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ARTICLE INFO ABSTRACT

Keywords: The effect on the photovoltaic properties of the TiO2-based cadmium sulfide (CdS) quantum dot sensitized solar
Carbon quantum dots cells (QDSSCs) was investigated by incorporating carbon quantum dots (CQDs) synthesized via a cold atmo-
CQD spheric plasma method. CQD incorporated photoanodes were characterized by SEM, TEM, XRD, Raman spec-
z;(;zg%jsssghm(’amde troscopy, FTIR spectroscopy, PL spectroscopy, UV-visible spectroscopy, and Mott-Schottky techniques. TEM

measurements revealed that the CQDs were mostly spherical with an average diameter of ~3 nm. The presence
of CQDs in the TiO, photoanode was confirmed by both Raman spectroscopy and FTIR measurements. The
findings from the PL and IPCE analyses showed that CQDs functioned as an energy down-converting material,
broadening the responsive range of the CdS QDSSC to encompass higher energy photons. QDSSCs fabricated with
CQDs-incorporated photoanode, a sulfide redox couple, and a Pt counter electrode exhibited a 31.3 %
enhancement in power conversion efficiency, leading to a 1.68 % efficiency compared to the 1.28 % efficiency of
the pristine TiO2 photoanode.

Quantum dot sensitized solar cells

1. Introduction

Quantum dot sensitized solar cells (QDSSCs) are a class of photo-
voltaic devices belonging to the third generation of solar cells, targeting
higher power conversion efficiencies (PCEs) and cost effectiveness
[1-3]. QDSSCs employ quantum dots (QDs) as the active light harvester.
Quantum dots are zero-dimensional, semiconducting nanocrystals with
many interesting optoelectronic features, such as multiple exciton gen-
eration, tunable bandgaps, high molar extinction coefficients, etc. [4-6].
QDSSCs strategically utilize the QDs’ ability to produce electron-hole
pairs upon light illumination for active photocurrent generation. Ac-
cording to the National Renewable Energy Laboratory (NREL) database,
quantum dot solar cells currently have a best research cell efficiency of
19.1 % [7]. QDSSCs reportedly present a much higher theoretical effi-
ciency limit, surpassing the Shockley-Queisser limitation of single
junction solar cells [3,8,9]. Hence, QDSSCs have a great potential for
highly efficient photovoltaics with continued research.

A typical QDSSC is composed of a photoanode, a counter electrode
(CE), and an electrolyte layer between these two electrodes.

Photoanodes are usually developed with a film of wide bandgap semi-
conductor (e.g., TiO2, ZnO, SnOy, etc.), which is sensitized with low
bandgap QDs (e.g., CdS, PbS, CdSe, etc.) [5,6]. CEs such as CuS, Pt, PbS,
and carbon-based materials are largely employed in QDSSCs [6,10]. The
electrolytes can be in the liquid, semi-solid, or solid forms. Polysulfide is
a popular choice of electrolytes in QDSSCs [6,11]. There are many
ongoing research studies related to different components of QDSSCs,
including pursuing novel materials, interfacial engineering, and new
technological adaptations [5,6,11]. When photoanodes are considered,
flaws such as limited electron generation, higher charge recombination
losses, and insufficient stability need to be addressed to achieve satis-
factory performance [5,12,13]. Nano structuring, passivation layers,
core-shell structures, co-sensitization, doping, incorporating light scat-
tering materials, etc., are some strategies adopted for these purposes [5,
6,13,14]. The present study investigates the incorporation of carbon
quantum dots (CQDs) in the TiO, photoanode as a strategy to enhance
the photovoltaic performance of CdS QDSSCs by boosting photocurrent
generation in the photoanode.

Zero-dimensional (0 D) carbon nanomaterials, such as carbon
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quantum dots (CQDs) and graphene quantum dots (GQDs), have gained
recognition for their adaptability and impressive characteristics,
including tunable optical properties, fluorescence, electroluminescence,
up-conversion photoluminescence, chemical inertness, thermal stabil-
ity, electrical conductivity, facile surface functionalization, nontoxicity,
biocompatibility, etc. [15-17]. CQDs were first discovered by Xu et al.,
in 2004 while purifying single-walled carbon nanotubes (SWNTs) [18,
19]. Numerous studies conducted since then have demonstrated their
tremendous potential across a broad range of disciplines, including en-
ergy conversion, energy storage, optoelectronics, catalysis, electro-
chemical, optical, and biosensors, bioimaging, drug delivery, and
environmental remediation [15,19-23]. CQDs usually appear as spher-
ical, rod-like, or irregular structures less than 10 nm in size. Their
properties could be tailored with surface modifications and doping by
controlling the synthesis techniques, conditions, and precursors
accordingly. CQDs often contain both crystalline and amorphous re-
gions, with a center region mostly composed of sp>-hybridized graphitic
structures [20,22,24]. CQDs could be synthesized via both top-down and
bottom-up routes. Top-down techniques, such as arc discharge, laser
ablation, electrochemical oxidation, etc., involve chemical or physical
breakdown of larger structures to obtain CQDs. Controlling the size and
morphology of CQDs synthesized from these methods could be chal-
lenging. On the other hand, bottom-up techniques, such as pyrolysis,
microwave  synthesis, hydrothermal/solvothermal  synthesis,
template-based synthesis, etc., create CQDs starting from small molec-
ular precursors, giving better control over their size, shape, and surface
chemistry [16,20,25].

