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Abstract

Global consumption of ginger has been growing in recent years resulting in high volumes of ginger root, rhizome, and leaf
waste. Valorization of ginger waste is of great importance for a sustainable environment. In this research, ginger leaf waste
was considered a valuable source for the extraction of phytotoxic chemicals. Ginger leaf waste from two varieties (Chinese
and Sidhdha) was used for extraction using different organic solvents. The extracts were tested for phytotoxicity against
elongation of root and shoot of Lactuca sativa seeds, bioassay-guided fractionation as well as spectroscopic and chromato-
graphic techniques. All of the tested phytochemical groups were qualitatively identified in the methanolic extracts of both
varieties. It was found that the level of inhibition was concentration-dependent, but the effect of variety on the extraction
yield and level of phytotoxicity was nonsignificant. The methanolic extract showed significantly higher elongation inhibitions
than the other solvent extracts. Accordingly, methanol was found to be the most effective solvent for extracting phytotoxic
chemicals. Two potent phytotoxic compounds, named as R/Z0/1 and R/Z0/2, with 100% elongation inhibition, were recov-
ered from the bioassay-guided fractionation. These compounds were identified as polar organic compounds and modified
terpenoids with oxidized and decomposed fatty acid derivatives. The results of this study revealed the phytotoxic potential
of methanolic extracts from ginger leaves.
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Statement of Novelty

Large amounts of ginger waste need to be valorized effi-
ciently. Valorization of ginger leaf waste to extract com-
pounds with phytotoxic potential was rarely considered by
researchers in the past years, making it worth investigat-
ing as a novel research.

Introduction

Ginger, scientifically named Zingiber officinale roscoe,
belongs to the Zingiberaceae family and the Zingiber genus.
It was initially cultivated in the southern and eastern parts
of Asia and subsequently introduced to numerous regions
across the globe [1]. The ginger rhizome, a well-known food
flavoring agent, has been utilized for its medicinal proper-
ties by traditional pharmaceutical industries for centuries.
It has been used effectively to cure various illnesses, such
as stomach aches, diarrhea, nausea, asthma, and respiratory
disorders, since ancient times [2].

Ginger cultivators primarily focus on the ginger rhizome,
which is harvested after 6—12 months of planting when the
1-m-tall leaf sections of the plant have withered off [3].
Although ginger is primarily grown for its rhizome, the
other parts of the plant also contribute significantly to its
mass. Hence, annually, in different regions of the world, a
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considerable quantity of ginger leaves is generated and dis-
carded as waste. Currently, alcoholic fermentation, biogas
generation, and the formation of briquettes are the conven-
tional uses of ginger leaf waste, which account for only a
minor level of monetary benefit [4].

Isolation of compounds from wasted biomass with poten-
tial bioactivity has attracted the interest of many researchers.
Bio-valorization of ginger waste has been reviewed recently
[5]. This study discussed the extraction of bioactive com-
pounds from the ginger peel, their bioactive properties such
as phytotoxicity, antioxidant, antimicrobial, and antifungal
properties, and their industrial applications such as pharma-
ceutical, cosmetics, food, and biorefinery. In a recent work,
ginger leaves and branches were digested by a composite
microbial system to increase the composting efficiency and
produce organic fertilizer [6]. Biorefinery approaches were
also used to utilize the ginger waste biomass for resource
recovery. Valuable compounds such as oils (ginger oil and
bio-oil), biopolymers (starch and micro-fibrillated cellulose),
and hydro-char were obtained from spent industrial ginger
[7].

Despite the extensive research on the ginger rhizome [8],
studies on ginger leaves still need to be expanded in the lit-
erature in order to efficiently valorize the wasted biomass.
Various compounds with potential phytotoxicity such as
phenolics [9], flavonoids [10], labdane-type diterpenes, dia-
rylheptanoids, and phenylbutanoids have been identified in
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ginger leaves [11]. Leaves of the Etlingera species of ginger
(Tribe Alpinieae and family Zingiberaceae) exhibited anti-
oxidant, antibacterial, anti-tyrosinase, and hepatoprotective
activities [11]. Accordingly, the significance of exploring the
possibilities of using the phytochemicals found in Zingiber
officinale roscoe (ginger) leaves, for unexplored applications
has been recognized.

