensitivity), lack of
scalable production protocols, and undefined non-target effects on ecosystems. Regulatory barriers
also impede commercialisation, particularly for transgenic strategies (e.g., pacl crops, Ogawa et al.
2005). Future priorities include omics-driven discovery of antifungal mechanisms, structural
optimisation of compounds (e.g., sulfated lentinan), and combinatorial therapies (e.g., Trichoderma
+ Penicillium metabolites) to broaden antiviral spectra. Nano formulations, engineered endophytes,
and IPM integration (e.g., Hypocrea lixii for thrips control) could enhance field durability, while
public-private partnerships must address regulatory and adoption bottlenecks.

4.8 Fungi against phytoplasmas

Phytoplasmas, a group of cell wall-less, pleomorphic bacteria in the class Mollicutes (Doi et al.
1967, Hogenhout et al. 2008), are destructive plant pathogens that cause significant yield losses in
diverse crops globally (Lee et al. 2000, Bertaccini 2007). These obligate parasites colonise
exclusively the phloem sieve elements of host plants and are transmitted by phloem-feeding
hemipteran vectors, including leafthoppers (Cicadellidae), planthoppers (Fulgoromorpha), and
psyllids (Psyllidae) (Weintraub & Beanland 2006, Lee & Davis 1992). Their confinement to the
phloem, a tissue inherently resistant to microbial colonisation due to its high turgor pressure, callose
deposition, and nutrient composition, limits direct antagonism by endophytic fungi (Lee & Davis
1992). However, the inoculation of endophytic fungi, which asymptomatically colonise plant tissues
while often conferring host benefits (Wen et al. 2022), represents a promising biocontrol strategy
against phytoplasma diseases.

Endophytic fungi can induce systemic resistance in host plants, enhancing defence mechanisms
against phytoplasma infection through structural and biochemical modifications. Notably, callose
deposition, a key physical barrier, can restrict pathogen movement within the vascular system.
Musetti et al. (2007) demonstrated this phenomenon in Catharanthus roseus infected with apple
proliferation phytoplasma, where inoculation with Aureobasidium pullulans and Epicoccum nigrum
triggered pronounced callose accumulation and P-protein aggregation in phloem sieve tubes,
contrasting with the minimal deposition observed in untreated controls. Further supporting these
findings, Musetti et al. (2011) reported that E. nigrum treatment significantly alleviated phytoplasma
symptoms in Catharanthus roseus, restoring normal flower morphology and reducing pathogen
titers, as quantified by real-time PCR. These studies collectively highlight the potential of endophytic
fungi to mitigate phytoplasma infections through induced host resistance.

Indirect phytoplasma control can be achieved by targeting their insect vectors using
entomopathogenic fungi, which parasitise and kill arthropod hosts (Bihal et al. 2023). Moussa et al.
(2021) demonstrated this approach by applying spore suspensions of Beauveria bassiana, Isaria
fumosorosea, Lecanicillium muscarium, and Metarhizium anisopliae to Hyalesthes obsoletus
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(Hemiptera: Cixiidae), the vector of Candidatus Phytoplasma solani, the causative agent of bois noir
disease. Among these, /. fumosorosea exhibited the highest efficacy, underscoring its potential as a
biocontrol agent. Similarly, Gorg et al. (2021) reported successful infection of Cacopsylla sp.
(Hemiptera: Psyllidae), the vector of Ca. Phytoplasma mali (causing apple proliferation disease),
using Pandora sp., further supports the utility of fungal-based vector control. Kernasa et al. (2021)
expanded these findings by testing B. bassiana and M. anisopliae against Yamatotettix flavovittatus
(Hemiptera: Cicadellidae), a vector of sugarcane white leaf phytoplasma, with B. bassiana inducing
significantly higher vector mortality. Collectively, these studies highlight entomopathogenic fungi as
promising tools for disrupting phytoplasma transmission through vector suppression.

Despite promising advances, critical knowledge gaps hinder the widespread application of fungi
for phytoplasma control. Key research limitations include incomplete understanding of endophytic
fungal colonisation dynamics in phloem tissue - the exclusive niche of phytoplasmas, unclear
mechanisms of localised resistance induction, insufficient field validation of entomopathogenic fungi
across diverse agroecological conditions, and unresolved synergies between direct (endophyte-
mediated) and indirect (vector-targeting) strategies for integrated disease management. Future
research should prioritise multi-omics approaches to elucidate phloem-specific defence priming by
endophytes, formulation optimisation for entomopathogenic fungi, combined applications of
endophytes and entomopathogens to simultaneously target phytoplasmas and vectors, and assessment
of long-term ecological impacts on soil microbiomes and pollinator health to ensure sustainable
deployment.

4.9 Fungal herbicides
Weeds can cause a significant threat to agricultural productivity by competing with crops for essential
nutrients, ultimately reducing their yield (Scareow 2022, Horvath et al. 2023). When weeds and crops
compete for nutrients, crop production declines (Hasanuzzaman 2015). Therefore, controlling weed
growth in agricultural areas is essential, and herbicide application has become an important tool in
agriculture. There are many ways to manage weeds, and fungi have emerged as an interesting agent
that can naturally reduce weed density (Htet et al. 2022). Mycoherbicides are becoming popular as
fungal herbicides. Mycoherbicides are formulated from effective fungal agents to manage the growth
of weeds (Radi & Banaei-Moghaddam 2020, Golijan et al. 2023, Rengasamy et al. 2023, Kurose et
al. 2024). Several fungi have been studied and used as mycoherbicides, including Alternaria,
Colletotrichum, Fusarium, Phoma, and Puccinia (Fauzi 2009, Hebbar et al. 1998, Abdessemed et al.
2021, Rai et al. 2021). Among them, Colletotrichum is one such interesting agent (McRae & Stevens
1990, Templeton 1992, Boyette et al. 1993, Singh et al. 2010, Masi et al. 2017,2018, Xu et al. 2019).
Colletotrichum species as a Mycoherbicide

Colletotrichum was introduced by Corda (1831) and belongs to Glomerellaceae, Glomerellales,
Sordariomycetes (Maharachchikumbura et al. 2015). It comprises a diverse group of species
(Jayawardena et al. 2021). Members of Colletotrichum are plant pathogens causing anthracnose
disease in a wide range of host plants, including fruits, vegetables, and ornamental plants (Than et al.
2008, Talhinhas & Baroncelli 2021, Liu et al. 2024). Colletotrichum species also exhibit different
life modes, which can switch lifestyles (O'Connell et al. 2012). The macroscopic morphology of
Colletotrichum species can be recognised by the mucilaginous masses of conidia with pink- or
salmon-coloured, acervuli associated with anthracnose lesions under humid conditions (Guo et al.
2022, Wu et al. 2023). The microscopic morphology of Colletotrichum species is characterised by
acervuli producing dark brown setae and hyaline, aseptate conidia that germinate to form appressoria
(Lenné¢ et al. 1984, Callan & Carris 2004, Norphanphoun & Hyde 2023). Many studies have focused
on Colletotrichum species, including plant pathology, fungal ecology, and biotechnology (Damm et
al. 2010, De Silva et al. 2017, Chakraborty & Ray 2021, Gupta et al. 2022). A comprehensive
understanding of the biology and interactions of Colletotrichum species with their hosts can provide
an efficient disease control plan for green agriculture (Chakraborty & Ray 2021, Zakaria 2021).
Furthermore, investigating the ability of specific Colletotrichum strains to biocontrol weeds promotes
the development of sustainable weed management strategies (Shi et al. 2021).
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Colletotrichum gloeosporioides is one of the important species within the genus Colletotrichum.
While many strains of C. gloeosporioides are known plant pathogens causing anthracnose disease in
various crops, certain strains have been explored for their potential as biocontrol agents against weeds
(Templeton 1992, Masi et al. 2018, Xu et al. 2019). Three commercial mycoherbicides, BioMal,
Collego and Lubao have been developed from C. gloeosporioides strains for the biological control
of different weeds, viz. Aeschynomene virginica, A. indica, Cuscutae australis, C. campestris, Malva
pusilla, M. palviflora, and Sesbania exaltata (Chakraborty & Ray 2021). Other Colletotrichum
species, such as C. dematium, C. higginsianum, C. orbiculare, C. coccodes, and C. truncatum, have
also shown potential herbicidal actions against different weeds (McRae & Stevens 1990, Templeton
1992, Boyette et al. 1993, Singh et al. 2010, Masi et al. 2017).

The process for mycoherbicide production involves isolating and cultivating particular strains
of fungi that have shown herbicidal effects on targeted weed species (Ellison et al. 2008, Fauzi 2009,
Ireland et al. 2019, Anderson et al. 2010, Rengasamy et al. 2023, Kurose et al. 2024). Once these
fungi are identified and grown in the laboratory, they can be formulated into products for use in
agriculture or environmental contexts (Berestetskiy & Sokornova 2018). However, the process, from
selecting the right fungal agents for their application, can be time-consuming (Berestetskiy &
Sokornova 2018). Collectotrichum gloeosporioides f. sp. malvae is an effective agent for controlling
round-leaved mallow (Malva pusilla) (Wei et al. 1997, Mortensen & Makowsaki 1997, Makowski &
Mortensen 1998). Makowski & Mortensen (1998) stated that a major challenge to the development
of mycoherbicides is the time and expertise required for the cultivation, storage, and preservation of
Colletotrichum spores for future use. Even though some Colletotrichum species have potential
herbicidal activity, there are fewer registered mycoherbicides derived from these species due to the
labour and time-intensive process (Chakraborty & Ray 2021).

As traditional chemical herbicides can have harmful effects on ecosystems, human health, and
biodiversity, the bioherbicide market is growing in demand (Cox et al. 2000, Ustuner et al. 2020,
Briihl and Zaller 2021). However, many factors can slow down the market growth unless
technological advancements or improved formulations are developed to address these issues
(Boyetchko 2004, Pottinger et al. 2004, Htet et al. 2022, Aneja 2024). The bioherbicide Collego™ is
an interesting example of market fluctuations in bioherbicides. It was initially removed from the
market due to low commercial demand, reflecting the challenges in gaining widespread adoption for
such products at the time (Aneja 2024). However, it was reintroduced in 2006 under the name Lock
Down® following renewed interest, driven by the increasing demand for environmentally friendly
alternatives and the growing awareness of sustainable agricultural practices (Bailey 2014, Aneja
2024). Mycoherbicide use may increase further if market demand rises. However, there are still
several production and shelf-life issues that raise serious questions about the future of
mycoherbicides.

5. Circular agriculture and agroforestry

5.1 From waste to wealth: integrating mycelium composites into circular agricultural practices
Why Agriculture Needs a Circular Model

For most of its history, farming has followed a straight-line logic: extract raw materials, turn them
into products, then discard what is left (Knickel et al. 2009). This “take—make—waste” pathway has
supported economic growth, yet it has also accelerated resource exhaustion, soil erosion, water
shortages, and an ever-growing mountain of agricultural refuse (Mukherjee et al. 2019,
Kohphaisansombat et al. 2024). A circular economy reverses this logic. It aims to keep resources
cycling through the system, capturing their maximum value before nutrients and materials are
regenerated (Morseletto 2020). In agriculture, this means closing loops, reducing waste, recycling
nutrients, and valorising residues rather than treating them as liabilities (Ellen MacArthur
Foundation, 2013). Fungal mycelium, the thread-like network that decomposes organic matter in
nature, is emerging as a key enabler of this new paradigm. Modern biotechnology can steer mycelial
growth through crop residues, turning low-value waste into high-value, fully bio-based composites
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(Talbot et al. 2008, Wattanavichean et al. 2025). This section explains the science behind those
materials and shows how they can underpin a genuinely circular farming economy.

=

Z

90000

Figure 13 — Colletotrichum spp. (redrawn from Marin-Felix et al. 2017). A. Conidiomata of C.
acutatum (ex-type CBS 112996), B. Conidiomata of C. destructivum (ex-type CBS 136228), C.
Appressoria of C. americae-borealis (CBS 136855), D. Setae of C. torulosum (ex-type CBS 128544),
E. Conidiogenous cells of C. Brasiliense (ex-type CBS 128501), F. Conidiogenous cells of C.
scovillei (ex-type CBS 126529), G. Conidia of C. dematium (ex-type CBS 125.25), H. Conidia of C.
acutatum (ex-type CBS 112996), 1. Conidia of C. boninense (ex-type CBS 123755), J. Conidia of C.
graminicola (ex-epitype CBS 130836). K. Conidia of C. gigasporum (ex-type CBS 133266), L.
Conidia of C. truncatum (ex-type CBS 151.35), M. Conidia of C. gloeosporiodes (ex-type CBS
1362999), N. Conidia of C. destructivum (ex-type CBS 136228), O. Conidia of C. orbiculare (ex-
type CBS 570.97).