CQDs have a high potential for photovoltaic applications, such as
QDSSCs [26-28], dye sensitized solar cells [29-31], organic solar cells
[32,33], perovskite solar cells [34,35], Si junction solar cells [36], etc.,
due to their excellent optoelectronic properties. CQDs are not only
capable of acting as sensitizers and co-sensitizers, they also can behave
as dopants, donors, acceptors, charge transport materials, energy
down-shift materials, etc., in these settings [24,37]. According to the
literature, the current highest PCE for the CQD mono-sensitized QDSSCs
is 1.36 % by Riaz et al. for N and S co-doped CQD sensitizers [26,27,38,
39]. Additionally, there were few records of studies related to the
incorporation of CQDs in CdS QDSSCs similar to the present study [40,
41]. According to Zhao et al., the incorporation of Er-doped CQDs in
TiO2/CdS photoanodes led to widening of the light absorption range and
speedy electron transport. They achieved 0.59 % PCE by constructing
QDSSCs with these photoanodes and polysulfide electrolyte and CusS
CE, a far greater value than the 0.34 % of the devices without CQDs.
Here, the Er-doped CQDs were synthesized by backflow and hydro-
thermal methods using triethylenetetramine hexaacetic acid as the
precursor and erbium oxide as the dopant, and the technique for CQDs
incorporation was immersing TiO, photoanodes in aqueous Er CQDs
solution [41]. Another investigation by Huang et al. reported that the
N-doped CQD incorporation improved the PCE of CdS QDSSCs up to
0.606 % from 0.430 %. The N-doped CQDs were synthesized by the
hydrothermal method using cotton fiber as the precursor and urea as the
dopant, and the CQD incorporation in TiO, photoanodes was achieved
by immersing them in the CQD solution for 24 h [40]. In contrast to
these studies, the present study explores a different route for both syn-
thesis and incorporation of CQD in the photoanode. Here, CQDs are
mixed with TiO, paste before fabricating the TiO, layer, instead of
dipping already prepared TiO, photoanodes in CQD solutions as in the
literature.

Moreover, the CQDs employed in this study were synthesized from
1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt hydrate (PTSA) using a
cold atmospheric plasma method [42]. In essence, plasma is an ionized
gas made up of ions, electrons, reactive species, atoms, photons, and
other elements. It is regarded as the fourth state of matter [43,44].
Plasma-based technologies are gaining popularity for the synthesis of
nanomaterials because of their adaptable, cost-effective, and environ-
mentally friendly nature [43,45]. Cold plasmas generated at ambient
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temperature and pressure are particularly advantageous as they do not
necessitate costly and sophisticated instruments [42,43]. The present
study includes a detailed analysis of the performance of cold atmo-
spheric plasma synthesized CQD incorporated TiO2/CdS photoanodes,
and the corresponding QDSSCs fabricated by assembling with Pt CE and
polysulfide electrolyte.

2. Materials and methods
2.1. Materials used

1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt hydrate (PTSA),
cadmium (II) chloride (99.99 %, Sigma Aldrich), fluorine doped tin
oxide (FTO) coated glass (7 Q cm’z, Solaronix), methanol (99.8 %,
Sigma Aldrich), nitic acid (70 %, Sigma-Aldrich), polyethylene glycol
(99.8 %, Sigma Aldrich), potassium chloride (99 %, Aldrich), sodium
sulfide hydrate (>60 %, Sigma Aldrich), sulfur (99 %, Daejng), titanium
dioxide P25 powder (Degussa), titanium dioxide P90 powder (Evonik),
and Triton X-100 (Sigma Aldrich) were used as received without any
purification.

2.2. Synthesis of CQD

CQDs were synthesized according to a procedure reported by
Weerasinghe et al. [42]. First, 6 g of 1,3,6,8-pyrenetetrasulfonic acid
tetrasodium salt hydrate was dissolved in 100 mL of ultra-pure water.
The prepared solution was placed under the plasma nozzle of an atmo-
spheric air plasma system (Nanjing Suman Plasma Technology Model
PG-1000 Z/E) connected to an air pump unit (Nanjing Suman Plasma
Technology Model FP-290). The solution was treated with plasma for 10
min, with a continuous atmospheric air flow of 240 L min™! in the sys-
tem. Then, the solution was dialyzed to remove large particles and
unreacted materials [42].