Extraction of phytotoxic chemicals from ginger leaf was
identified as a valuable means of utilizing an often-discarded
waste. According to Fujita et al. (1994) [12], a-pyrones from
benzene and n-hexane extracts of the leaves of the Zingiber-
aceae family plant Alpinia species K. Schum. (Shell ginger)
exhibited inhibitory effects against lettuce seedling elonga-
tion. However, to our knowledge, a detailed study has yet
to be carried out to investigate the phytotoxic potential of
Zingiber officinale roscoe (ginger) leaf extracts.

Accordingly, this study aimed to extract and character-
ize potentially bioactive phytotoxic compounds from ginger
leaves, an underutilized agricultural biomass often consid-
ered as waste. We employed ultrasonic extraction as a cost-
effective and environmentally friendly approach to valorize
ginger leaf waste. The constituents of the resulting extract
were analyzed qualitatively and quantitatively using analyti-
cal methods, and their phytotoxic effects on the shoot and
root growth of Lactuca sativa (lettuce) seeds were evaluated.

Materials and Methods
Chemicals

All of the chemicals and reagents were obtained from well-
known suppliers and used as received. HgCl,, FeCl;, and
n-hexane were purchased from Sigma (France). Analytical
grade methanol (99%) and ethyl-acetate (99%) were pur-
chased from Fluka (NC, USA). KI was purchased from
VWR Chemicals (UK), sulfuric acid (98%) from Daejung
(Korea), chloroform (99%) from Ranken (India), and NaOH
(98%) from Loba Chemie (India).

Sample Collection and Preparation

Samples of mature ginger leaves, weighing 1 kg each from
the ‘Chinese’ and ‘Sidhdha’ varieties, were collected from
plant breeders in the North-Western Province of Sri Lanka.
This region features a tropical climate, with daytime temper-
atures ranging between 28 and 30 °C. The collected leaves of
each variety were cleaned with tap water to remove dust and
other dirt particles. The leaves were cut into smaller pieces
and dried for five days in the shade. The dried leaves were

then powdered using a domestic grinder, stored in a dark
plastic bottle, sealed, and kept at 4 °C.

Crude Extract Preparation and Yield Calculation

Zingiber officinale roscoe leaf powder of the ‘Chinese’ cul-
tivar and “Sidhdha” were extracted separately with pure
n-hexane, ethyl-acetate, and methanol in increasing polar-
ity order [13]. A sample containing 100 g leaf in 500 mL
of solvent was placed in an ultrasonic extraction apparatus
(Rocker, Soner 206 H, Taiwan) operating at 35 °C for 30 min
at a 50 kHz frequency, and phytochemicals were extracted.
Each solvent was repeated three times for every leaf sam-
ple, followed by filtration. The extract was then evaporated
by rotary evaporation at 40 °C under vacuum to obtain a
dry crude extract. The extracts obtained were dried under
vacuum for 24 h. The initial crude extracts obtained through
n-hexane, ethyl-acetate (EtOAc), and methanol (MeOH)
solvent systems of the ‘Chinese’ variety and the ‘Sidhdha’
variety were named RB/Z0O/C/Hexane, RB/Z0O/C/EtOAc,
RB/Z0O/C/MeOH and RB/Z0O/S/Hexane, RB/ ZO/S/EtOAc,
RB/Z0O/S/MeOH, respectively, and used for further analysis.

The crude extract yielded by each solvent system was cal-
culated as a percentage of the initial amount of dried powder
of Z. officinale leaves used (w/w) as given in Eq. 1 [14].

Weight of dried crude extract
Weight of the dried leaf powder used

Extraction yield = x100% (1)

Qualitative Identification of Phytochemicals
in Crude Extracts

To gain an overview of the types of phytochemicals
included in the extracts of two varieties of ginger leaves,
categories of phytochemicals were assessed qualitatively.
The qualitative phytochemical tests for detecting alkaloids,
flavonoids, phenols, steroids, terpenoids, saponins, tan-
nins, and anthraquinone were conducted as follows accord-
ing to the standard tests described in [15-17]

Testing of Alkaloids

Mayer’s reagent for testing alkaloids was prepared by dis-
solving 335 mg of HgCl, in 60 mL of distilled water and
combining it with 5 g of KI diluted in 20 mL of distilled
water. Then, Mayer’s reagent was added to 2 mg of each
crude extract, followed by a few drops of concentrated
H,SO,. The development of a white precipitate repre-
sented the availability of alkaloids in crude extracts.
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Testing of Flavonoids

The alkaline reagent test was performed to test the flavo-
noid content. A mixture of 1 mg of the extracts and a few
drops of NaOH solution was shaken to test the flavonoids.
The development of a bright yellow color that became
colorless when diluted acid was added indicated that fla-
vonoids were present.