Agricultural waste: a resource in disguise

The agricultural sector generates vast quantities of organic residues annually, including
lignocellulosic crop remains (e.g., straw, stover, husks), animal manures, and agro-industrial by-
products such as fruit peels, brewers' spent grain, and pulp waste (Smil 1999, Shah et al. 2017, Van
Hung et al. 2020). Rice straw and corn stover alone contribute hundreds of millions of metric tons
per year globally, of which a significant fraction is underutilised or improperly disposed of. Standard
practices, such as open field burning and landfill disposal not only squander valuable biomass but
also release considerable amounts of particulate matter, carbon dioxide (CO:), methane (CH4), and

other greenhouse gases, thereby exacerbating air pollution and climate change (Raza et al. 2022,
IPCC 2019).
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Anaerobic degradation of organic matter in unmanaged settings can yield high methane
emissions, while nutrient leaching from manure contributes to eutrophication and aquatic ecosystem
degradation (Carpenter et al. 1998). The heterogeneous composition and decentralised nature of these
waste streams present logistical challenges for valorisation. Nonetheless, their biochemical richness,
particularly in cellulose, hemicellulose, and lignin, makes them highly suitable for conversion via
microbial or fungal bioprocesses (Broda 1992).

Fungal biotechnology, particularly using filamentous fungi such as Pleurotus ostreatus and
Ganoderma lucidum, has demonstrated strong potential for utilising diverse agricultural wastes as
substrates for mycelial growth. Successful examples include valorisation of spent coffee grounds,
bamboo residues, sawdust, rice husks, and even problematic biomasses such as Eichhornia crassipes
(water hyacinth) (Benchaphong et al. 2025, Kohphaisansombat et al. 2024, Sangkawanna et al. 2025).
These applications not only divert organic waste from polluting endpoints but also contribute to the
production of functional biocomposites with economic and environmental value. Reframing
agricultural residues as feedstocks within a circular bioeconomy thus offers a dual benefit: mitigating
environmental externalities and fostering sustainable material innovation.

Mycelium composites: the science and the solution

At the core of mycelium-based composites lies the remarkable enzymatic and structural
functionality of filamentous fungi. Mycelium, the vegetative growth of fungi, comprises a dense
network of hyphae, microscopic filaments capable of penetrating and colonising organic substrates.
Through the secretion of extracellular enzymes, these hyphae decompose complex biopolymers into
absorbable nutrients (Shakir et al. 2025, Wattanavichean et al. 2025). When cultivated on
lignocellulosic agricultural residues, the expanding hyphal network interlocks substrate particles,
forming a cohesive, fibrous matrix. This natural, energy-efficient process creates a self-assembling
biocomposite, wherein mycelium functions as a biological adhesive that binds the substrate without
synthetic binders (Wattanavichean et al. 2025).

The fabrication of mycelium composites follows a relatively simple yet highly adaptable
sequence. Initially, lignocellulosic feedstocks such as sawdust, corn stalks, or cotton by-products are
cleaned, shredded, and thermally treated to suppress microbial contamination. The substrate is then
inoculated with fungal species selected for their robust colonisation and binding capacity, commonly
Ganoderma lucidum and Pleurotus ostreatus (Soh et al. 2021).

Comparative studies have also assessed the performance of species such as Trichoderma
virens on varied substrate blends, optimising mechanical and morphological outcomes (Benchaphong
et al. 2025). Following inoculation, the substrate is shaped in moulds and incubated under controlled
environmental conditions to facilitate hyphal proliferation. Once colonisation is complete, the
composite is dehydrated, typically via heat treatment, to arrest fungal growth, stabilise form, and
improve durability. Incorporation of natural reinforcements such as pineapple leaf fibre further
enhances tensile and flexural properties (Kohphaisansombat et al. 2024).

These biocomposites combine low weight with notable structural strength and thermal
stability. Critically, they are fully biodegradable, decomposing without leaving persistent waste.
Compared to conventional materials such as plastics, foams, or concrete, mycelium composites
require substantially lower energy inputs during production, thereby reducing their carbon footprint.
Their inherent cellular architecture provides excellent thermal and acoustic insulation, intrinsic fire
resistance, and potential for water resistance or buoyancy depending on formulation (Antinori et al.
2020). These multifaceted properties establish mycelium composites as a transformative material
class for sustainable manufacturing across diverse sectors.

Applications and impact in circular agriculture

The multifunctionality of mycelium-based composites supports their integration across
numerous sectors, reinforcing circular economy frameworks in both agriculture and industry. A key
application lies in sustainable packaging. Mycelium foams serve as biodegradable, compostable
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substitutes for petroleum-derived polymers such as expanded polystyrene, which are environmentally
persistent and challenging to recycle (Holt et al. 2012, Yang et al. 2021).

In the built environment, mycelium composites are gaining traction as eco-conscious
alternatives to synthetic insulation materials. Their intrinsic thermal and acoustic insulation
capabilities, low energy consumption during manufacture, and fire-retardant properties make them
suitable for panels, bricks, and architectural components. Their compatibility with digital fabrication
and mould-based growth processes enables on-demand, form-specific production, reducing material
waste and construction time (Bitting et al. 2022).

The circular value of these materials extends beyond their primary lifecycle. Following
composite fabrication, the residual substrate, now enriched with fungal biomass and partially
decomposed lignocellulose, can be repurposed as a soil amendment or biofertilizer, enhancing
nutrient cycling and soil organic carbon. This integration exemplifies a closed-loop system:
agricultural waste fuels composite production, and the spent biomass reinvests into agroecosystems.
A notable demonstration includes the development of mycelium-based Thai krathongs incorporating
embedded plant seeds, which combine cultural relevance with ecological restoration goals
(Sangkawanna et al. 2025).

Emerging innovations continue to expand the utility of mycelium materials. These include
fungal-based leather analogues (e.g., Mylo™ by Bolt Threads), bio-fabricated textiles, furniture, and
sculptural art objects (Amobonye et al. 2023). The modular growth behaviour of mycelium enables
customizable designs, facilitating both aesthetic and functional versatility. As research advances and
commercialisation accelerates, mycelium technology is transitioning from niche to mainstream,
offering a robust platform for low-impact, regenerative material systems across diverse applications
(Wattanavichean et al. 2025).

Challenges, opportunities, and outure oerspectives

Despite the clear potential of mycelium composites, several technical and systemic challenges
hinder their large-scale deployment. A major limitation is the scalability of production systems.
While laboratory and pilot-scale fabrication are well-established, translating these processes to
industrial volumes necessitates substantial investment in infrastructure, automation, and process
control (Vandelook et al. 2021). Variability in substrate quality, fungal strain physiology, and
environmental parameters can result in inconsistent product performance, posing challenges for
applications demanding standardised mechanical and physical properties. Additionally, the
regulatory landscape for novel biomaterials remains underdeveloped, creating uncertainty around
safety, certification, and market access. Public awareness and consumer acceptance are also evolving
factors; targeted education and outreach are essential to overcome misconceptions and foster market
confidence (Bonenberg et al. 2023, Lewandowska et al. 2024).

Nevertheless, the opportunities presented by mycelium technology are extensive and
compelling. Ongoing research into strain selection, metabolic engineering, and substrate optimisation
is expanding the functional properties of composites, enhancing durability, water resistance, and
tunable biodegradability. Advancements in bioreactor technology, modular growth systems, and
decentralised fabrication models are poised to reduce production costs and carbon emissions (Jones
et al. 2020). Localised use of region-specific agricultural residues further aligns with circular
economy principles by transforming biomass waste into high-value products, thus generating socio-
economic benefits at the community level.

Policy interventions will play a critical role in accelerating the adoption of mycelium
composites. These include subsidies for sustainable material innovation, tax incentives for bio-based
product development, and regulatory frameworks that favour biodegradable alternatives over
petrochemical counterparts. Strategic investments in demonstration facilities and public-private
partnerships can bridge the gap between R&D and market readiness (Sydor et al. 2022). Cross-
sectoral collaboration among farmers, biotechnologists, waste processors, and manufacturers will be
key to establishing resilient supply chains and scaling production capacity (Meyer et al. 2020).
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In conclusion, mycelium composites represent a transformative material platform capable of
addressing urgent environmental and economic challenges. As global awareness of the limitations of
linear production systems grows, demand for regenerative, low-carbon materials will intensify.
Mycelium-based solutions provide a biologically aligned approach to resource management,
converting waste streams into value-added outputs, supporting soil health, and enabling sustainable
design. This mycological innovation is not merely a material advancement, but a paradigm shift
toward ecological integration and circular economy resilience (Alemu et al. 2022, Abdelhady et al.
2023, Angelova et al. 2021).

5.2 The roles of field mushroom cultivation in circular agriculture

Circular agriculture emerged as a sustainable farming model that aims to maximise resource
efficiency, minimise waste, and promote environmental sustainability. Compared with conventional
agriculture, which often relies on linear processes with significant waste generation, circular
agriculture integrates ecological principles to create closed-loop systems where outputs from one
process become input for another (Grimm & Wosten 2018, Haque et al. 2023). This approach is
particularly relevant as global agricultural practices adapt to growing resource constraints,
environmental degradation, and climate change. Field mushroom cultivation plays an integral role in
circular agriculture through dual mechanisms: economically, converting agricultural and organic
waste in situ into valuable food resources (Dhiman et al. 2022, Hu et al. 2021); ecologically, it
enhances soil ecosystem connectivity via mycelial network expansion, functional microbiome
coupling, and environmental adaptation (Adebayo et al. 2014, Hibbett et al. 2000, Ogwu et al. 2025).
In this section, we present four distinct field methodologies for mushroom cultivation as case studies,
demonstrating their contributions to sustainable food systems and soil productivity (Fig. 14).
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Figure 14 — Field mushroom cultivation in the circular agriculture system.

1. Compost-based mushroom cultivation

Compost-based mushroom cultivation gained significant traction in rural communities due to its
minimal infrastructure requirements for substrate preparation, sterilisation, and environmental
conditions control, while concurrently enhancing the yields in low-input agricultural settings
(Bandara et al. 2021). During the composting process, resident microorganisms, particularly bacteria,
accelerate the degradation of cellulose, hemicellulose, and lignin, thereby facilitating the efficient
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absorption of carbon sources by the mushrooms (Guo et al. 2021, Wei et al. 2018). Hu et al. (2021)
listed eight species that have been cultivated in fields and facilitate interactions between soil
ecosystems and compost through fungal hyphae, viz. Agaricus bisporus, A. subrufescens,
Coprinopsis cinerea, Phallus impudicus, Lepista sordida, Stropharia rugosoannulata, Pleurotus
flabellatus, and Volvariella volvaceae.

Among Agaricus species, the button mushroom (4. bisporus) and almond mushroom (4.
subrufescens) are the most common species that use compost-based production methods (Dias et al.
2013, Llarena-Hernandez et al. 2014, Simsek et al. 2008). The substrate mixture containing wheat
straw, rice straw, and poultry manure is prepared in a two-phase fermentation process (I and II). In
phase I (PI), the agricultural residue is compiled and watered until it gets enough water content (about
70%), then the microbial activity generates heat up to around 80 °C in the centre of the pile, breaking
down carbohydrates and reducing ammonia (Zhang et al. 2019b). During this stage, the metabolic
activity of the thermophilic microflora will create a more selective substrate for mycelium
colonisation and frequent turning is conducted to ensure even decomposition and aeration. After the
compost colour turns brown and a strong smell of ammonia is released, the composting process to a
pasteurisation process (phase II, PII). In PII, pasteurisation with around 45-50°C kills pests,
pathogens and competitor fungi; also, thermophilic microbes convert extra ammonia into absorbable
protein with controlled aeration and temperature regulation (Colmenares-Cruz et al. 2017). Phase II
takes about 10 days, ensures better substrate for high yield of mushroom production, and prevents
contamination.