2.3. Fabrication of photoanodes

TiO4 photoanodes were fabricated by developing two layers of TiO;
P90 and a single layer of TiO3 P25 on well-cleaned FTO glass substrates.
The TiO4 P90 layers were fabricated by spin coating a paste prepared by
grinding 0.25 g of TiO5 P90 with 1 ml of 0.1 M nitric acid (HNO3), at
3000 rpm for 1 min. This was followed by sintering at 450 °C for 45 min
in a muffle furnace. Then, a layer of TiO, P25 was constructed on top of
TiO4 P90 using the doctor blade method. For this, a paste was prepared
by grinding 0.25 g of TiO3 P25 with 1 drop of Triton-X 100 (~50 pl), 1
drop of PEG (~50 pl), and 1 ml of 0.1 M HNOs. In the case of CQD
incorporated photoanodes, different amounts (25-100 ul) of CQD so-
lution (0.02 w/v%) were added to the TiO P25 paste. Then, the doctor-
bladed photoanodes were sintered at 450 °C for 45 min. Obtained TiO2
photoanodes were sized to get an active surface area of ~0.16 cm 2,
followed by sensitization with CdS quantum dots using the successive
ionic layer adsorption and reaction (SILAR) method. For this, 10
repeated cycles of dipping in 0.1 M CdCl; (aq), washing with distilled
water, dipping in 0.1 M NayS (aq), washing, and drying were conducted.
The CdS sensitized photoanodes were finally dried at 100 °C [46].

2.4. Fabrication of QDSSCs

The CdS QDSSCs were prepared by clipping developed photoanodes
with a Pt CE and injecting polysulfide electrolyte in between them. The
polysulfide electrolyte was prepared with sulfur (2 M), Na,S (0.5 M),
and KCI (0.2 M) in a mixture of deionized water and methanol in the
ratio of 3:7 (v/v) [46].

2.5. Material characterization

Morphological studies of photoanodes were carried out with
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Scanning Electron Microscopy (SEM) images (ZEISS EVO), and the CQDs
and the photoanode materials were also analyzed with Transmission
Electron Microscopy (TEM) images (AJEOL 2100 TEM). Structural
analysis of photoanode materials was conducted by X-ray diffraction
(XRD) data obtained from a Bruker D8 advanced eco X-ray diffraction
system with Cu Ka radiation (A = 1.54060 A). A Raman spectroscopy
analysis was conducted with a Renishaw basis Raman microscope
operated with 514 nm lasers. Surface of the CQD incorporated photo-
anode was examined by Thermo Scientific TM ESCALAB Xi + X-ray
photoelectron spectrometer (XPS). Attenuated total reflection infrared
(ATR-IR) spectra of the photoanode materials were recorded using a
Nicolet iS50 (Thermo Scientific) FTIR instrument. Optical absorption
spectra were recorded using a Shimadzu 2450 UV-Vis spectrophotom-
eter. The photoluminescence (PL) emission spectra were recorded using
a HORIBA Duetta spectrofluorometer. Mott-Schottky measurements
were taken with a three-electrode setup comprising a photoanode
(working electrode), a Pt wire (CE), an Ag/AgCl standard reference
electrode, and 0.05 M aqueous NaySO4 electrolyte, using a Zahner
Zennium electrochemical workstation at a frequency of 1.0 kHz.

2.6. Device characterization

Current density-voltage (J-V) characterizations of QDSSCs were
carried out under simulated sunlight (100 mW cm 2, AM1.5), using an
Oriel Newport LCS-100 solar simulator and a Metrohm Autolab poten-
tiostat/galvanostat. The incident photon-to current conversion effi-
ciency (IPCE) measurements were conducted using a PVE300
photovoltaic QE system with a TMC 300 monochromator.

EHT =20.00 kV
WD = 85mm

200 nm EHT =20.00 kV
WD = 8.0 mm
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Electrochemical Impedance Spectroscopy (EIS) analysis of the QDSSCs
was performed using a Zahner Zennium electrochemical workstation.

3. Results and discussion

3.1. Morphological and structural characteristics of CQD and TiO»
photoanodes

Fig. 1 (a) shows a photograph of the CQD incorporated TiO, pho-
toanode (TiO2/CQD), while Fig. 1 (c) shows a surface SEM image of the
same photoanode. Meanwhile, Fig. 1 (b) and (d) show a photograph and
a surface SEM image of the TiO2 photoanode taken in a similar setting.
TiO2/CQD photoanodes appeared off-white compared to the bright
white color of pristine TiO, photoanodes. According to Fig. 1(c) and (d),
the agglomeration of particles in the TiO5/CQD photoanode appears to
be higher, potentially resulting in a rise in the surface roughness of the
electrode [47]. However, significant changes were not observed in TiO4
particles due to this incorporation of CQD, when examined under higher
magnification.

Further characterization of the CQDs and TiO5/CQD photoanode
materials was carried out with Transmission Electron Microscopy (TEM)
images and Image-J software. It was realized that the CQDs were mostly
spherical with an average diameter of ~3 nm, from the TEM image of
CQDs in Fig. 2 (a). The interplanar (d) spacing value of CQDs estimated
from the visible lattice fringes in the image was 0.24 nm, which could be
attributed to the (1120) lattice plane of graphene structures, respec-
tively [26,30,42]. Fig. 2 (b) shows a TEM image of TiO2/CQD photo-
anode materials. CQDs are marked with dashed circles in these images.

Signal A = SE1
Mag = 100.00 K X

Date :25 Mar 2024
Time :10:30:58

Signal A = SE1
Mag = 100.00 K X

Date :25 Mar 2024
Time :10:00:58

Fig. 1. Photographs of (a) TiO,/CQD and (b) TiO, photoanodes, and SEM images of (c¢) TiO,/CQD and (d) TiO, photoanodes.
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According to this analysis, the sizes of TiO5 nanoparticles were much
larger (>20 nm) compared to CQDs (~3 nm). The d-spacing values
estimated from visible lattice fringes in Fig. 2 (b) were 0.35 and 0.33 nm,
which could be attributed to (101) lattice planes of anatase and (110)
lattice planes of rutile TiO,, respectively [48].