Testing of Phenols

The Ferric Chloride test was performed by mixing 0.5 mg
of the extracts with 1 mL of 10% FeCl; solution to test the
phenol content. Phenols were present if the color shifted
from reddish to blue.

Testing of Steroids and Terpenoids

The steroids were examined using the Liebermann-Burchard
test. The crude extracts were dried and mixed with chloro-
form (0.2 g of extract and 2 mL of chloroform). A few drops
of acetic anhydride and 2 mL of concentrated H,SO, were
added, and the formation of a violet-to-blue ring indicated
the presence of steroids.

To test terpenoids, 0.5 mg crude extracts were mixed
with 2 mL of concentrated H,SO, and 2 mL of chloroform.
The formation of a red-brown color between the two layers
denoted the terpenoids’ presence in crude extracts.

Testing of Saponin

The presence of saponins in the extracts was assessed using
a frothing test. A mixture of 2 mg of crude extract was
shaken with 2 mL of distilled water to test for any presence
of saponin. Next, the mixture was examined to see if a soapy
coating formed. In this case, saponin was present.

Testing of Tannins

The presence of tannins in the extracts was evaluated using
Braymer’s test. A notable development of a dark blue com-
plex upon the addition of 1 mg of each crude extract to
2 mL of 5% ferric chloride indicated the presence of tannins
within the extracts.

Testing of Anthraquinone

The presence of anthraquinone was assessed using a modi-
fied version of Borntrager’s Test. Initially, 1 mg of the crude
extract was combined with 5 ml of dilute HCI, followed by
boiling and subsequent cooling. The resultant mixture was
then filtered to obtain the filtrate, which was shaken with an
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equal volume of benzene. After the benzene layer was sepa-
rated, the remaining filtrate was treated with a 10% ammonia
solution. The emergence of a light red coloration indicated
the presence of anthraquinone in the extract.

Phytotoxicity Assay for the Initial Crude Extracts

Phytotoxicity against Lactuca sativa (Lettuce) seed germina-
tion inhibition was tested for the initial crude extracts (RB/
Z0O/C/Hexane, RB/ZO/C/EtOAc, RB/Z0/C/MeOH, RB/
Z0/S/Hexane, RB/ZO/S/EtOAc, and RB/Z0O/S/MeOH) fol-
lowing the method described in previous research with fewer
modifications [18, 19]. Initially, floating seeds were removed
from the L. sativa seeds after they had been rinsed with tap
water. Three replicates of each concentration of the crude
extract diluted in distilled water were used to assess the ger-
mination of L. sativa seeds over a concentration range of
0-1000 mg/L. The assay was conducted in trays with 3 mm
diameter wells, and each well was lined with filter papers at
the bottom before adding 400 pL of the test solution. Then,
ten L. sativa seeds were arranged in each well, lined with
filter paper. In the control experiment, 400 uL of distilled
water was added to trays lined with filter paper, and the seeds
were kept to germinate. Trays with lids sealed with parafilm
to retain moisture were kept in the dark at room temperature
for five days. After five days, the lengths of both shoots and
roots were recorded, and the percentage of inhibition of root
and shoot elongation was calculated using Eq. 2 [20].

Inhibition of root elongation
_ Control root length — Test sample root length

h Control root length )

x 100%

Shoot elongation inhibition was also calculated according
to the above equation by replacing root length with shoot
length (shoot and root lengths were calculated as the mean
value of three replications of ten seedlings each). Figure 1
shows the step-wise procedure followed from sample collec-
tion to phytotoxicity assay.

Bioassay-Guided Fractionation of the Crude Extract

Based on the phytotoxicity assay results, the solvent frac-
tions that showed significant inhibitory levels compared to
the control were selected for bioassay-guided fractionation
to recover highly potent phytotoxic constituents from the
ginger leaf extract. Bioassay-guided fractionation of the
active compounds was carried out following the methodol-
ogy described in previous publications [19, 21] with slight
modifications. Accordingly, the methanolic extract, which
showed the highest phytotoxicity, was chromatographed
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Fig. 1 The step-wise procedure followed from sample collection to phytotoxic assay of crude extracts