After the compost cools to around 25 °C, spawning at a rate of 2%-5% of dry weight is conducted
in the field. Agaricus species will colonise the substrate in around 15-25 days, and a 2—5cm layer of
casing soil is covered to maintain the humidity (to cover the substrate with casing soil soon after
spawning, if the climate conditions are not ideal for mycelium growth in the field). After the
mycelium colonises the compost (Vos et al. 2017), it impacts the biomass and composition of bacteria
in the compost, accompanied by degradation of 50% of the lignin, with an additional decomposition
of 15% of the xylan and 10% of the cellulose (Jurak et al. 2015) and shows pesticide residues
degradation in soil system (Du et al. 2025). After 30—60 days, the first flush of harvest will appear
(Fig. 15a).

2. Wood substrate-based mushroom cultivation

Wood substrate-based mushroom cultivation refers to growing mushrooms on a non-composted
woody substrate, transforming low-value lignocellulosic waste into nutritious food and soil
amendments. Lentinula edodes (shiitake) and Pleurotus citrinopileatus (golden oyster mushroom)
are widely cultivated species around the world, thriving on lignin-rich waste such as wood logs, wood
chips and agricultural residues (Royes et al. 2017, Tao & Zheng 2023).

Logs from hardwood tree species such as white birch (Betula pubescens Ehrh.), alder (Alnus
incana (L.) Moench), aspen (Populus tremula L.), oak (Quercus spp.), beech (Fagus spp.), and
Hornbeam (Carpinus spp.) are cut, drilled, and inoculated with shiitake spawn (Chen et al. 2022).
Then the logs are stacked in the shaded, humid forest for 6—12 months for mycelial colonisation.
After that, the fruiting occurs after soaking the logs in cold water to induce the primordia. The
traditional wood log cultivation for Lentinula edodes yields 2—-3 flushes per year, for 3—5 years (Fig.
15b). Compared to new-cut wood logs, spent logs are liable to degrade into humus and improve forest
soil after mushroom harvest (Wei et al. 2020). Shiitake can selectively degrade lignin and
hemicellulose while preserving cellulose (Chen et al. 2022). The spent substrate is composted for
urban vegetable gardens or fertiliser for crops, or orchards.

3. Termites-fungi association for Termitomyces spp.

The mutualistic relationship between fungus-growing termites (Macrotermitinae) and their fungi
(Termitomyces spp.) drives a sustainable way for highly prized mushroom cultivation. The termite
workers construct elaborate mounds with specialised chambers, called a fungal comb, where they
cultivate Termitomyces spp. With the inoculation of fungal mycelium, worker termites collect and
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pre-digest plant materials like wood debris, corn straw, and cow dung, creating an ideal nutrient-rich
substrate for spores of Termitomyces (Pal et al. 2013, Wood & Thomas, 1989). This association
allows termites to thrive on indigestible cellulose, while fungal mycelium benefits from a stable and
nutritious environment (Gomathi et al. 2019, Schalk et al. 2021).

In practice, cultivating Termitomyces spp. by termites offers significant economic and ecological
benefits, aligning with circular agricultural principles. To increase the efficiency of Termitomyces
cultivation, male and female termite alates were matched to generate new termite colonies in the
fields that have not been treated with pesticides and built their kingdom, while after the fungal spores
or mycelium were inoculated, and the agricultural waste, like corn straw as substrate was gathered
by smallholder farmers and put near the termites’ mounds. Termitomyces convert termite-processed
biomass and form the mushrooms, while the metabolic heat and CO2 regulate the microclimate inside
the mounds (Wood & Thomas 1989). It takes around 2-3 years for farmers to get fruiting bodies of
Termitomyces to harvest after a match of termites, inoculation of spores or mycelium, and substrate
provision (Fig. 15¢)

Smallholder farmers leverage the symbiosis by semi-domesticating termite colonies near villages
and obtain a steady supply of highly prized Termitomyces mushrooms. During the cultivation
process, the termite-fungi system efficiently decomposes and utilises agricultural straw, meanwhile
it promotes soil fertility and carbon sequestration to increase crop yield in a dry climate (Evans et al.
2011), as termite mounds enhance nutrient cycling in degraded land and soils (Chen et al. 2023b;
Jouquet et al. 2011; Sileshi, 2016).

4. Soil inoculation with nutrient supplementation for Morchella spp.

The cultivation of morel mushrooms (Morchella spp.) has long been a challenge due to their
complex life cycle and symbiotic relationships with soil microbes (Tan et al. 2021). However, the
advancements in cultivation techniques based on soil inoculation combined with exogenous nutrient
supplementation have revolutionised morel farming, making the cultivation of morels sustainable
and fostering the development of circular agriculture (Zhang et al. 2023, Fu et al. 2025).

For the preparation of morel cultivation, a robust strain with mass mycelium production is the
basis for the fruiting body formation of the fungus (Liu et al. 2023b). Besides, farmers need to prepare
the substrate with fewer competing microorganisms, such as sandy soil (Tan et al. 2021, Zhang et al.
2023). A liquid or grain substrate-based Morchella inoculum is then introduced into the soil, often
accompanied by nutrient-rich supplements such as wheat bran, rice husk, humus, or specially
formulated nutrient bags on the surface of the soil (Fig. 15d), after the mycelium grows onto the soil
surface (Tan et al. 2021). The supplements provide the necessary carbohydrates and nitrogen
resources to stimulate mycelial growth and primordia formation, triggering more fruiting in the field
(Tan et al. 2019, 2021).

The key technique of Morchella spp., cultivation is the use of exogenous nutrient bags (Yan et
al. 2025). These bags, filled with agricultural waste, were placed onto soil beds when the mycelial
growth appears on the soil (Fig. 15d). As the mycelium colonises the substrate, it absorbs the nutrients
from these bags and enhances the speed and yield of mushroom production. After the morel harvest,
the spent substrate is ploughed back into the soil, improving its structure and fertility for subsequent
crops (Pintari€ et al. 2024). Soil inoculation and nutrient supplementation offer new opportunities for
sustainable agriculture, yielding farmers highly prized mushrooms and enhancing the health of the
field ecosystem (Huang et al. 2024a).

5.3 Truffles in agroforestry: a sustainable path for high-value crop production

Edible truffles, as ectomycorrhizal filamentous fungi, play a vital role in forest ecosystems through
their symbiotic relationship with a wide range of host trees (Guerin-Laguette 2021). Beyond their
ecological importance, truffles have historically been collected from forests as they are a highly
valued gourmet food and flavouring item, appreciated worldwide for their unique flavour and aroma
(Fan et al. 2022, Lee et al. 2020, Payen et al. 2014). Recent studies have revealed the therapeutic
effects of truffles, demonstrating antibacterial, anticancer, anti-inflammatory, antioxidant, cytotoxic,
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hepatoprotective, and immunomodulatory activities (Khalifa et al. 2019, Lee et al. 2020). Cultivation
of truffles was initiated in Europe in the 1970s and, in the last 50 years, has spread to other countries
with appropriate climatic conditions (Hall et al. 2017, Zambonelli et al. 2015). Truffieres are a green
way to diversify agricultural production and benefit the environment (Fischer et al. 2017). While
some large commercial plantations have been established, these require considerable financial
resources to develop, and it is common for truffiers (Figure 17) to be small (one-half acre to several
acres in the United States) and to complement other agricultural outputs from the area (Benucci et al.
2013, Kaiser & Ernst 2016) .

Figure 15 — Case studies of field mushroom cultivation. a. compost-based cultivation of Agaricus
surufescens, b. log-cultivation of Lentinula edodes, c. termites-fungi association of Termitomyces
spp., d. Soil inoculation with nutrient supplementation for Morchella spp.

The economic value of Truffle cultivation

The most frequently cultivated truffle species are Tuber aestivum, T. borchii, T. indicum, and T.
melanosporum (Benucci et al. 2013), and success has recently been reported for the most valuable
species T. magnatum, in Spain (Bach et al. 2021). Among these, 7. melanosporum is the dominant
cultivated species, with reported market prices reaching several thousand Australian dollars per
kilogram (Adamo, 2025). Truffles are rich in nutrients (carbohydrates, proteins, fats, minerals, lipids,
and amino acids) and contain phenols, terpenes, polysaccharides, and phytosterols (Lee et al. 2020).
However, the volatile organic compounds (VOCs) linked to flavour and aroma are the key to their
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high standing in gastronomy (Lee et al, 2020, Patel et al. 2017). Truffles have traditionally been
consumed in salads, pasta, and egg dishes, but value-added products have been developed, including
cheese, oils, honey and sauces (Patel 2012, Tejedor-Calvo et al. 2023).
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Figure 16 — Case studies of field mushroom cultivation Truffiere: Synergy of mycoforestry and
agroforestry.

In addition to the economic return from the truffles themselves, some host species may also
produce commercial products that are of environmental value (Table 6). Hazel nuts and pecans are
suitable hosts for some truffle species, and their nuts provide an additional income stream. Some
softwood species, such as Pinus spp., can also be hosts and provide timber and edible seeds (Benucci
et al. 2013). Some species are ornamental (De Rigo et al. 2016) or can be harvested for animal fodder
(De Rigo et al. 2016, Perevolotsky et al. 1993) or for dye extraction (Deveoglu et al. 2012) without
detriment to truffle output.

Ecotourism can be a further financial reward from truftle cultivation. Truffle hunting in natural
forests has a long history in many cultures, but in Europe, climate change, soil acidification,
overharvesting and poor forest management have made this increasingly difficult (Cejka et al. 2020,
Garcia-Montero et al. 2009, Oliach et al. 2021). However, truffle hunting and truffle-tasting
experiences in truffieres are growing in popularity (Benucci et al. 2013).

A combination of truffles with other edible or commercially valuable fungi is also possible.
There is potential for the concepts of ‘myco-forestry’ (Thomas & Jump, 2023) to be applied in
truffieres, and future research should establish suitable combinations of host species and the mix of
truffle species with other commercially valuable mycorrhizal or saprobic fungi, which could assure
optimal production of both the host tree and fungi.

The environmental value of Truffle cultivation

Truffiers can contribute to increase tree cover, which is essential to slowing climate change.
Host plants and the truffles contribute to carbon sequestration as soil carbon or long-lived woody
biomass (Benucci et al. 2013). Truffiers are environmentally friendly as they require little fertiliser.
The ectomycorrhizal fungus enhances the availability of limiting nutrients such as nitrogen and
phosphorus from the soil to the plant (Zambonelli et al. 2015). In addition, they are generally and

4992



relatively pest and disease-free, requiring little in the way of pesticides, fungicides and herbicides
compared to other agricultural or horticultural produce (Vishwanathan et al. 2020).

The incorporation of truffle cultivation into a farming system can yield many other ecological
benefits. The deep-rooted perennial hosts will help prevent rising water tables resulting from shallow-
rooted annual crops such as cereals (George et al. 1999). They enhance the farm landscape, provide
windbreaks, help stabilise soil and provide wind and water erosion protection ( DeBell, 1990,
Benucci et al. 2013,).

A truffiere is not a biodiverse region the volatile compounds that Tuber species produce can
reduce seed germination and cause root inhibition of other species, resulting in the creation of a
virtually vegetation-free brilé (burnt area) under the host canopy (Tarkka & Piechulla 2007).
However, the hosts provide food and shelter for the fauna. Truffles are a food source for humans and
many animals, such as rabbits, wild boars, squirrels, mice, armadillos, rat-kangaroos and small
marsupials. In natural forests, animals are essential for spore dispersal and truffieres must be fenced
to preclude their predation (Benucci et al. 2013, Zambonelli et al. 2015).

Table 6. Truffle (Tuber spp.) host plants and their values.