3.2. XRD, Raman, and XPS analysis of TiO2 photoanodes

The X-ray diffraction (XRD) analysis of TiO, and TiO5/CQD photo-
anode materials was carried out to identify any structural changes due to
the incorporation of CQDs. These XRD patterns are displayed in Fig. 3,
together with reference patterns for anatase and rutile crystal phases of
TiO4 [49]. The set of XRD peaks detected from both TiO, and TiO5/CQD
XRD patterns closely resembled each other, with no apparent diffraction
from CQDs, as evident from Fig. 3. This could be due to overlapping with
TiO4 peaks or amorphous nature, and extremely low percentage of CQDs
present in the mixture compared to TiO [50-52]. In TiO5, both anatase
(AMCSD 0011765) and rutile (AMCSD 0011762) phases have tetragonal
crystal structures; however, anatase belongs to the space group I4;/amd
(141), whereas rutile belongs to the space group P4,/mnm (136) [49,
53]. The presence of both anatase and rutile phases of TiO, in the
analyzed materials was confirmed by comparing with the corresponding
reference patterns. XRD peaks identified around 25.3°, 37.0°, 37.9°,
38.6°, 48.0°, 54.0°, 55.1°, 62.8°, 69.0°, and 70.2° angular positions in
both patterns correspond to (101), (103), (004), (112), (200), (105),
(211), (204), (116), and (220) crystal planes of anatase TiO» structure,
respectively. Meanwhile, XRD peaks identified around 27.4°, 36.0°,
41.3°, 44.0°, 54.2°, 56.6°, 64.0°, 69.0°, and 75.1° angular positions in
both patterns correspond to (110), (101), (111), (210), (211), (220),
(310), (301), and (215) crystal planes of rutile TiO, structure, respec-
tively [49,54]. The weight fraction of the anatase phase in the analyzed
materials was determined from the following relation proposed by Spurr
and Myers,

1
fe—
1+1.26 Iﬁ M
Ia
where f is the weight fraction of anatase, I, and Iy are the intensity of the
strongest reflections of respective anatase and rutile phases [55]. The
strongest reflection of the anatase phase was observed with the (101)
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crystal plane, while for the rutile phase it was with the (110) crystal
plane. By substituting respective intensities of these peaks in the above
relation, the weight percentage of the anatase phases in TiO, and
TiO2/CQD XRD was determined as 79.8 % and 79.6 %, respectively.
Thus, these materials were predominantly in the anatase phase. Addi-
tionally, the inter-planar distances (d) and the average crystallite sizes
(L) for the lattice planes of anatase (101) and rutile (110) of these ma-
terials were estimated from the Bragg and Scherrer equations mentioned
below.

ni = 2dsiné (2)
K2
- pcos o 3

where n is the order of diffraction, 1 is the wavelength (CuKal - 0.15406
nm) of the X-ray source, d is the inter-planar distance between lattice
planes, ¢ is the Bragg angle, L is the average crystallite size, K is the
shape factor (0.9), and f is the full-width half maximum (FWHM) of the
diffraction peak (in radians) [53,56]. The estimated d-spacing and
average crystallite sizes are tabulated in Table 1. The respective
d-spacing values of anatase (101) and rutile (110) planes were 0.35 and
0.33 nm for both TiO, and TiO,/CQD. This agrees with the d-spacing
values estimated from the previous TEM analysis (Fig. 2). The average
crystallite sizes calculated for anatase (101) planes for TiO and
TiO2/CQD were 22.46 and 22.50 nm, respectively. Meanwhile, the
average crystallite sizes calculated for rutile (110) planes for TiO, and
TiO2/CQD were 31.19 and 31.50 nm, respectively. Thus, no significant
alterations in the TiOq crystal structures or phases were detected as a
result of the CQD incorporation.

Raman spectroscopy is a popular technique for carbon-related

Table 1
Calculated crystallographic parameters for TiO, and TiO,/CQD.

Anatase (101) Rutile (110)

20 d-spacing L 20 d-spacing L
(nm) (nm) (nm) (nm)
TiOy 25.27  0.35 22.46 27.41  0.33 31.19
TiO2/ 25.27 0.35 22.50 27.40 0.33 31.50
CcQD

(a) TiO,/CQD

(b) TiO,

o iiass E . ; . . . . : . .
T =S g < =F oo =
| geg § & § 8§ &

; — —— L — —— —
(d) Rutile 2 _ _
T S ~ = - T = P =
= 8T @& Q4 gz oy q
| [ 8% & & &8s %= &

15 20 25 30 40 45 50 55 60 65 70 75

20(degree)

Fig. 3. XRD patterns of (a) TiO,/CQD, (b) TiO,, and reference patterns of (c) anatase and (d) rutile TiO, [49,54].
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Fig. 2. TEM images of (a) CQD and (b) TiO2/CQD photoanode materials.