over silica gel (70-230 mesh size) in a 6 cm diameter glass
column with hexane, EtOAc, and MeOH in increasing order
of polarity. Compounds were collected into test tubes, and
thin-layer chromatography (TLC) was performed for all of
the compounds. The TLC patterns were observed under
an ultraviolet (UV) lamp, and anisaldehyde spraying was
performed to observe the patterns in compounds that were
not UV-sensitive. The compounds with comparable TLC
patterns were combined into a single pool. The silica gel
column chromatography of crude extract (RB/ZO) resulted
in 80 test tubes. Pooling of test tubes into fractions based on
the TLC spot patterns resulted in 17 pooled fractions. As
mentioned in Sect. ‘‘1H NMR, LC-MS, and FTIR Spectral
Analysis of Recovered Compounds’’, phytotoxicity tests
were conducted independently for the crude extracts of every
pooled fraction. According to the phytotoxicity assay results,
fractions that showed higher inhibitory percentages (> 80%)
were combined.

The combined fraction from the silica column chroma-
tography was chromatographed over Sephadex in a col-
umn using 100% MeOH. Column fractions were combined
based on TLC patterns. The crude extract of pooled frac-
tions was analyzed for phytotoxicity, and active fractions
were combined and chromatographed over Sephadex in a
column using 100% MeOH. The process continued for a
series of Sephadex column phases, followed by phytotoxicity
assays and TLC until the TLC spots of the active fraction
became distinguishable enough to be separated by Prepara-
tive Thin Layer Chromatography (PTLC). Then, the active
fraction selected for PTLC was used to isolate the identified

phytotoxic compounds. The target compounds were recov-
ered by removing the sorbent layer from the plate and eluting
the separated material from the sorbent using a 10% MeOH
solution. Finally, the solution was filtered, and the solvent
was evaporated to recover the compounds. The recovered
compounds were tested for phytotoxicity following the same
procedure described in Sect. ‘‘Phytotoxicity Assay for the
Initial Crude Extracts’’. The detailed procedure followed in
recovering the phytotoxic substances is illustrated in Fig. 2.

Proton Nuclear Magnetic Resonance ("TH-NMR)
Analysis

The NMR spectra were recorded with a Jeol JIMN-AL300,
Tokyo, Japan (300 MHz for 1H) spectrometer in CDCI3-
CD30D (10:1). 'H chemical shifts are reported based on
the internal TMS.

Liquid Chromatography-Mass Spectroscopy (LC-MS)
Analysis

LC-MS (Agilent Technologies -LC/MSD XT, USA) involved
dissolving 1 mg of each isolated compound in 2.5 mL of meth-
anol and injecting a 1 uL sample into the column. A gradient
solvent, comprising 0.1% (v/v) formic acid in water and ace-
tonitrile plus 0.1% (v/v) formic acid, was employed for the
elution procedure starting at a ratio of 95:5, changing to 60:40
from 1.00 to 8.00 min, then to 0:100 from 8.00 to 13.00 min,
and ending with a ratio of 95:5. The flow rate was 0.3 mL/
min. The instrument settings were as follows: Start mass
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50.0-1200.0 m/z, acquisition time 0—16 min, low CE 6 eV,
high CE 1040 eV, scan time 0.1 s, cone voltage 30 V, cone
gas flow 50 L/h, acquisition mode ESI (+), capillary voltage
2 kV, collision energy 6 eV, source temperature 120 °C, desol-
vation temperature 500 °C and desolvation gas flow 1000 L/h,
sample temperature 20 °C and column temperature 40 °C [22].

Fourier Transform Infrared Spectroscopy (FTIR)
Analysis

The functional groups in the compounds obtained were identi-
fied using FTIR (Thermo Nicolet iS50 FTIR, Madison, WI,
USA). For analysis, 10 mg of dry extract was transferred to an
agate mortar and mixed with 100 mg KBr (pellet), forming a
sample disk (translucent). The spectrum was obtained by scan-
ning the disk from 4000 to 400 cm™~! wavenumbers.

Statistical Analysis

The findings of phytotoxicity testing were analyzed statisti-
cally using SPSS software version 16.0 (SPSS Inc., Chicago,
IL, USA). An ANOVA (analysis of variance) was performed
to assess variations in means, followed by a Tukey’s test with
a significance level of 0.05.