= =
Host species 2 E s & Host species 2 E =&
2§ i S O -
= e = e
Angiosperms Gymnosperms
Alnus cordata 9 Abies alba '3 \?2
Betula pendula 6 Cedrus atlantica *® V3 \3
Carya illinoinensis * \ 48 \'8 C. deodara * s
Castanea sativa '3 V! ! V! Picea excelsa *° \7
Cistus spp.2° \ 25 Pinus armandii * N
Corylus avellana * 4 2 P. brutia *® V2
C. colurna % V2 P. halepensis * 4
Populus trichocarpa * \ 410 P, nigra * V4
Quercus cerris * NE: P, pinaster > A 20 NAE
0. ilex * 4 12 P, pinea * Ve e \ 2
0. petraea * 4 P. strobus \u A
Q. pubescens * 4 P, sylvestris %6 10
0. robur* 4 P, taeda * 4
Salix alba % \ 18 Pseudotsuga menziesii * \ 4
Tilia cordata * 4 N7
T. platyphyllos * V4 V2
Ulmus spp. > JH \ 16

(Aglietti et al. 2022)!, (Ancuceanu et al. 2023)?, (Belkacem et al. 2021)*, (Benucci et al. 2012)*,
(Bisht et al. 2021)°, (Cameron et al. 1995)%, (Canillac & Mourey, 2001)’, (Casales et al. 2018)?,
(Caudullo & Mauri, 2016)°, (DeBell, 1990)'°, (Gendron et al. 2014)'!, (Giilliice et al. 2004)'?, (Hall
et al. 2007)'3, (Han et al. 2019)'*, (Iravani & Zolfaghari, 2011)", (Kang et al. 2019)!®, (Kusiak et al.
2022)", (Maistro et al. 2019)'®, (Matyas et al. 2004)', (Riesco Mufioz et al. 2014)?°, (Riethmiiller et
al. 2014)*!, (Selvi, 2020)?2, (Stobbe et al. 2012)?*, (Ulukanli et al. 2014)**, (Zalegh et al. 2021)%,
(Zambonelli et al. 2016)%, (Zheng et al. 2017)*’

Conclusion and future perspectives

The establishment of truffieres or their addition to diversify farm output is a prime example of
fungi contributing to green agriculture. The establishment of truffieres is very costly, and several
years could elapse before a return can be expected, but the value of truffles far exceeds most other
agricultural products. Truffles offer carbon-negative food production, and the host trees provide
many ecological and environmental services. In the future, combinations of truffles with other
commercially valuable fungi may increase financial returns and could expand the production season.
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6. Fungi in agricultural waste management and soil rehabilitation

6.1 Enzyme cocktails derived from Aspergillus and Trichoderma for biorefinery conversion of
agricultural waste

The growing demand for renewable and sustainable energy sources has spurred interest in developing
biorefineries that utilise various biomass feedstocks, including agricultural waste. These wastes, such
as corn stover, wheat straw, and sugarcane bagasse, are abundant and renewable lignocellulosic
biomass sources that can be converted into biofuels, biochemicals, and biomaterials through
biochemical conversion processes (Usmani et al. 2021). However, the efficient conversion of
lignocellulosic biomass presents significant challenges due to its complex and recalcitrant structure,
necessitating the synergistic action of multiple enzymes to break down its major components:
cellulose, hemicellulose, and lignin (Abolore et al. 2024). Recently, fungi, particularly the genera
Aspergillus and Trichoderma, have emerged as promising sources of enzyme cocktails for the
efficient conversion of agricultural wastes in biorefineries. These fungi are well-known for their
ability to produce a diverse array of lignocellulolytic enzymes, including cellulases, hemicellulases,
and lignin-degrading enzymes, which work synergistically to degrade the complex plant cell wall
components (Intasit et al. 2021).

Lignocellulosic biomass and enzyme requirements

Agricultural wastes, such as corn stover, wheat straw, and sugarcane bagasse, are materials
that primarily consist of cellulose, hemicellulose, and lignin, which are tightly bound together in a
complex matrix (Blasi et al. 2023). The efficient conversion of lignocellulosic biomass into
fermentable sugars requires the synergistic action of multiple enzymes to overcome its recalcitrance
and maximise the release of fermentable sugars.

Cellulose and cellulases

Cellulose is the main structural component of plant cell walls and the most abundant
renewable biopolymer on Earth. It is a linear polymer composed of D-glucose units linked by -1,4-
glycosidic bonds. The crystalline structure and extensive hydrogen bonding within cellulose fibrils
contribute to its recalcitrance and resistance to enzymatic hydrolysis (McNamara et al. 2015). The
complete hydrolysis of cellulose requires the synergistic action of three types of cellulases: a)
Endoglucanases - these enzymes randomly cleave the internal B-1,4-glycosidic bonds within the
amorphous regions of cellulose, creating new chain ends; b) Exoglucanases (cellobiohydrolases) -
these enzymes act on the reducing or non-reducing ends of the cellulose chains, progressively
releasing cellobiose units; and c) B-glucosidases - these enzymes hydrolyze cellobiose and soluble
cellooligosaccharides into glucose monomers, preventing product inhibition of other cellulases. The
efficient hydrolysis of cellulose requires the synergistic action of these three enzyme classes, as well
as the presence of accessory enzymes that disrupt the crystalline structure of cellulose (Behera et al.
2017).

Hemicellulose and hemicellulases

Hemicellulose is a heteropolymer composed of various sugar monomers, including xylose,
arabinose, mannose, galactose, and glucuronic acid. The composition and structure of hemicellulose
vary among different plant species, but it is typically composed of a backbone of xylan or mannan
decorated with various side chains (Lu et al. 2021). The enzymatic hydrolysis of hemicellulose
requires a diverse array of hemicellulases, including; a) Xylanases - these enzymes catalyze the
hydrolysis of the xylan backbone by cleaving [B-1,4-glycosidic bonds, b) Mannanases: These
enzymes hydrolyze the mannan backbone of certain hemicelluloses, and c) Accessory enzymes -
these include arabinofuranosidases, xylosidases, glucuronidases, and others that remove side groups
and facilitate the complete breakdown of hemicellulose into monomeric sugars. The synergistic
action of various hemicellulases is essential for the efficient conversion of hemicellulose into
fermentable sugars (Shrivastava et al. 2023).
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Lignin and lignin-degrading enzymes

Lignin is a complex aromatic polymer composed of phenylpropanoid units cross-linked in a
three-dimensional network. It encrusts and protects the cellulose and hemicellulose components in
plant cell walls, contributing significantly to biomass recalcitrance (Shah et al. 2022). The
degradation of lignin requires the action of various oxidative enzymes, including; a) Laccases - these
copper-containing enzymes catalyze the oxidation of phenolic compounds and can degrade lignin in
the presence of mediator compounds, b) Peroxidases - these enzymes, such as lignin peroxidases
(LiP) and manganese peroxidases (MnP), catalyze the oxidation of non-phenolic lignin structures
through the formation of reactive oxygen species, and c) Auxiliary enzymes - these include
oxidoreductases, such as aryl-alcohol oxidases and glyoxal oxidases, which generate hydrogen
peroxide required for peroxidase activity (Wang et al. 2018b). The efficient degradation of lignin
often requires the synergistic action of multiple lignin-degrading enzymes, as well as the involvement
of low-molecular-weight mediators and accessory enzymes (Janusz et al. 2017).

Aspergillus and Trichoderma: potent enzyme producers

The complexity of lignocellulosic biomass necessitates a well-coordinated action of various
enzyme classes, including cellulases, hemicellulases, and lignin-degrading enzymes, to overcome the
recalcitrance and achieve efficient conversion into fermentable sugars. Aspergillus and Trichoderma
species are known to produce diverse arrays of these enzymes, making them attractive candidates for
biorefinery applications. Aspergillus species, such as A. niger, A. fumigatus, and A. terreus, are
widely studied for their potential in enzyme production. These fungi are known to produce a diverse
array of cellulases, hemicellulases, and accessory enzymes, including xylanases,
arabinofuranosidases, and feruloyl esterases (Ntana et al. 2020). These enzymes work synergistically
to break down the complex polysaccharides present in agricultural wastes. Aspergillus niger is
particularly noteworthy in its ability to produce high levels of various enzymes, including cellulases,
xylanases, amylases, and pectinases (Bakare et al. 2022). This versatility makes A. niger a valuable
source of enzyme cocktails for biorefinery applications. Additionally, the well-established
fermentation technology and genetic tools available for A. niger facilitate further optimisation and
genetic engineering of enzyme production (Gao et al. 2023).

Trichoderma species, including T. reesei, T. harzianum, and T. longibrachiatum, are prolific
producers of cellulases and hemicellulases (Ghadi et al. 2014). Trichoderma reesei, in particular, is
widely studied and employed for its high cellulolytic activity and ability to secrete a complete set of
cellulases, making it a preferred choice for industrial enzyme production (Druzhinina & Kubicek
2017). Trichoderma reesei is known to produce high levels of cellobiohydrolases (CBH I and CBH
II), endoglucanases (EG I and EG II), and B-glucosidases, which work synergistically to efficiently
hydrolyze cellulose (Lee et al. 2022). Additionally, 7. reesei produces various hemicellulases,
including xylanases and mannanases, which contribute to the degradation of hemicellulose in
agricultural wastes. Other Trichoderma species, such as T. harzianum and T. longibrachiatum, have
also shown promising potential for the production of cellulases, hemicellulases, and lignin-degrading
enzymes, further expanding the repertoire of enzyme cocktails available for biorefinery applications
(Guigon-Lopez et al. 2014; Guruk & Karaaslan 2020).

The potency of these fungal enzymes lies not only in their own capabilities but also in their
synergistic interactions. When combined in a cocktail, enzymes from Aspergillus and Trichoderma
work together to achieve a more comprehensive breakdown of agricultural waste than what could be
achieved with enzymes from a single source (Intasit et al. 2021). This synergy enables the efficient
conversion of diverse agricultural residues into fermentable sugars and other valuable products.

Advantages of Aspergillus and Trichoderma enzyme cocktails

The enzyme cocktails derived from Aspergillus and Trichoderma species offer several
advantages for biorefinery applications; 1) Broad substrate specificity - these fungi can produce
enzymes capable of hydrolyzing a wide range of substrates, including cellulose, hemicellulose, and
lignin, making them suitable for diverse agricultural waste feedstocks (Blasi et al. 2023), ii) High
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enzymatic activity and stability - the enzymes produced by these fungi often exhibit high specific
activity and stability under harsh conditions, such as elevated temperatures and extreme pH, which
are commonly encountered during biomass pretreatment and hydrolysis processes (Dahiya et al.
2024), iii) Cost-effective production - Aspergillus and Trichoderma species can be cultivated on
inexpensive substrates, such as agricultural residues or industrial by-products, reducing the overall
cost of enzyme production (Sakhuja et al. 2021), iv) Genetic engineering potential - the genomes of
these fungi have been extensively studied, enabling genetic engineering approaches to improve
enzyme production, stability, and activity for specific applications (Gao et al. 2023), Synergistic
action - the diverse array of enzymes produced by Aspergillus and Trichoderma species can act
synergistically, enhancing the overall efficiency of biomass degradation and sugar release (Intasit et
al. 2021).

Biorefinery applications

Enzyme cocktails derived from Aspergillus and Trichoderma species find applications in various
stages of the biorefinery process, including pre-treatment, saccharification, and fermentation. In the
pre-treatment stage, lignin-degrading enzymes, such as laccases and peroxidases, can facilitate the
removal of lignin, improving the accessibility to cellulose and hemicellulose for subsequent
enzymatic hydrolysis (Tiwari et al. 2023). Aspergillus species, like A. niger, are known to produce
significant amounts of these lignin-degrading enzymes, making them valuable for pre-treatment
processes (Liu 2021). During saccharification, cellulases and hemicellulases catalyze the breakdown
of cellulose and hemicellulose into fermentable sugars, which can be further converted into biofuels
(e.g., ethanol, butanol) or other valuable chemicals through fermentation processes (Blasi et al. 2023).
The efficient cellulase systems produced by Trichoderma species, such as T. reesei, are particularly
useful for the saccharification of pre-treated biomass (Intasit et al. 2021). Some Trichoderma species
can also produce enzymes like xylanases and B-glucosidases, which can enhance the efficiency of
fermentation processes by removing inhibitors or improving sugar utilisation (Ajijolakewu et al.
2017). Additionally, certain Aspergillus species, like A. niger, can produce enzymes involved in the
degradation of inhibitory compounds, further improving the fermentation process (Cui et al. 2021).

Studies have shown that enzyme cocktails can significantly increase the conversion of pretreated
lignocellulosic biomass into fermentable sugars. For instance, research by Florencio et al. (2016)
demonstrated that a specifically designed enzyme cocktail from A. niger and T. reesei achieved
saccharification yields of up to 80% from sugarcane bagasse. This translates to a substantial increase
in biofuel or bioproduct output per unit of waste processed. Compared to traditional methods that
rely on harsh chemicals or high temperatures, enzyme cocktails offer a more sustainable and cost-
effective approach. A study by Galbe and Zacchi (2002) estimated that the enzymatic conversion of
lignocellulosic biomass to ethanol could be achieved for $0.30 - $0.40 per litre, highlighting the
economic viability of this technology. Table 7 provides a comparison of the key enzymes produced
by Aspergillus and Trichoderma species and their potential applications in biorefineries.