material analysis due to its high sensitivity towards carbon materials
[57]. Fig. 4 shows the Raman spectra of (a) TiO», (b) TiO2/CQD, and (c)
CQD. It is well understood that graphitic carbon structures, in particular,
could be evaluated from two characteristic Raman bands, which often
appear around 1350 cm! (D band) and 1580 em! (G band) [58,59].
The G band results from in-plane stretching E»; symmetrical mode vi-
brations of sp? carbon atoms, while the D band results from defect and
disorder-activated A1g symmetrical mode vibrations in the hexagonal
aromatic ring [60-62]. Meanwhile, bands characteristic of both anatase
and rutile TiO5 phases could be detected from the Raman spectra; thus, it
can also be utilized as a tool for investigating TiO, structures [63]. Fig. 4
(c) shows the Raman spectrum acquired for CQDs. The bands around
1212 cm™! could be from the molecular vibrations from sp® carbon
bonds [64,65]. The dominant bands around 1339 and 1623 cm ! were

identified as the usual D and G bands of carbon structures. The shifting
and widening of the bands could be a result of overlapping Raman bands
due to various defects and functional groups present in CQDs [59,62,65,
66]. Raman spectra acquired for TiO5 and TiO2/CQD photoanode sur-
faces are shown in Fig. 4(a) and (b). Raman bands observed around 145,
199, 399, 520, and 640 cm™~ ' were attributed to the Eq, Eg, Big, Alg
and/or Big, and Eg vibrational modes of anatase TiO», and the Raman
band observed around 445 cm™! was attributed to the Eg vibrational
mode of rutile TiOy in both of these spectra [63,67]. Due to highly
intense Raman bands of anatase TiO5 and a much larger proportion of
TiO3 in the system, Raman bands of CQDs were difficult to distinguish
from the given scale. Hence, the 1000-1850 cm ™! region in each spec-
trum was enlarged and shown as insets in Fig. 4(a) and (b). The presence
of CQDs in the TiO5/CQD photoanode was confirmed by the appearance

(@ TJo (b) - -
8000 { < 8000043 Ti0,/CQD)
_ 1638
#6000 - ©60000 1290
i :
) g
Z4000 4 240000 -
(72} w
[ [
2 2
c £ 1000 1200 1400 1600 1800
= 20004 - 1000 1200 1400 1600 1800 20000 4 .
o o R o o3
B & B 3
0 e o e ]l e~ ™ e
200 400 600 800 1000 1200 1400 1600 1800 200 400 600 800 1000 1200 1400 1600 1800
Raman Shift (cm‘l) Raman Shift (cm'1)
“
Bl
8
2
v
<
[
E
1100 1200 1300 1400 1500 1600 1700 1800

Raman Shift (cm™")

Fig. 4. Raman spectra of (a) TiO,, (b) TiO,/CQD, and (c) CQD.
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of Raman bands around 1290 and 1638 cm ™}, corresponding to the D
and G band regions of CQDs, whereas such bands were not present in the
TiO4 spectrum. Another interesting observation from these spectra was
the higher intensity (no. of counts) of the Raman bands in the TiO5/CQD
photoanode compared to the normal photoanode. This was likely due to
an amplification of Raman signals influenced by CQDs. Thus, the CQDs
employed in this study have potential for future applications similar to
graphene-enhanced Raman scattering (GERS) and surface-enhanced
Raman spectroscopy (SERS) [68-70].

X-ray Photoelectron spectroscopy (XPS) was performed to identify
the potential chemical states and the elements on the TiO2/CQD pho-
toanode surface [71,72]. According to the extracted data, the primary
elements present on the photoanode surface were C, Ti, and O, with their
respective atomic compositions around 23.74 %, 24.14 %, and 52.12 %.
The full XPS survey and the high-resolution scans of C 1s, Ti 2p, and O 1s
are displayed in Fig. 5(d)-(a), (b), and (c), respectively [73]. The XPS
peaks detected from the deconvoluted high-resolution C 1s scan (Fig. 5
(a)) were assigned to C bonded as C sp2 (284.4 eV), C sp3 (284.8 eV),
C-0 (286.0 eV), and C=0 (288.2 eV) [66,74-77]. These responses could
be a result of CQDs in the photoanode and residual products from
carbon-containing additives used in TiO, paste preparation. Addition-
ally, three XPS peaks were identified from the deconvoluted
high-resolution O 1s spectrum (Fig. 5 (c)), and they were assigned to O
bonded as O-Ti (529.5 eV), O-C/O=C (530.0 eV), and O-H (531.3 eV)
[26,72,76]. These responses could be resulting from TiOy,
oxygen-containing functional groups in CQDs, residual materials, and
adsorbed H20. The two prominent peaks observed in the deconvoluted
Ti 2p spectrum (Fig. 5 (b)) were assigned to the spin-orbit doublet of
Ti** with a characteristic splitting energy of 5.7 eV: Ti*" 2p3 5 (458.4
eV) and Ti*t 2p1/2 (464.1 eV). In addition, the much smaller peak
around 458.1 eV (Ti3+ 2p1,2) was assigned to defect-related Ti** in the
TiO4 lattice [72,78,79].