Results and Discussion
Yield Percentage of Crude Extracts

According to the results shown in Table 1, a significantly
higher yield of crude extract was obtained when using metha-
nol as the solvent for extraction compared to ethyl acetate and
n-hexane. The yield of the extract was significantly increased
with the increase of solvent polarity. However, the variety
factor did not significantly affect the weight yield of crude
extracts. Previous studies have also demonstrated that the yield
of phytochemical extraction from herbal plants relies on the
type of solvent utilized and its polarity [23]. Previous research
by Ghasemzadeh et al. (2011) [24] investigated the impact of
different solvents, specifically methanol, acetone, and chlo-
roform, on the phenolic, flavonoid, and antioxidant activities
of two young Malaysian varieties of ginger known as Halia
Bara and Halia Bentong. They found that the extraction sol-
vent significantly impacted the overall phenolic, flavonoid, and
antioxidant recovery, with the methanolic extracts of the ginger
rhizome, stem, and leaf exhibiting the highest concentration

Table 1 Percentage weights yield of crude extracts

n-Hexane Ethyl-Acetate ~ Methanol

8.43+0.08%°
8.44+0.04%°

15.03+£0.06% *
14.92+0.33% *

Chinese variety  6.86+0.04% ©
‘Sidhdha’ variety 6.85+0.06% ©

of each component. Similar findings have also been recorded
by Ezez and Tefera, (2021) [25] in their efforts to investigate
the effect of solvents on the total phenolic content and antioxi-
dant capacity of ginger extracts. According to their research, of
the four solvents trialed (ethanol, methanol, ethyl acetate, and
acetone), the methanol extract showed the highest phenolic
content and DPPH radical scavenging activity. In contrast, the
acetone extract recorded the least. Furthermore, Zorrilla et al.
(2024) [26] investigated the phytotoxicity of ginger root extract
and found that methanol extracts resulted in higher yields of
phytotoxic compounds compared to ethyl acetate extracts. This
observation implies that ginger roots also contain a significant
proportion of highly polar metabolites, which may contribute
to their phytotoxic potential. This research also proved that
methanol is more efficient than solvents with low polarity in
extracting phenolics and flavonoids from ginger.

A one-way ANOVA was conducted. Post hoc by Tukey’s
test. The values that are given by the same letter are not
significantly different.

Qualitative Examination of the Phytochemicals
in Crude Extracts

The phytochemicals in the n-hexane, ethyl acetate, and
methanolic crude extracts of the two types of ginger leaves
were analyzed qualitatively and the results are presented in
Table 2. All phytochemicals, except steroids, were present
in the crude extracts of each solvent. Only the crude extracts
of methanol from both ginger varieties were found to contain
detectable levels of steroids. In a similar study, Edo et al.
(2023) [15] analyzed the phytochemicals of crude extracts
of Z. officinale leaves in water, ethanol, and n-hexane. They
found that the ethanol extract of ginger contained alkaloids,
anthraquinone glycosides, cardiac glycosides, saponins, tan-
nins, phenols, flavonoids, steroids, terpenoids, protein, and
carbohydrates. However, only carbohydrates were identi-
fied in water and n-hexane extracts, and steroids were not
detected, which is consistent with our findings. Moreover,
according to Arawande et al. (2018) [14] the ethyl acetate
extract of the Z. officinale rhizome contained no steroids
in qualitative phytochemical screening tests. However, their
study obtained negative results for saponins and tannins in
ethyl acetate, contrasting our findings. Accordingly, this
suggests that the types of phytochemicals detected through
qualitative tests are influenced by the plant part, the polar-
ity of solvents, and the polarity of specific compounds that
belong to different phytochemical classes included in those
plant parts. However, according to the findings of Jayasund-
ara and Arampath, (2021) [27], who studied the impact of
variety (based on the three varieties of Sidhdha, Rangoon,
and Chinese cultivars in Sri Lanka), geographical location,
and stage of maturity on the chemical composition of essen-
tial oils extracted from Z. officinale rhizomes, the individual
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Table 2 Qualitative examination

. X Solvent n-Hexane Ethyl Acetate Methanol

of the phytochemicals in Z.

officinale leaf extract from the Variety Chinese ‘Sidhdha’ Chinese ‘Sidhdha’ Chinese ‘Sidhdha’

Chinese and “Sidhdha” varieties
Alkaloids + + + + + +
Flavonoids + + + + + +
Phenol + + + + + +
Steroids - - - - + +
Terpenoids + + + + + +
Saponin + + + + + +
Tannin + + + + + +
Anthraquinone + + + + + +