Enzyme cocktails derived from Aspergillus and Trichoderma are revolutionising the biorefinery
industry, enabling the conversion of agricultural waste into a diverse range of valuable products such
as:

1. Biofuel Production: These enzyme cocktails play a critical role in second-generation (2G)
bioethanol production. They efficiently break down the complex carbohydrates in
agricultural residues like corn stover, sugarcane bagasse, and straw into fermentable sugars.
These sugars can then be fermented by microorganisms to produce ethanol, a biofuel
alternative to gasoline (Robak & Balcerek 2018).

2. Biogas Production: Anaerobic digestion is a process that converts organic matter into
biogas, a mixture of methane and carbon dioxide. However, lignin in agricultural waste
hinders the process by limiting microbial access to cellulose. Enzymes from Aspergillus and
Trichoderma can be used for the pre-treatment of the waste. These enzymes break down
lignin, making cellulose more accessible to microbes responsible for biogas production,
thereby enhancing biogas yields (Kubiak et al. 2023).
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3. Production of High-Value Chemicals: Agricultural waste harbours untapped potential for
various high-value chemicals. Enzymes from these fungi can be used to deconstruct the
waste into specific components. For instance, xylanases can convert xylan in the waste into
xylose, a crucial precursor for bioplastics production (Bueno et al. 2023). Additionally,
enzymes can be used to unlock fermentable sugars from the waste, which can then be further
processed into a variety of bio-based chemicals. This approach offers a sustainable
alternative to traditional chemical production methods.

4. Animal Feed Production: Lignocellulosic biomass from agricultural waste can be a potential
source of animal feed. However, its complex carbohydrates reduce digestibility. Pre-
treatment with the enzymes of Aspergillus and Trichoderma can enhance the digestibility of
the feedstock by breaking down these complex carbohydrates. This leads to improved
nutrient utilization and overall feed quality for animals (Liu et al. 2023b).

5. Mushroom Cultivation: Agricultural waste can be used as a substrate for cultivating
mushrooms. Pre-treatment with these enzyme cocktails can improve the efficiency of
nutrient utilization by mushrooms. This can lead to higher yields and potentially unlock the
cultivation of novel types of mushrooms with unique properties (Shankar et al. 2024).

While enzyme cocktails derived from Aspergillus and Trichoderma species present promising
solutions for biorefinery conversion of agricultural waste, several challenges must be addressed to
facilitate their widespread adoption and optimise their efficiency. The inherent recalcitrance of
lignocellulosic biomass, stemming from the complex and tightly bound structure of cellulose,
hemicellulose, and lignin, poses a significant obstacle for enzymatic hydrolysis, necessitating
efficient pre-treatment methods and the development of more potent enzyme cocktails. Additionally,
the presence of inhibitory compounds such as phenolic compounds, furan derivatives, and organic
acids can impede enzyme activity and stability during the biorefinery process, requiring strategies to
mitigate enzyme inhibition. Despite the potential for cost-effective production using inexpensive
substrates, overall enzyme production costs, including fermentation, downstream processing, and
purification, remain a limiting factor for large-scale applications, emphasising the need for
optimisation of enzyme production processes and more efficient production systems. Moreover,
harsh conditions encountered during biomass pre-treatment and hydrolysis, such as high
temperatures, extreme pH, and inhibitor presence, can lead to enzyme inactivation and reduced
stability, underscoring the challenge of improving enzyme stability and robustness through protein
engineering or immobilisation techniques. Furthermore, while the synergistic action of enzymes is
acknowledged, the precise mechanisms and optimal ratios of different enzymes for efficient biomass
degradation are not fully understood, highlighting the necessity of further research to tailor enzyme
cocktails for specific biomass feedstocks. Looking ahead, advances in genomics and systems biology
can aid in the rational design of improved strains and optimised enzyme cocktails, while techniques
such as protein engineering and directed evolution offer opportunities to enhance enzymatic
performance. Consolidated bioprocessing (CBP), enzyme immobilisation and recycling, and
integration with other technologies represent promising avenues for enhancing the efficiency and
sustainability of biorefinery systems.

Table 7. The key enzymes produced by Aspergillus and Trichoderma species and their potential
applications in biorefineries.

Feature Aspergillus Trichoderma

Dominant Enzyme  Cellulase, Hemicellulase, Lignin- Cellulase, Hemicellulase, B-glucosidase
Activity degrading enzymes (some species)

Key Species for A. niger, A. oryzae, A. terreus T. reesei, T. virgatum, T. longibrachiatum, T.
Biorefinery harzianum

Applications

Target Biorefinery = Biofuels (ethanol), Biogas, Bioplastics, Biofuels (ethanol), Biogas, Bioplastics, High-
Products High-Value Chemicals, Animal Feed Value Chemicals
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Feature

Aspergillus

Trichoderma

Advantages

Disadvantages

Applications in
Biorefinery

High production of cellulases and
hemicellulases

Produces lignin-degrading enzymes (A.

niger, A. terreus) for enhanced
pretreatment

Generally well-established and cost-
effective production

Lower cellulase activity compared to
Trichoderma (except A. niger)
Limited p-glucosidase production in
some species

Pretreatment and enzymatic hydrolysis
for biofuel production

May contribute to fermentation by
degrading inhibitors (some species)
Pretreatment for biogas production
Pretreatment for animal feed
digestibility

Superior cellulase activity for efficient
saccharification

Some species produce B-glucosidase for improved
sugar utilisation

Can contribute to fermentation by degrading
inhibitors (some species)

Lower lignin-degrading enzyme production
compared to Aspergillus

Enzymatic hydrolysis for biofuel production
May improve fermentation efficiency by
removing inhibitors or utilising specific sugars
(some species)

Pretreatment for biogas production

Enzyme deconstruction for high-value chemical
production

Enzyme deconstruction for high-value
chemical production

6.2 Role of soil fungi in the revegetation of mine-affected lands

The introduction of native mycorrhizal fungi alongside plant seeds accelerates the recovery of
diverse vegetation in post-mining environments, aiding in the restoration of ecological balance and
supporting plant resilience (Vahter et al. 2020). Studies have shown that mycorrhizal partnerships
represent a promising strategy for the successful revegetation and rehabilitation of degraded mine
sites. Notable ectomycorrhizal fungi found in mine lands and waste dumps, and heaps are
Cenococcum geophilum, Laccaria spp., Pisolithus tinctorius, Suillus spp., Thelephora terrestris, and
Inocybe spp. These fungi help rehabilitate disturbed soils by promoting nutrient uptake and enhancing
soil structure (Danielson, 1985). In addition, VAM species commonly found on mine grounds include
Acaulospora laevis, Glomus spp., Scutellospora gregaria and Scutellospora pellucida.

Rhizophagus irregularis, an arbuscular mycorrhizal fungus, which enhances the resistance of
Sophora viciifolia to arsenic, supporting plant growth in mining-affected areas by improving stress
tolerance mechanisms (Zhang et al. 2022). However, in post-mining soils, R. intraradices
significantly reduces both above and belowground plant biomass and microbial respiration, affecting
plant community formation in disturbed environments (Ardestani et al. 2019). Additionally, this
species also aids in the phytoremediation of lead-contaminated soils, promoting lead uptake in
Parkinsonia aculeata (Gonzalez-Villalobos et al. 2021). Glomus species could improve nitrogen and
mineral uptake under stress conditions (He et al. 2017, Abdelhameid et al. 2020). Glomus
macrocarpum has been reported as a dominant species that supplies essential nutrients and water,
although its limited diversity indicates ongoing disturbance in mines (Borges et al. 2014). In addition,
G. etunicatum and G. versiforme, have shown enhanced plant growth, nitrogen uptake, and heavy
metal tolerance in coal mine spoil banks (Zhao et al. 2013). Furthermore, it has been shown that
Glomus spp. can improve sunflower growth and copper accumulation in Cu-contaminated soils
(Castafion-Silva et al. 2013) and increase phytoremediation efficiency while reducing lead toxicity
in Hyoscyamus niger (Karimi et al. 2013). Additionally, they enhance mycorrhizal colonisation,
critical for seedling establishment in disturbed mine sites (Vézina et al. 2012), and Glomus
intraradices supports Tagetes erecta growth in chromium-contaminated soils (Wartanto et al. 2020).

Various soil fungi have shown remarkable applications in post-mining environments. Pisolithus
tinctorius enhances plant growth in contaminated soils, showing high copper tolerance, which aids
in nutrient accumulation and heavy metal phytostabilisation (Wen et al. 2017). Additionally, P.
tinctorius inoculation reduces leaf temperature, improves water availability, and strengthens plant
defence mechanisms under water stress, making it a promising option for dry land restoration
programmes (Lorente et al. 2021). Cenococcum geophilum is another example of revegetation of
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mining-affected has tolerance of cadmium (Cd), making it an asset in phytoremediation and
ecological rebuilding in contaminated regions (Peter et al. 2016, Shi et al. 2022). This species also
reportedly improves soil phytoremediation by promoting plant growth and metal absorption,
particularly in copper-contaminated soils, further contributing to effective revegetation (Wen et al.
2017). In post-coal mining sites, Acaulospora mellea (Acaulosporaceae) is crucial for nutrient
uptake, plant growth, and soil adaptability, enhancing plant tolerance to harsh conditions and aiding
revegetation efforts (Wulandari et al. 2024). As a major genus of Arbuscular Mycorrhizal Fungi,
Acaulospora sp. significantly contributes to the revegetation of mining-affected areas by promoting
plant growth and ecosystem restoration (Salim et al. 2019). Gigaspora margarita is another example
which enhances host plant resistance to mercury and nutrient accumulation (Ekamawanti et al. 2014).
It is a promising option for phytoremediation, particularly in heavy metal-contaminated soils and
mine tailings, due to its potential for lead remediation (Ferrer et al. 2022).

Considering the plant factors, Acacia mangium, Mimosa caesalpiniaefolia, and Schinus
terebinthifolia, which respond well to mycorrhizal inoculation, organic compost, and
thermophosphate, are excellent for afforestation in mining regions (Mendes et al. 2010, Yang et al.
2015). Similarly, Imperata cylindrica, when associated with AMF, shows enhanced eco-
physiological traits in mining areas, aiding in ecological restoration and improving soil conditions
(Jiaet al. 2023). Bi et al. (2018) demonstrated that AMF-containing plants exhibit better growth, root
development, and soil quality improvement, making them appropriate for afforestation in mining
sites. AMF plants contribute to forming plant communities and soil recovery processes, which is
beneficial for afforestation in mining regions (Teixeira et al. 2017). In nickel post-mine land studies,
AMF plants are highlighted for their symbiotic connections that support plant growth under
challenging soil conditions (Prayudyaningsih et al. 2019). Moreover, AMF-associated plants are
advantageous for afforestation in mining-affected areas as they can thrive in phosphate-rich soils,
aiding ecosystem restoration (Ducousso-Détrez et al. 2012). They also enhance soil enzyme activity
and carbon sequestration in reclaimed mine soils, contributing significantly to ecological restoration
efforts (Qian et al. 2012). Mycorrhizae are often absent in mining-affected sites with low nutrient
levels, causing delays in vegetative community establishment. Inoculating these sites with
mycorrhizae can enhance productivity by improving interactions with native plant species used in
revegetation and accelerate the recovery of mine waste areas.

5. Application of fungi in livestock and aquaculture

Beyond their conventional roles in soil fertility and biocontrol, fungi are demonstrating novel and
unexpected potential across various facets of agriculture. These include sustainable livestock feed,
methane mitigation, disease control, and aquaculture enhancement. This section explores the
expanding frontier of fungal applications in agricultural systems, supported by recent research and
commercial innovations.