Physica B: Condensed Matter 721 (2026) 418050

3.3. FTIR and UV-visible absorption analysis of CQD and TiO»
photoanodes

Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR)
spectroscopy is a convenient technique with minimum sample prepa-
ration, ideal for identifying chemical bonds and surface functional
groups based on the IR-induced molecular vibrations [80,81]. The
ATR-FTIR spectra recorded for CQDs, TiOo, and TiO2/CQD materials are
displayed in Fig. 6. The vibrational bands observed around 2360 and
2342 cm ! in all three spectra are characteristic of the atmospheric CO,
[82]. The band observed around 3642 and the broad band around 3362
cm™! in the CQD spectra could be attributed to the stretching vibrations
of O-H bonds, while the band around 2907 cm™! could be attributed to
the stretching of C-H [27,30]. The sharp band appearing around 1647
cm™! could be a combined effect of stretching of C=C, C=0, and C=N
bonds, and bending of N-H bonds [31,82,83]. The FTIR band around
1497 cm™! could be assigned to bending of C-H bonds, while the band
around 1362 cm™! could arise from bending of O-H, bending and
deformation of C-H, and stretching of S=0 bonds [84-86]. The vibra-
tional band around 1202 cm™! could be attributed to C-H wagging and
stretching vibrations of C-O and C-N bonds, while the band around 657
cm ! could be a result of bending of C-H bonds [84,87,88]. In the FTIR
spectrum of TiO9, a broad band was observed around 3373 cm~! due to
stretching vibrations of O-H bonds. Other FTIR bands observed around
1710, 1653, 1559, 1399, 1300, 1100, and 649 cm ™! could be assigned to
C=O0 stretching, C=C stretching, O-H bending in absorbed hydroxyl
groups, O-H bending, C-O stretching, and C-O stretching, respectively
[89-91]. The influence of functional groups in CQDs was apparent in the
FTIR spectrum of TiO2/CQD, when compared with the FTIR spectrum of
TiO,, Notably, a higher band intensity around 1705 and 1221 cm™!
regions in the FTIR spectrum of TiO,/CQD was observed, indicating the
presence of additional vibrational bands from CQDs around 1647 and
1202 cm™! regions.

The optical absorption of photovoltaic materials is a critical
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Fig. 5. XPS spectra of (a) C 1s, (b) Ti 2p, (c) O 1s, and (d) full scans.
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parameter for the operation of QDSSCs. Hence, the optical properties of
the CQDs and prepared TiOs photoanodes were evaluated from their
UV-visible spectra displayed in Fig. 7. The optical behavior of CQDs was
further evaluated using the photoluminescence (PL) emission spectra of
CQDs, as shown in Fig. 7 (b). The absorptions related to electronic
transitions in the core and edge regions, and the surface states are
usually noticeable in the UV-visible spectra of CQDs [24,27]. Four main
absorption regions were identified around 240 nm, 270 nm, 350 nm, and
480 nm in the UV-visible spectrum of CQD in the present study (Fig. 7
(a)), which could be resulting from n-n* transition of aromatic sp2 car-
bons, n-x* transition of C=N bonds, n-n* transition of C=0 bonds, and
electronic transitions of various surface states and functional groups,
respectively [31,92-94]. The PL emission spectra of CQDs were recor-
ded by exciting with higher energy photons in the range of 350-390 nm,
as shown in Fig. 7 (b). According to these spectra, the emission from
excited CQDs occurred in the 370-650 nm range with a peak emission
around 405 nm. Additionally, the emission peaked around 425, 450, and
515 nm. When increasing the excitation wavelength, the intensity of the
emission spectrum also increased; however, the pattern of the emission
spectra was maintained. When the CQDs were excited with higher en-
ergy photons in the UV region, the resulting emission was with lower
energy, spreading towards the visible region. Thus, the PL emission
spectra show the energy down conversion capability of CQDs [30,95].
Fig. 7 (¢) and (d) show UV-visible spectra of TiO; and TiO2/CQD pho-
toanodes, which were recorded before and after sensitizing with CdS
QDs. As evident from these spectra, TiO2 shows a strong absorption in
the region <400 nm, while CdS QDs show a strong absorption in the
400-600 nm region, with an absorbance edge around 460 nm. A slight
increase in absorbance in the 410-490 nm region was observed due to
the incorporation of CQDs in the TiOy photoanode [96]. It was also
evident that CQDs improved the light absorption capacity of the
TiO2/CdS photoanode, which could lead to elevated electron-hole pair
generation [24].
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3.4. Photovoltaic performance of the QDSSCs

A schematic diagram for the photovoltaic devices investigated in this
study is given in Fig. 8. Photoanodes were developed with two TiOq
compact layers on top of FTO conducting glass substrates, followed by a
CQD-incorporated mesoporous TiOs (TiO2/CQD) layer. These photo-
anodes were sensitized with CdS QDs using the SILAR method. Upon
light illumination, the electron-hole pair generation in CdS increases
substantially. The excited electrons are injected into the conduction
band (CB) of TiOs, due to the favorable band alignment between the CBs
of TiO5 and CdS. These electrons are then transferred to the external
circuit through the FTO layer and would ultimately reach the CE at the
opposite end. Meanwhile, the electrolyte will provide electrons to the
holes left in CdS QDs, regenerating them. The electrolyte species that get
oxidized here are then transported towards the CE, where they are
reduced back by accepting electrons from the CE. This process continues
under light illumination, generating a continuous current flow through
the circuit. However, some losses could be expected in these systems due
to recombination reactions or back electron transfer processes at the
interfaces [6,13,46]. The impact of CQD incorporation within the TiO5
mesoporous layer for the performance of CdS QDDSCs will be discussed
in detail in the subsequent sections.