Key: Presence of phytochemicals:

effect of variety was not significant on the phytochemical
composition. Nonetheless, the composition of phytochemi-
cals varied significantly with the change in geographical
location and the maturity stage. Similarly, in our study, a
difference in phytochemical composition between varie-
ties was not observed from the qualitative phytochemical
analysis. In addition, previous research demonstrated that
seasonal variations can significantly alter the phytochemical
profiles of numerous plant species, particularly affecting the
concentrations of secondary metabolites [28]. For instance,
a study on Piper cernuum leaves, revealed that seasonal-
ity notably influenced both its antimicrobial properties and
the composition of its essential oils [29]. Similarly, extracts
from Phillyrea angustifolia collected in winter displayed
marked phytotoxicity toward Triticum ovatum, correlating
with increased levels of oleuropein and enhanced biologi-
cal activity [30]. However, it is crucial to consider that the
plant samples used in this study originated from Sri Lanka,
a tropical region characterized by minimal seasonal fluc-
tuations, suggesting that the impact of seasonal changes on
phytochemical composition might be limited in this context.

Phytotoxicity Results

This section reports the effect of the initial crude extracts
of ginger leaf on the elongation of the shoot and root of
Lactuca sativa. Figure 3 shows the outcomes of the shoot
and root elongation of Lactuca sativa at various concen-
trations of the crude extracts of the ginger leaf (prepared
by evaporating the solvent extracts of n-hexane, EtOAc
(ethyl-acetate), and methanol) compared to the control.
Also, each examined concentration level showed reduced
root and shoot elongation. Consequently, this research
suggested that the phytochemicals present in ginger
leaf extracts inhibit the elongation of roots and shoots
of the test plant species. As the crude extract content
increased, the elongation of the Lactuca sativa root and
shoot decreased. Our findings align with earlier findings
that showed concentration-dependent growth inhibitory
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‘+’, absence of phytochemicals: ‘—’

effects in response to various plant extracts [31, 32].
Further, studies have found that increasing phytotoxic
extract concentrations significantly inhibits water uptake
by germinating seeds, leading to lower germination rates.
Phytotoxic constituents in these extracts develop defense
mechanisms [33]. The studies indicate that allelochemicals
present in plant extracts can impede cell division, thus
hindering the germination process of plants [34]. Further,
plant growth inhibition also results from the disturbance
of peroxidase activities, alpha-amylase, and acid phos-
phates [35]. According to previous studies on essential
oils extracted from the ginger rhizome, a-zingiberene,
p-sesquiphellandrene, ar-curcumin, and B-bisabolene
showed strong inhibitory effects against the radicle and
hypocotyl growth and germination of the Portulaca olera-
cea, Lolium multiflorum, and Cortaderia selloana weed
species in in-vitro conditions [36].

The present study’s findings proved that ginger leaves
also contain phytotoxic chemical substances that inhibit the
elongation of the roots and shoots of Lactuca sativa plants.