Fungal applications in livestock

Fungal mycoproteins offer a promising alternative to conventional protein sources like soy and
fishmeal. These conventional animal-feeding sources are associated with deforestation, overfishing,
and high carbon footprints. Fusarium venenatum, used in Quorn™, is a well-known fungal protein
source that yields a protein content of 40-50%, exceeding that of soybean (30—-40%). This species
can be cultivated on agricultural waste products such as wheat straw and molasses in bioreactors,
enabling a circular and sustainable feed system. Several companies are pioneering fungal protein
production for animal feed: Deep Branch (UK) produces Proton™, a single-cell protein derived from
Fusarium species using captured CO.. Calysta (USA) manufactures FeedKind®, a protein derived
from methane-utilising microbes. Unibio (Denmark) generates Uniprotein® from natural gas for use
in aquaculture. In addition to mycoproteins, residual biomass from mushroom cultivation (e.g.,
Pleurotus and Lentinula spp.) has been used as a fibre-rich feed additive. Canadian farms report cost
reductions of 15-20% when incorporating mushroom substrate residues into cattle feed.
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Fungi contribute to livestock health by enhancing gut function and reducing dependence on
antibiotics. Saccharomyces cerevisiae has demonstrated efficacy in improving digestion and nutrient
uptake in ruminants, pigs, and poultry (Sampath et al. 2021, Hoque et al. 2021, Comi et al. 2025).
Serval studied has found that dairy cows supplemented with S. cerevisiae produced more milk and
had a lower incidence of acidosis (Desnoyers et al 2021, Sun et al. 2021, Xiang et al. 2025).
Additionally, yeast-derived beta-glucans have shown immunomodulatory effects For example, For
example, a Saccharomyces cerevisiae-derived postbiotic significantly reduced Salmonella enterica
prevalence and load in broiler ceca in a commercial farm study, and multi-species probiotic
supplementation has been shown to lower cecal Salmonella detection relative to untreated group
(Neveling et al. 2020, Chaney et al. 2022, Shaji et al 2023). Commercial products such as Diamond
V’s fermented yeast extracts and Alltech’s Yea-Sacc® are widely used in the USA. In aquaculture,
Cordyceps militaris spent mushroom substrate has used as in-feed antibiotics in Labeo rohita to
Aeromonas hydrophila (Devi et al. 2024).

Certain fungi exhibit strong antiparasitic properties. Duddingtonia flagrans, a nematode-
trapping fungus, has been incorporated into livestock diets. Its spores pass through the digestive tract
and germinate in manure, where they capture and kill nematode larvae (Larsen 2000). Field trials
indicated a reduction in parasitic load in sheep (Paraud et al. 2018). BioWorma®, a commercial
product based on D. flagrans, is now used in Australia and New Zealand, reportedly reducing
chemical dewormer use.

Livestock, particularly ruminants, are major contributors to anthropogenic methane emissions.
On average, a cow emits 150-200 litres of methane per day. To address this, research has focused on
dietary interventions involving fungi and other microbial additives. Asparagopsis taxiformis, a red
macroalga, when included in cattle feed, has been shown to reduce enteric methane emissions without
affecting milk yield (Roque et al. 2021). Companies like FutureFeed (Australia) and Symbrosia
(USA) are commercialising Asparagopsis-based feed products. Anaerobic gut fungi such as
Neocallimastix frontalis have shown promise in enhancing fiber digestion while influencing methane
emissions in ruminants (Wei et al. 2022, Kovacs et al. 2025).

Fungal applications in aquaculture

Fungal products are also being adopted in aquaculture systems to enhance growth and disease
resistance. Saccharomyces cerevisiae and Aspergillus oryzae are commonly added to aquafeed, with
reported improvements in fish growth rates and immunity. Several studies have shown that the
incorporation of Aspergillus oryzae-fermented feed increased tilapia growth over fishmeal-based
diets (Dawood et al. 2020, Ismail et al. 2021). Saccharomyces cerevisiae supplementation has been
shown to enhance disease resistance in shrimp and tilapia (Novozymes, Denmark). In aquaculture
water remediation, Aspergillus niger has been utilised to reduce ammonia and nitrate levels,
improving water quality in fishponds (Dawood et al. 2020). Vietnamese shrimp farms have
incorporated fungal-treated water systems to prevent disease outbreaks.

Certain fungi, particularly chytrids, have demonstrated the ability to parasitise and control
harmful algal blooms, including cyanobacteria. This offers a biological alternative to chemical
algaecides such as copper sulfate. While still experimental, fungal "algaecides" hold promise for the
sustainable management of freshwater aquaculture systems. The integration of fungi into livestock
and aquaculture systems presents a sustainable pathway to improve feed efficiency, reduce
environmental impact, and promote animal health. Key advances include that mycoprotein replacing
soy and fishmeal with equal or superior performance (Macusi et al. 2023, Madhulika et al. 2025),
Yeast probiotics reducing antibiotic use and improving growth metrics, Methane reduction through
fungal feed additives and gut-modulating fungi, Fungal bioremediation for aquaculture water quality
and disease control.

However, challenges remain in terms of long-term safety, regulatory approval (especially for
genetically modified strains), and economic scalability. Despite these hurdles, fungi are poised to
play a pivotal role in the future of sustainable agriculture.
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7. Emerging applications of fungi in agricultural practices

As a sustainable agricultural practice, bio-fumigation utilises natural compounds to control soil-borne
threats (Srivastava & Ghatak 2017, Ziedan 2022). Brassicaceae plants such as mustard and radish
have been used as traditional biofumigants (Santos et al. 2020, Baysal-Gurel et al 2020). These plants
produce isothiocyanates during decomposition, which act as natural fumigants with pesticidal
properties (Szczygtowska et al. 2011, Baysal-Gurel et al 2020). In recent years, fungi have emerged
as potent bio-fumigating agents. Muscodor albus (Xylariaceae, Sordariomycetes) is an ascomycetous
fungus isolated initially as an endophyte from Cinnamomum zeylanicum in Honduras (Samarakoon
et al. 2020, Hyde et al. 2024). This species produces a wide range of antimicrobial volatile organic
compounds (VOCs) (Strobel 2006, Saxena & Strobel 2021). Additionally, Trichoderma spp. are
known to produce similar VOCs, making fungal bio-fumigation a promising, eco-friendly alternative
to chemical fumigants; 1.e. 7. afroharzianum against Fusarium infections in fresh chillies
(Khruengsai et al 2021), control damping-off of Pinus radiata caused by Fusarium (Morales-
Rodriguez et al. 2018), and Galletti et al. (2008) found that when Brassica carinata seed meal was
combined with Trichoderma, it resulted in more efficient control of Pythium ultimum.

Several fungal species have also been used to remove pollutants from water through enzymatic
degradation and biosorption. For example, Stropharia rugosoannulata has been employed to filter E.
coli from stormwater (Thomas et al 2009, Taylor et al. 2015, Sen et al. 2023). Pleurotus species have
been used to remove textile dyes and phenolic compounds (Kunjadia et al. 2016, Kumar et al. 2022),
while Ganoderma species have shown potential in degrading petroleum hydrocarbons (Mohammadi-
Sichani et al. 2019, Torres-Farrada et al. 2019). Furthermore, mycelium has been integrated into
engineered frameworks such as filter beds and floating rafts to create myco-remediation units,
designed to treat contaminated soil and water (Rosa 2021, Buratti 2024). For instance, floating myco-
rafts have been developed for nutrient and pathogen removal in wetlands (Grosshans et al. 2019,
Huth et al. 2021, Sen et al. 2023), straw bale myco-barriers are used in Oregon forests to intercept
logging runoff (Grosshans et al. 2019, Sen et al. 2023), and myco-reactors are being trialled in South
America to treat mine-polluted water (Hu et al. 2020). These small-scale, but low-cost applications
offer valuable contributions to ecosystem restoration.

In addition, fungi are being utilised to develop biodegradable agricultural materials. Potential
has been shown that common fungal genera such as Agaricus, Cyclocybe, Fomitopsis, Ganoderma,
Pleurotus, Phaeolus, Piptoporus, Polyporus, Pycnoporus, and Trametes could be used to develop
mycelium composites as eco-friendly alternatives to plastic mulch and packaging (Aiduang et al.
2022). Trichoderma harzianum seed coating has been used in India and Israel to enhance disease
resistance and seedling vigour (Kumar et al. 2015, Vijaykumar 2023, Chandrika et al. 2024).

6. CRISPR gene editing in sustainable agriculture: future and challenges
Genome editing is an important aspect of fungal biotechnology as it allows the introduction of
desirable traits or the removal of unwanted traits, providing a distinct advantage in the ever-changing
landscape of agriculture and food production in a world impacted by increasing food demand, climate
change, and escalating environmental challenges. Among the vast applications of genome editing are
plants gaining disease resistance, increased yield, and adaptability to diverse climates, and reduced
reliance on agrochemicals by introducing superior biocontrol agents, which open avenues for
sustainable agricultural practices. There are many tools introduced and being introduced where
genome editing has provided promising results for a sustainable and greener future. One such tool is
the CRISPR/Cas system, a modified version of an adaptive immune mechanism in prokaryotes.
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR-associated
nuclease) technology allows for precise, efficient, and multiplexed gene editing in eukaryotic
organisms, including fungi (Song et al. 2019, Liao et al. 2022). The integration of CRISPR-Cas gene
editing into fungi is a revolutionary toolkit for advancing fungal biotechnology. CRISPR-Cas gene
facilitates targeted gene modification, which will help the rapid development of improved traits for
biocontrol, nutrient cycling, protein production, and stress resilience (Liao et al. 2022; Wang et al.
2022c, KhokharVoytas et al. 2023). In this section, we are discussing potential applications,

5001



regulatory, and socio-economic challenges while using CRISPR-edited fungi in sustainable
agriculture.

The CRISPR/Cas system is highly versatile, enabling it to be used in many ways to confer
immunity and resistance against important pathogenic fungi in a relatively sustainable manner. The
introduction of avirulent mutants of important fungal pathogens created using CRISPR/Cas to
compete with the pathogenic fungi in the field, while priming the plant against them, has been
conducted for many important phytopathogenic fungi (Harishchandra et al. 2021). Additionally,
enhanced biocontrol capabilities are observed in CRISPR/Cas edited fungi when genes in specific
metabolic pathways were targeted (Muifioz et al. 2019). With CRISPR-Cas gene editing, genes of
important fungal species associated with biological control, such as Trichoderma, Beauveria, and
Metarhizium species, could improve antagonistic activities, enhance rhizosphere colonisation, and
prolong survival under field conditions (Mukherjee et al. 2012). As given in the previous sections,
Fusarium venenatum has been modified via CRISPR to optimise amino acid biosynthesis and to
increase biomass productivity, which facilitates the use of F. vemenatum as mycoprotein, an
alternative to soy or fishmeal (Finnigan et al. 2019). CRISPR can also be used to knock out or activate
genes that are responsible for the synthesis of important biochemicals such as antibiotics,
siderophores, or mycotoxin suppressors in beneficial fungi such as Aspergillus and Penicillium. With
the increasing temperature and climate change, stress tolerance and resilience are important aspects
of green agriculture. Thus, with the help of CRISPR-Cas gene editing, it is possible to engineer fungi
to withstand pH, salinity, temperature, and other extreme environmental conditions that can be
successfully used as biocontrol agents in drought-prone and stressed agroecosystems where
successful biocontrol is relatively difficult.

Furthermore, CRISPR could be used as a rapid, field-deployable detection system. Wang et al.
(2025) have used CRISPR/Cas12a to develop a rapid detection tool for Grapevine Botryosphaeria
Dieback. In this study, the authors have integrated Recombinase Polymerase Amplification (RPA),
CRISPR/Casl2a, and Lateral Flow Dipstick (LFD) technology. This assay could be completed in
less than 60 minutes, is highly sensitive as it could detect as little as 1 pg/mL DNA and is very
specific while making it a powerful tool for early pathogen detection and management in vineyards.

Even though this gene editing sounds fascinating and has potential, applications of bioengineered
fungi still face multiple hurdles. We are far behind and stuck with regulations and policy barriers.
Countries that derive policies from process-based regulation (e.g., EU) consider CRISPR/Cas edited
organisms as GMOs while countries the derive policies from product-based regulation (e.g.,
Argentina, Australia, Brazil, Japan, South America USA) do not consider them as GMOs if the final
product does not contain foreign DNA and mimics natural variation (Ahmad et al. 2023). Some
countries (Brazil and USA) treat certain CRISPR-edited organisms differently from GMOs, yet the
EU has a strong opinion regarding GMOs (Eckerstorfer et al. 2019). Nevertheless, in China, CRISPR-
edited organisms are linked with the misconception of perceived similarity to GMOs by the public.
This is affecting the adoption of CRISPR in the agri-food sector, especially in organic or sustainable
food systems.