In order to evaluate the photovoltaic performance of the modified
photoanodes, the current density-voltage (J-V) characteristics of the CdS
QDSSCs were assessed under simulated sunlight irradiation of 100 mW
cm 2. The power conversion efficiency (i) of photovoltaic devices is
expressed as,

— Jse X Voo X FF 4 5004 o)
P;

where Jgc is the short circuit current density, Voc is the open circuit

voltage, and FF is the fill factor of the device [13,97]. During the study,

the amount of CQDs incorporated in the photoanodes was varied to

discover the optimum CQD amount associated with the best photovol-

taic response. The calculated mean and standard error values of
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Fig. 8. Schematic diagram of the fabricated TiO,/CQD/CdS/polysulfide electrolyte/Pt QDSSC.



W.1. Sandamali et al.

Table 2
Photovoltaic parameters of QDSSCs assembled with TiO,/CdS and TiO,/CQD/
CdS photoanodes.

Cells  CQD (ul) per Voc Jsc (mA FF (%) Efficiency
0.25gof TiO,  (mV) cm™2) (%)
P25
N 0 464 + 3 7.78 +£0.17 35,5+ 0.7 1.28 +£0.03
s1 25 468 + 4 8.44 £0.18 358+ 0.4 1.41 +£0.02
S2 50 478 + 2 9.24 +0.10 345+ 0.5 1.52+0.02
S3 75 481 + 4 10.07 + 0.14 348+ 0.8 1.68+0.03
sS4 100 483 + 4 9.81 +0.22 346+ 0.6 1.64+0.02

photovoltaic parameters acquired from multiple CdS QDSSCs with CQDs
(S1-S4) and without CQDs (N) are tabulated in Table 2. When fabri-
cating S1-S4 devices, the amount of CQDs was varied between 25 and
100 pl per 0.25g of TiO; in the TiOy P25 paste. It was observed that the
Voc of the devices kept increasing with the amount of CQDs, while the
Jsc increased up to 75 pl of CQDs, and then started declining. Conse-
quently, the best photovoltaic response was gained from the QDSSC
prepared with 75 pl of CQDs (S3). When the performance of S3 devices
was compared with the reference QDSSCs without CQDs (N), the FF was
somewhat low; however, all the other parameters were improved. This
was reflected in the current density-voltage (J-V) curves shown in Fig. 9
(a). The Vo of the S3 devices was improved by 3.7 % from 464 mV (N)
to 481 mV (S3), and the Jgc was notably increased by 29.4 % from 7.78
mA cm 2 (N) to 10.07 mA cm 2 (S3). Accordingly, the overall 5 of the S3
was improved by 31.3 % from 1.28 % (N) to 1.68 % (S3). Hence, the
incorporation of CQDs in the TiO, photoanode could be suggested as an
effective technique to enhance the photovoltaic performance of the CdS
QDSSCs.

In order to understand the mechanism behind elevated photocurrent
generation in the CQD incorporated devices, the incident photon con-
version efficiency (IPCE) measurements were carried out. IPCE or the
external quantum efficiency is a measure of photogenerated electrons
per incident photons at a given wavelength [98,99]. The relationship
between the photogenerated current density and IPCE can be expressed
as,

1240 x Jsc)

IPCE (%) = ( Gx) x 100% (5)

where Jg¢ is the current density obtained by integrating the product of
incident photon flux density, 1 is the wavelength of the incident light,
and I; is the power of the incident light [97-100]. For the present study,
IPCE data were recorded in the 300-650 nm wavelength range, as
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shown in Fig. 9 (b). A higher IPCE percentage was observed from the CdS
QDSSC incorporated with CQDs, indicating better incident photon
conversion rate [40,41]. This reaffirms the findings of the current
density-voltage characterization, where a higher Jsc was reported with
CQD incorporation. Most importantly, a negative shift was observed in
the highest responsive wavelength region with the addition of CQDs.
The IPCE of the CQD incorporated device peaked around 370 nm, while
the IPCE of the device without CQDs peaked around 465 nm. This
indicated an elevated conversion of higher energy photons to electrons
in the CQD incorporated CdS QDSSCs. As the conditions for CdS QD
sensitization remain the same for both devices, this was caused by the
CQDs in the photoanode. CQDs act as energy down-conversion materials
here, where they absorb higher energy photons and emit lower energy
photons, which fall in the strong absorption region of CdS QDs [41,
101-103]. Hence, CQDs promote the photocurrent generation of CdS
QDSSCs by effectively broadening the light absorption range towards
the higher energy photons.