In the methanolic extracts of the leaves of both ginger
varieties, shoot elongation was significantly decreased at
concentrations of 1000 mg/L and 500 mg/L compared to
the control. Similarly, root elongation was reduced signifi-
cantly compared to the control at concentration levels of
1000 mg/L, 500 mg/L, and 250 mg/L. The other solvent
extracts showed no significant differences in shoot elonga-
tion compared to the control at any of the concentration lev-
els tested. However, root elongation was significantly lower
at the 1000 mg/L concentration level in crude extracts pre-
pared using n-hexane and EtOAc solvents. When compar-
ing the three types of solvents at the 1000 mg/L concentra-
tion level, a significantly lower root length was observed
with methanolic extracts, compared to EtOAc and n-hexane
extracts. Moreover, at 1000 mg/L, root elongation was not
significantly different between EtOAc and n-hexane extracts,
although they showed significantly lower root growth com-
pared to the control. The root elongation was not signifi-
cantly different in methanolic extracts at 1000 mg/L and
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of Lactuca sativa. Further, a significant difference was not
observed in root and shoot elongation compared to the con-
trol based on the variety factor (Fig. 3). The results of this
study determined that methanol is more effective than n-hex-
ane and EtOAc solvents in extracting phytotoxic compounds
from ginger leaves. Since biologically active compounds
occur in minimal concentrations, it is crucial to select a
suitable solvent. Solvents with different degrees of polarity
could be used for the extraction process. However, solvents
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with high polarities provide higher extraction yields, which @ E é é
was also proved in our study [37]. Further, based on the Eo En ED ED __];5 Té
outcomes of the phytotoxicity assays conducted in this study, 2288 Eo Eo
it was proven that the highly potent phytotoxic chemicals gl =22 G
in ginger leaves are polar. Additionally, the results support S|AANANES
previous research findings [38], claiming that lettuce seeds a
are highly responsive to inhibitory and stimulatory chemical %D
compounds. Eld o © o = o
The mean + standard deviation of two independent d R N
experiments from three replications using ten seedlings each
(n=30) are shown. Means denoted by distinct letters are TE]
significantly different at (p < 0.05), (One-way ANOVA, post E" “ o v oo <
hoc by Tukey’s mean separation). lesxggaez
Further, the results showed that root elongation inhibi- “ -7
tion was higher than shoot elongation inhibition at each _1
level of the tested concentrations (1000 mg/L, 500 mg/L, §D
250 mg/L, and 125 mg/L) (Figure S1). Similar results have Elezazas3
been documented in previous studies on the phytotoxicity of A= =224
plant extracts [13, 39]. The reason for this phenomenon is
the higher permeability of the roots compared to shoots in g
absorbing compounds. Roots are the first to emerge during SR
germination, and as a result, roots are in direct contact with § § E E %l. o:o S §
the extracts at their peak concentrations [40]. Moreover, the mil=| - -8 awvw
higher metabolic rates of roots make them more susceptible 5 10049494
to environmental stresses such as phytotoxic chemicals [13]. = EEEEEE
Table 3 shows the percentage elongation inhibitions of roots § g g g g g E
and shoots of Lactuca sativa seeds and the ICs, (extract con- 3 NEREREERE:S
centration corresponding to the 50% root/shoot elongation % ClAaAranvy
inhibition, calculated from the graph in Figure S1) results of %
the crude extract (RB/ZO) of ginger leaf waste. 2 e
The results of the phytotoxicity assay for the crude extract g E" cegzgeo
of ginger leaf indicated that it contains phytotoxic chemi- § al- Ol' — = %
cals, making it a potential bioherbicide for agricultural use ‘%
through compound isolation. The study also showed that = a
methanol is the most suitable solvent for extracting highly § %0
potent phytotoxic chemicals from the ginger leaf. The vari- § § TN ESY
ety factor between the two varieties, ‘Sidhdha’ and ‘Chi- g SERURENNEE
nese,” did not significantly impact the results. Therefore, 2 g
further extraction and bioassay-guided fractionation were e E
performed by combining both leaf varieties and using 100% 2 Elwv o« o 2 o
methanol as the solvent. % S R = 5
:é e
Bioassay Guided Fractionation of Phytotoxic % 1S E‘)
Compounds in Ginger Leaf Extract % glg|¥ILgd2ss
SlalS|T 228 R
Repeated fractionation of the methanolic crude extract of Eﬂ
ginger leaves by a series of chromatographic phases over :ﬁn § 2 9
silica and Sephadex, followed by a phytotoxic assay and g g % g 2 2 % %
TLC, resulted in a single fraction with clearly distinguish- %’ = § f f % % s <
able spots on TLC (named ‘final fraction’) with 100% elon- ~ | E g QB Q030D
gation inhibition of roots and shoots of Lactuca sativa seeds P E‘J S 8 8 8 g 8 S
at each level of concentration tested. Further, the separation "3 LT? S § @ @ § @ §
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Fig.4 a PTLC (10% MeOH/
CHCl,) profile of the final
fraction, b TLC (10% MeOH/
CHCIy) profile of the recovered
compounds

of the compounds in the final fraction through PTLC (10%
MeOH/CHCI;) recovered two compounds (R/ZO/1 (20 mg)
and R/Z0/2 (15 mg)) (Fig. 4).

According to the phytotoxicity assay test results of the
two recovered compounds (Figure S2)., R/Z0O/1 and R/Z0/2,
the root and shoot elongation inhibition of the two com-
pounds was not significantly different. Both compounds (R/
Z0/1 and R/ZO/2) significantly reduced the germination of
L. sativa seeds at each level of concentration tested com-
pared to the control. The calculated percentage inhibition at
each concentration tested was 100%, proving that R/ZO/1
and R/Z0O/2 were potent inhibitors of L. sativa root and shoot
elongation even at low concentrations (125 mg/L) (Table 4).

Phytotoxins are naturally produced chemical compounds
in plants resulting from secondary metabolic pathways. They
are also referred to as plant toxins, allelochemicals, and
phytochemicals. Phytotoxins can be synthesized in various
parts of the plant, such as leaves, roots, shoots, and flowers,
and they exhibit bioactivities against plant pests like weeds,
pathogens, and insects [41]. However, this study focused
on their efficacy against weed growth. Accordingly, based
on the in vitro phytotoxicity assay results, the germination
percentage of L. sativa seeds was significantly reduced
(p £0.05) in response to almost all extract concentrations
of the recovered compounds compared to the control.