Apart from barriers at the policy level, fungi also show their barriers to CRISPR editing. The
most important phytopathogenic genera, Alternaria, Colletotrichum, Fusarium and others, are
difficult to transform or regenerate. Even though CRISPR is the most precise gene-editing tool so
far, it has also shown unintended off-target mutations, which could affect the stability, efficacy, and
safety (Zhang,2021). Another limiting factor in gene editing is the limited genomic resources and
annotation. For most of the non-model phytopathogenic fungi, quality genome resources are limited.
This can slow down gene editing and their functional validation (Idnurm & Meyer 2018).
Potentially, more advanced genome editing tools such as CRISPR/Cas12 and CRISPR/Cas13 can be
used for precision gene editing to overcome some challenges faced by the CRISPR/Cas9 system,
which offers distinct advantages over the traditional CRISPR/Cas9 system. Casl2 can create
staggered double-strand breaks, which may improve the efficiency of homology-directed repair
(HDR) when integrating donor DNA, potentially leading to more precise edits (Shen et al. 2024,
Hassane et al. 2025).
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Overcoming these challenges is not an easy task, yet it is a possibility. To overcome technical
challenges of CRISPR variants, such as base editors, and CRISPRi/a systems could be used to reduce
off-target effects. This will allow gene regulation without DNA cleavage. CRISPR gene editing has
the potential to revolutionise sustainable agriculture, yet lots of challenges remain to be addressed.
These challenges could only be overcome with interdisciplinary research, policy development and
public engagement.

9. Smart farming with Al: transforming agriculture for a greener, and sustainable future

The agricultural sector is under immense pressure to meet the rising global food demand, exacerbated
by the continuous growth of the human population, exponential environmental changes and negative
environmental impacts from conventional farming (Tilman et al. 2011, Tudi et al. 2021, Biswas et
al. 2025). To reduce the impact of these factors, innovatively and sustainably improving the
efficiency of farming practices is crucial (Sood et al. 2024). The integration of artificial intelligence
(AI) in agriculture, incorporating aspects of machine learning, deep learning, remote sensing, and
predictive analytics, has been on the rise over the last few years (Bhagat et al. 2022). The main reason
for this shift is the information-based transformative solutions provided to address the most pressing
challenges in agricultural production. The data and information analysed by Al can be used to reduce
the environmental impact by reducing water, fertiliser, and pesticide consumption while increasing
productivity (Lakshmi et al. 2020, Getahun et al 2024). The information processed by Al
technologies can also help optimise resource use and build greater resilience to climate change (Chen
et al. 2023b, Rane et al. 2024). The use of these technologies has reduced the risk of human error
through accurate, data-driven decision-making, introducing precision, consistency, and actionable
insights (Arya 2024).

The 21st-century agricultural practices are moving towards “Digital Agricultural Revolution”
or “Smart Farming” with the development of Al the Internet of Things (IoT), Big Data, and Cloud
Computing (Aratjo et al. 2023, Serensen et al. 2025). The applications of Al-driven technologies in
sustainable agricultural practices are vast and comprehensive (Ali et al. 2025). Some examples
include precision farming (Alazzai et al. 2024), soil and crop health monitoring (Kothari et al. 2024),
predictive analytics, robotics and automation, early disease detection, and many more (Adewusi et
al. 2024). Precision agriculture, also known as precision farming, and related practices such as smart
farming are becoming dominant research fields in the current global landscape of sustainability-
focused ideologies in farming and food production (Garcia-Vazquez et al. 2021). Through real-time,
data-driven decision-making and analysis from sensors, drones, and satellites, resource use efficiency
is boosted (Bhavani et al. 2024, Babbar et al. 2025). For example, Al-controlled irrigation systems
monitor soil moisture and weather patterns to optimise water use, thereby reducing water waste
(Adewusi et al. 2024). Additionally, sensors and image processing systems utilising data from
technologies such as hyperspectral imaging can accurately analyse plant health, enabling early
disease detection (Thomas et al. 2018, Terentev et al. 2022). The uses of Al in agricultural practices
apply to all stages from pre-production to supply chain management, making it a highly useful tool
in sustainable farming practices of the future (Sood et al. 2024). A significant area of Al being utilised
in agriculture is detection, management, and other broader applications of fungi, including important
phytopathogenic fungi as well as beneficial fungal organisms.

Al for improved crop productivity and fungal pathogen management

Crop productivity increases when timely efforts are made to ensure plant health. This can be achieved
through early disease detection, understanding aspects to improve crop yield and quality, and weed
management. Al has been successfully used to resolve problems encompassing all these areas. Data
obtained from Unmanned Aerial Vehicles/Drones, Satellites, and Ground-based/Handheld Sensors
and Vehicles can all provide important data from vast areas that could be overwhelming to analyse
manually. Therefore, Al-driven analytical methods are helpful for efficiently using this data to
improve crop productivity.
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Timely disease detection is an important aspect of agriculture as plant health is directly
responsible for the quality and yield of the harvest. Therefore, sustainable farming practices require
efficient, rapid, and accurate monitoring of crop health. For early disease detection, data derived from
optical sensors, non-optical devices, and integrated systems can be successfully used with higher
efficiency when aspects of Al technology are used to analyse the data. By analysing visual patterns
from data obtained from different devices, Al-powered systems can identify signs of infections at
very early, often asymptomatic stages. This can assist in timely and precise interventions to reduce
disease spreading and minimise the use of agrochemicals. Most of these techniques are also non-
invasive, thus helpful in sustainable farming practices.

Conventional equipment and methods can be made more efficient by incorporating Al-based
technologies. Time-lapse images from traditional microscopic imaging, along with Convolutional
Neural Networks and Support Vector Machines, have been used for automated disease diagnosis
more efficiently as they can detect temporal morphological changes with great precision (Mansourvar
etal. 2025; Shi et al. 2025). For example, microscopy combined with high-accuracy machine learning
classification models, such as Support Vector Machines, can differentiate similar morphologies of
fungal spores with up to 97.5% overall accuracy in Lasiodiplodia brasiliensis, L. crassispora, L.
exigua, and L. gilanensis on grapevines (Shi et al. 2025). Similarly, microscopic images combined
with Al technology were used to distinguish three 7Trichoderma species, including 7. harzianum, T.
atroviride, and T. virens, and the accuracy of correct detection was up to 95.38% in a random sample
(Soltani Nezhad et al. 2024).

Furthermore, visual images captured by DSLR and RGB cameras combined with deep
learning were successfully used to detect powdery mildew disease on strawberry leaves (Shin et al.
2021) and an array of diseases affecting guavas (Almadhor et al. 2021) more efficiently than using
conventional disease detection methods. In another study, near-infrared spectroscopy and machine
learning models were used to detect Verticillium wilt of potatoes (Shin et al. 2023). Not only can
these technologies be applicable for disease detection at the laboratory level, but mobile devices
equipped with cameras can also be used to provide a practical and cost-effective solution for rapid
and accurate disease detection (Ahmed & Reddy 2021, Kumar et al. 2023b).

Hyperspectral and Multispectral Imaging can be used to monitor crop conditions, including
diseases (Thomas et al. 2018, Terentev et al. 2022). Early disease detection in plants with a
Hyperspectral Imaging System combined with AI, Machine Learning, and Deep Learning was
achieved by processing complex spectral data and identifying subtle physiological changes before
they become visible to the human eye (Pane et al. 2021). Both hyperspectral imaging and
multispectral imaging can also be used to compute vegetation indices (VIs), such as the Normalised
Difference Vegetation Index (NDVI), which are indicators of plant health (Liakos et al. 2018).
Combined with HSI, thermal imaging can be used to detect plants under stress by measuring
temperature variations that indicate physiological changes (Thomas et al. 2018). Hyperspectral
imaging combined with machine learning can also be used to optimise the monitoring of the effects
of the biocontrol agents and their effect on the environment they are being used on (Cabanas &
Mercado-Blanco 2025). Additionally, a combination of Hyperspectral Imaging System, Machine
Learning, and short-wave infrared (SWIR) with an electric nose (E-Nose) apparatus can be used to
detect volatile compounds emitted by plants and assess plant physiological changes under abiotic or
biotic stress (Fuentes et al. 2021). In the study conducted by Pane et al. (2021), they used data
obtained through Hyperspectral Imaging System to evaluate the efficiency of biocontrol agents to
control soil-borne fungal pathogens affecting baby leaf vegetables. Early identification of Oil Palm
and Basal Stem Rot (BSR) disease was achieved using spectral reflectance data collected before
visible symptoms appear, combined with Al technologies and a Hyperspectral Imaging System
(Terentev et al. 2022). Sweet Pepper and Tomato Spotted Wilt Virus detection at early stages was
also successfully conducted using Al technologies combined with AI (Gu et al. 2019, Wang et al.
2019b).

Another potential use of machine learning and deep learning to improve plan health is to
leverage data from Internet of Things (IoT)- based systems (Ogubuike et al. 2021, Naqvi et al. 2025).
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Smart sensory devices and remote sensing technologies in the IoT network collect diverse data about
the plant and its environment. This data, in the form of images, strings, and numbers, is stored on
cloud platforms, which can then be transformed into actionable insights using Al-based technologies
to improve plant health. This can be highly useful for early disease and pest detection and diagnosis,
and for the timely application of biological control agents to sustainably control disease and prevent
sudden outbreaks and emerging pathogens (Mana et al. 2024). These technologies have become more
accessible by using systems with low computational demand and can even be used as mobile
smartphone applications (Ogubuike et al. 2021, da Silva et al. 2023, Christakakis et al. 2024;
Sulaiman et al. 2025).

The use of multispectral and hyperspectral images, combined with Al, can accurately detect
and discriminate between crops and weeds. This can be used to reduce the use of herbicides in
cultivation areas by developing targeted weed destruction tools and robots (Binch & Fox 2017,
Murad et al. 2023). Deep learning models such as SegNet are trained to separate weeds from crop
images, which can be a highly useful step in disease diagnosis and segmentation (Rathore et al. 2022).
To optimise economic benefits, understanding crop yield is highly important for farmers to plan
agricultural work efficiently. Data from satellite images, weather data, and other agronomic
information, analysed by Al models such as Artificial Neural Networks (ANNs) and Convolutional
Neural Networks (CNNs), can be used to predict crop yields with high accuracy (Liakos et al. 2018,
Bhagat et al. 2022).

In addition to early disease detection, sustainable agricultural practices rely on biological
control agents (BCAs) to improve plant health and control certain phytopathogens. Al can be used to
select and optimise certain BCAs and assess their efficacy. The biocontrol efficacy of Trichoderma
spp. against soil-borne fungal diseases in baby leaf vegetables was successful using Artificial Neural
Networks (ANNSs) applied to hyperspectral image data (Pane et al. 2021). Additionally, Al
technologies can assist in calculating the optimal dosage, timing, and distribution of BCAs to improve
their efficiency at the field level by accounting for conditions that would otherwise reduce their
efficacy, as observed in in-vitro studies (Cabanas & Mercado-Blanco 2025).

Al for food safety: mycotoxin management and fungal growth prediction

Mycotoxin contamination is a major concern for food safety, but common detection methods based
on chromatographic separation, often combined with mass spectrometry, can be time-consuming. Al
technologies can be used to attain zero contamination in food supply chains to ensure consumer safety
(Aggarwal et al. 2024, Naseem & Rizwan 2025). Various strategies using Al technologies to manage
toxigenic fungi, including their ability to proliferate in food and produce mycotoxins, are already
being studied extensively (Mateo et al. 2025).

The ability to predict and any toxigenic tendencies of fungal pathogens can be highly important
in ensuring food safety. This can also help limit crop loss. Al models such as extreme gradient
boosted trees (XGBoost) have been successful in predicting growth rates of Fusarium culmorum and
F. proliferatum and their mycotoxin production (zearalenone and fumonisin) under various
environmental conditions as well as under different fungicide treatments (Tarazona et al. 2021). Also,
screening techniques for fungal contaminants in food products can be highly useful for ensuring food
safety. In one study using a combination of ML and HSI, the presence of Penicillium sp. in brown
rice was detected with a 93.4% accuracy in a rapid, chemical-free and non-destructive manner
(Siripatrawan et al. 2024). Additionally, Al technologies can also be used to distinguish between
edible and poisonous fungi, ensuring safe consumption of mushroom food products (Singh & Sharma
2024).