3.5. EIS characterization and Mott-Schottky analysis

Electrochemical impedance spectroscopic (EIS) measurements are
frequently used in QDSSC studies to investigate interfacial charge
transfer kinetics within these devices [46,104,105]. For the current
study, EIS measurements of CdS QDSSCs, with and without CQDs, were
taken under light illumination. The recorded EIS data were fitted with
an equivalent electrical circuit model using the Zahner Analysis soft-
ware. The resulting Nyquist plots and the equivalent electrical circuit
model used for this study are shown in Fig. 10 (a), and the Bode phase
plots are shown in Fig. 10 (b). In addition, the estimated EIS parameters
are tabulated in Table 3. Two overlapped semicircles were observed in
the obtained Nyquist plots, as shown in Fig. 10 (a). The first semicircle in
the high-frequency region corresponds to the charge transfer kinetics at
the CE/electrolyte interface, while the second semicircle in the
mid-frequency region corresponds to the charge transfer kinetics at the
photoanode/electrolyte interface. The elements in the equivalent circuit
model represent the series resistance (Rg) of the device, the charge
transfer resistance (Ricr) and the chemical capacitance (CPE;) at the
CE/electrolyte interface, and the charge transfer resistance (Ract) and
the chemical capacitance (CPE,) at the photoanode/electrolyte interface
[46,105]. According to the EIS parameters mentioned in Table 3, both Rg
and Ryt values improved in the case of the CQD incorporated device;
however, a slight rise in the Rjcr value was also observed. Most
importantly, a significant reduction of 32.7 Q was observed in the Rycr,
the charge transfer resistance at the photoanode/electrolyte interface.
This indicates more efficient charge transfer at the CQD incorporated
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Fig. 9. (a) Current density-voltage (J-V) characteristics, and (b) IPCE spectra of QDSSCs assembled with TiO,/CdS and TiO,/CQD/CdS photoanodes.
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Table 3
EIS parameters of QDSSCs assembled with TiO, and TiO,/CQD photoanodes
under illuminated conditions.

Photoanode Rs (Q) Ry (Q) Ryt (Q) 7 (ms)
TiOy 11.60 Q 61.5Q 92.8 Q 8.3
TiO»/CQD 8.84 Q 63.8 Q 60.1 Q 9.1

photoanode/electrolyte interface, which could be due to higher photo-
current generation of the photoanode, as demonstrated in the previous
current-voltage characterization and IPCE studies (Fig. 9) [40,
105-1071].

Additionally, the lifetime of the photo-generated electrons (z) could
be determined from the following relationship based on the frequency
value of the peak appearing in the lower frequency region (fax) of the
Bode phase plots [30,105].

1
27 max

The 7 shows an inverse relationship with the recombination at the
photoanode/electrolyte interface [105]. Hence, the higher 7 observed in
the CQD incorporated device (9.1 ms), compared to the device without
CQDs (8.3 ms), indicates a lower recombination rate at the photo-
anode/electrolyte interface [30,105,108]. Both Rycr and 7 values
determined from the EIS analysis validate enhanced Jg¢ readings and the
superior performance of the CQD incorporated photoanode.

The Vo of QDSSCs is determined from the energy level difference
between the quasi-Fermi level (Ef) of the photoanode and the redox

T

©

10

potential of the electrolyte. Thus, a shift in the Ef in the negative di-
rection will increase the energy level difference and consequently the
Voc of a device [109,110]. The flat band potential (Vg,) provides insight
into the relative positioning of the Fermi levels, and could be determined
from the x-axis intercepts of Mott-Schottky plots derived from the
following equation,

kT
%=

where Cp is the solid/liquid interfacial capacitance, ¢ is the dielectric
constant of the semiconductor, g is the permittivity of the free space, A
is the area, e is the electronic charge, Np is the donor density, V is the
applied potential, kg is Boltzmann’s constant, and T is the absolute
temperature [104,110-112]. The Vg, values calculated from the
Mott-Schottky plots (Fig. 10 (c)) were —0.40 and —0.44 V for the TiO2
and TiO2/CQD electrodes. This negative shift in the Vg, due to the
incorporation of CQDs in the TiO3 electrode indicates an upward shift in
Ef which correlates with the higher V¢ values reported in the previous
current-density voltage studies [104,109,110].The shift in E¢ could be
due to energy states originating in TiO2 due to attached CQDs. The
upward shift in the Fermi level promotes charge separation and trans-
port in the photoanode [113].

1 2 &
Cp?  egyA2eN,

4. Conclusion

In this study, carbon quantum dots were successfully incorporated
into the TiO,/CdS photoanodes to enhance the photovoltaic perfor-
mance of QDSSCs. CQDs, with an average diameter of ~3 nm, were
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synthesized following a cold atmospheric plasma method. CQD incor-
poration in the photoanode was achieved by mixing CQD solution in the
TiO4 doctor blade paste. The incorporation of CQDs in the photoanodes
enhanced the overall power conversion efficiency of CdS QDSSCs from
1.28 % to 1.68 %, with an overall increase of 31.3 %. The charge transfer
resistance at the photoanode/electrolyte interface was reduced signifi-
cantly by 54.4 % with the incorporation of CQD, due to efficient
photocurrent generation and the low recombination in the photoanode.
Thus, incorporation of CQDs in the photoanodes could be considered an
effective technique for enhancing the photovoltaic performance of
QDSSCs.
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