Limitations and challenges of Al-driven agricultural technologies

Al-driven technologies have become hot topics across every discipline; however, whether
these technologies can be transferred worldwide remains a central question in low- and middle-
income regions. The most significant barrier is the high capital investment. Al-enabled infrastructure,
including sensors, drones, hyperspectral cameras, cloud computing platforms, and high-performance
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hardware, requires initial investment with specialised labour costs as well. Al tools often require
technical literacy and specialised expertise skills that are not universally available among farmers
and extension workers (Pinski & Benlian 2024, Gu & Ericson 2025). More than 80% of farms
globally are dominated by smallholder farmers in developing countries (FAO 2021, Rose et al. 2023).
These costs are creating inequalities between technologically advanced farming systems and
resource-limited agricultural communities. However, it is worth noting that this is not only an issue
for Al-driven technologies; it's also a significant hurdle to the broader use of fungi and fungal
products in agriculture, where capital remains a considerable challenge. Operational and maintenance
costs will be added to capital costs, further increasing production costs (Mukherjee 2022, Aijaz et al.
2025). In many rural regions, including parts of Africa, South and Southeast Asia, and Latin America,
limited digital infrastructure, unstable electricity supply, and poor internet coverage significantly
constrain the practical deployment of Al-based agricultural solutions (Trendov et al. 2019, Mwansa
et al. 2025).

So far, the Al systems have been developed using datasets from controlled environments or
well-resourced agricultural systems. This highlighted the limited availability of high-quality, region-
specific datasets. Current databases may not adequately represent the heterogeneity of crops,
pathogens, climates, and farming practices in developing regions (Kamilaris et al. 2018,). This
directly affects fungal disease detection, where pathogen diversity and symptom expression vary
widely across agroecological zones (Agrios 2005, Burdon & Thrall 2009). The rate of technological
advancement is not always the same as the rate of development of policy and institutional
frameworks. One growing concern is that technology developers, rather than farmers, perceive the
benefits (Bronson et al. 2022, Duncan et al. 2022).

Overall, Al-driven precision agriculture operates optimally (Kamilaris et al. 2018, Aijaz et al.
2025), but in farming systems that are already economically vulnerable, as increased production costs
may outweigh productivity gains, undermining the long-term viability of Al adoption. Thus, it is
necessary to develop low-cost technological innovations, inclusive policy frameworks, capacity
building, and context-specific system design.

10. Green does not always mean safe: ecological and commercial challenges of fungal
bioproducts

While fungi offer many promising benefits for green agriculture, their use is not always positive. In
particular, fungal inoculants may lead to mycotoxin production, allergenicity, ecological disruption,
and reduced commercial viability. Fungal genera such as Aspergillus and Penicillium are well known
for mycotoxins and allergenic spores. Mycotoxins such as aflatoxins, ochratoxin A, fumonisins, and
other secondary metabolites pose serious risks to human and animal health, including carcinogenic,
mutagenic, teratogenic, immunotoxic, hepatotoxic, nephrotoxic, and neurotoxic effects (Imran et
al.2020, Awuchi et al. 2022, Bunny et al. 2024, Magembe 2025). In non-agricultural or non-organic
systems, these fungi colonise and biosynthesise toxins, thereby increasing mycotoxin risk (Abdel-
Dullah et al. 2025). Climate change has been a catalyst by creating favourable temperature and
humidity for toxigenic fungi, thereby increasing aflatoxin prevalence in many agroecosystems
(Bunny et al. 2024). Furthermore, airborne conidia of toxigenic fungi can act as potential allergens,
directly causing respiratory illness among farming communities. Early detection and mycotoxin
surveillance using machine-learning-assisted monitoring are becoming an aspect, yet they come at a
high cost (Inglis et al. 2024). Therefore, it is necessary to conduct strain-level screening and
toxicological risk assessment before the large-scale deployment of fungal inoculants (Mshelia et al.
2023, Yazid et al. 2023). Beyond the direct health effects described above, fungal inoculants may
also pose ecological risks when introduced into complex soil ecosystems. Cornell et al. (2021) has
discussed that microbial biofertilizers can significantly reshape native bacterial and fungal
communities, which is different for fungal and bacterial communities. This could result in
displacement or suppression of the indigenous beneficial microbial community (Mazzola et al. 2017),
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which could affect long-term nutrient cycling, soil resilience, and sustainability (Gufwan et al. 2025),
and an effect on non-target organisms should be highly concerning (Lynch & Thomas 2000).

The commercial success of fungal microbial products has been challenged several times over
the years. This has been directly linked with formulation inconsistency, ecological risks, and
secondary-metabolite toxicity (Ghorui et al. 2025). Future developments must prioritise strain-level
screening for toxigenic potential, comprehensive ecological risk assessment, robust formulation
technologies, long-term field validation, and harmonised regulatory oversight (Mshelia et al. 2023,
Ghorui et al. 2025). These integrated validations can realise the full potential of fungal-based
technologies without compromising food safety, environmental integrity, or economic sustainability.

11. Fungi in future of sustainable agriculture: a decade ahead

Within the next decade, global food production will need to be resilient, regenerative, and
decentralised in response to escalating climate change, soil degradation, pesticide resistance,
biodiversity loss, and the rising demand for safe food. A single innovation cannot meet this demand;
it must be addressed through a combination of technologies and biological strategies, in which fungi
are emerging as key agents of sustainability. Fungi are among the oldest and most diverse organisms
on the planet (Blackwell 2011, Berbee et al. 2017, Kartawik et al. 2024). From ancient times to
modern agriculture, fungi have demonstrated remarkable roles across multiple dimensions of
sustainable farming (Field et al. 2018; Hyde et al. 2019). In the coming decade, the sustainability of
soil fertility is expected to increasingly depend on fungal biofertilizers and mycorrhizal networks
(Bhardwaj et al. 2014, Igichon & Babalola 2017, Ntsomboh-Ntsefong et al. 2025). The commercial
application of these biofertilizers will help restore soil fertility and reduce dependency on synthetic
fertilisers.

With the current momentum in research and development on fungal biocontrol agents, fungi-
based natural alternatives to synthetic pesticides are projected to capture a significant share of the
global market in the next decade (Singh et al. 2023, Saldafia-Mendoza et al. 2025). Advances in
genome editing and strain optimisation will make biocontrol agents more specific, targeting precise
crop-pathogen interactions (Singh et al. 2024, Garg et al. 2025, Gémez-Lama Cabanas & Mercado-
Blanco 2025). As a result, reduced use of synthetic pesticides will enhance food safety and lower
environmental toxicity. Climate change is amplifying pest and disease incidences (Skendzi¢ et al.
2021, Alfizar, & Nasution 2024), while extreme environmental conditions are threatening global food
security (Ericksen et al. 2009, Mehrabi et al. 2022). In the next decade, global warming is unlikely
to slow down; it will continue to intensify, contributing to desertification, increased salinity, and
abiotic stress such as heat and drought (Le Houérou 1996, Chaudhry & Sidhu 2022). Isolating and
enhancing fungal taxa from extreme environments, especially endophytes from deserts and saline
ecosystems (Moghaddam et al. 2021, Nurrahma et al. 2024), could offer valuable solutions for
improving plant resilience while addressing these stresses. Additionally, fungi play a crucial role in
soil carbon stabilisation by producing stable organic matter (Khatoon et al. 2017, Tunlid et al. 2022).
Thus, fungal composting can contribute actively to climate change mitigation through carbon
sequestration (Malyan et al. 2019, de Goede et al. 2025).

Although not directly related to food production, fungi also have major potential in sustainable
biomaterials. Mycelium-based biodegradable films, mulches, and seed coatings are currently being
developed to reduce plastic and non-degradable materials in agroecosystems (Bandopadhyay et al.
2018, , Carneiro et al. 2025). These innovations support the transition toward a circular economy
with a minimal environmental footprint. Fungal applications in agriculture can extend far beyond
traditional farming practices. Fungi could be harnessed as myco-filters, mycoprotein sources, myco-
remediation units, and even bioluminescent fungi-based lighting systems for regenerative urban food
systems (de Souza Filho et al. 2019, Mnkandla & Otomo 2021, Ke & Tsa 2022). Although this sector
is still emerging, it holds immense potential. Over the next decade, fungi could reshape agroecology
through applications such as fungal biosensors for soil monitoring, customised fungal strains, and the
revival of indigenous, fungi-based farming practices (Jain et al. 2021, de Sousa et al. 205).
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Despite these immense potentials, challenges and barriers remain. Developing fungal inoculants,
whether as biocontrol agents or biofertilizers, faces regulatory restrictions (Bharti & Suryavansh
2021, Santos et al. 2024). Standardising strain performance across diverse ecosystems is essential but
difficult. Shifting farmer and public perceptions toward fungal-based agriculture is another hurdle,
especially given misconceptions and the fact that fungal products do not offer immediate results
(Thambugala et al. 2020, Palmieri et al. 2022, Ranout et al. 2025). Moreover, fungal products are
currently not cost-effective (Palmieri et al. 2022, Thirumeni et al. 2024), which affects scalability
and economic viability.

CONCLUSION

Based on the concepts discussed throughout this review, the next decade of sustainable agriculture
will be defined by regenerative practices, with fungi positioned at the centre of this transformation.
Arbuscular mycorrhizal fungi deliver multiple ecosystem services, yet their benefits cannot be
viewed in isolation as simple biological inputs. Agricultural management practices and broader
agroecosystem dynamics inherently shape their performance. Likewise, Trichoderma one of the most
extensively studied filamentous fungal genera has emerged as a cornerstone of green agriculture,
owing to its roles in growth promotion, antagonism, and environmental resilience. Beyond these well-
established taxa, many newly described and understudied fungal species offer promising functions
in plant productivity and biological control.

Conventional profit-driven farming has long followed a take—make—waste paradigm,
accelerating resource depletion and waste accumulation. Integrating fungi within a circular
bioeconomy provides a pathway to retain biological value, regenerate nutrients, and reduce system-
level inefficiencies. Advances in molecular technologies have expanded the functional capabilities
and precision application of fungal strains; however, progress remains constrained by societal and
regulatory barriers surrounding genetically modified organisms.

Despite major strides in fungal genomics, microbial ecology, and formulation science,
translating laboratory success into consistent field performance remains a significant bottleneck.
Constraints arise from scalability challenges, high production costs, regulatory fragmentation, and
limited farmer adoption. Industrial-scale fungal biopesticide production requires high-density
sporulation, long-term viability, and formulation stability under variable storage and transport
conditions. Many strains exhibit reduced sporulation, inconsistent metabolite profiles, and
diminished competitive fitness when shifting from controlled laboratory cultures to industrial
fermentation systems. These physiological shifts often compromise rhizosphere competence and soil
colonisation following field application.

Production economics remain among the most significant limitations. Fungal biopesticides
require sterilised fermentation facilities, specialised downstream processing, drying and stabilisation
steps, cold-chain storage, and rigorous quality control. These contribute to cost structures that surpass
those of conventional synthetic pesticides. In addition, the biological nature of fungal strains often
limits intellectual property protection, thereby constraining private-sector investment. As a result,
innovations frequently stall during early commercialisation phases, especially given the longer
timeframes required for biologicals to establish efficacy compared with systemic chemical pesticides.
Regulatory complexity further impedes widespread deployment. Although fungal inoculants are
broadly regarded as environmentally safe, they are still subject to extensive toxicological, ecological,
and non-target risk assessments. Regulatory pathways vary widely across jurisdictions, with some
countries evaluating fungal products under chemical pesticide rules while others adopt microbial- or
fertiliser-specific frameworks. This inconsistency delays approval timelines and increases
compliance costs.

Despite these challenges, the potential of fungi in soil health restoration, crop resilience, and
sustainable disease management remains profound. Fungi should no longer be perceived solely as
biocontrol agents. They are fundamental ecological engineers that sustain nutrient cycling, enhance
plant adaptability, and contribute to the regeneration of agricultural landscapes. Harnessing their full
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potential will require integrated agronomic practices, supportive regulatory environments, strategic
investment, and continued scientific innovation.
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