Phytochemicals can inhibit seed germination by interfer-
ing with the oxidative pentose phosphate and mitochondrial
respiration pathways. Furthermore, the synergistic effects
of various phenolic compounds in the plant extract may
increase phytotoxicity [42]. As reported by previous research
studies, the growth inhibition by extracts varies with the

R/ZO/1
R/ZO/2

(a)

(b)

Table 4 Phytotoxicity assay test results of recovered compounds R/
Z0/1 and R/ZO/2

Compound Concentra- Elongation Elongation (Mean
tion (mg/L) Inhibition % Value)
Shoot Root Shoot Root
R/Z0/1 125 100 100 0.00 * 0.00 *
250 100 100 0.00 * 0.00 *
500 100 100 0.00 * 0.00 *
1000 100 100 0.00 * 0.00 *
R/Z0/2 125 100 100 0.00 * 0.00 *
250 100 100 0.00 * 0.00 *
500 100 100 0.00 * 0.00 *
1000 100 100 0.00 * 0.00 *
Control (R/ 1.04+0.56 1.11+0.65
Z0/1)
Control (R/ 1.12+0.52 1.21+0.62
Z0/2)

The mean + standard deviation from three replications using ten seed-
lings each (n=30) is indicated. The asterisk indicates a significant
difference between the control and treatment groups. * p <0.05 (One-
way ANOVA conducted separately for each concentration level, post
hoc by Tukey’s test)

target plant species owing to differences in absorption mech-
anisms, translocation, and site of action of phytochemicals
in various plant species. Seed germination also depends on
seed parameters like size, shape, seed coat permeability, and
structure [43]. Additionally, the susceptibility of a plant spe-
cies to phytotoxicity when tested in a laboratory depends on
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the biochemical and physiological characteristics associated
with that particular species [13].

This study selected the species Lactuca sativa, typically
employed in phytotoxicity assays, due to its benefits over
other species, including rapid germination, uniform early
development, and high susceptibility to toxic substances
[44]. According to the qualitative phytochemical screening
tests (Table 2), methanolic extracts of ginger leaves were
positive for all the phytochemical classes tested. Based on
the previous literature, phenols, alkaloids, and terpenoids,
including saponins and steroids extracted from several
plant species, have shown strong inhibitory effects against
the germination and root and shoot elongation of Lactuca
sativa species [45]. Accordingly, Matsumoto et al. (2010)
[46], studied the effect of the ethanol extract of the leaves
of Annona glabra on the root and shoot elongation of Lac-
tuca sativa and identified triterpenes, tannins, and flavonoids
as the most responsible components for growth inhibition.
Furthermore, dammarane-type triterpene 11-a-acetylbrachy-
carpone- 22(23)-ene, extracted from Cleome arabica L, was
identified as being toxic for the seedling growth of Lactuca
sativa [35]. Similarly, Boonmee et al. (2018) [20], isolated
methyl gallate, a methyl ester of gallic acid, from leaf and
stem extracts of Caesalpinia mimosoides Lamk, which was
found to exert high inhibitory effects on Lactuca sativa seed
germination.

The phytotoxic mechanism of different phytochemicals
present in ginger, specifically, the terpenes and terpenoids,
can be related to inhibiting plant growth by impairing the
biosynthesis pathway of gibberellin, altering the mitotic pro-
cess, and causing anatomical and physiological changes in
plant seedlings. These mechanisms result in an accumulation
of lipid globules in the cell cytoplasm, a reduction in mem-
brane permeability and respiration, and possibly, inhibition
of DNA and RNA synthesis [47, 48]. According to a study
by Chen et al. (2022) [49], the toxicity mechanism of alka-
loids involves altering enzyme activity, which affects the
division of plant cells and DNA synthesis, while saponin-
induced phytotoxicity results from its interaction with mem-
brane cholesterol, destabilizing the membrane [50]. Further,
many polyphenols have been identified among the phyto-
toxins. Tannins, anthraquinone, and flavonoids, also identi-
fied in ginger leaf extract through qualitative phytochemical
tests, have been proven to inhibit the seed germination and
seedling growth of weed plants. Scientists have predicted
that the allelopathy of potential polyphenolic compounds
can be due to the degradation of enzymes and other bioac-
tive compounds produced by weed plants, altered metabolic
processes of plants due to the effect of phytotoxins, disrup-
tion of photosynthesis and respiration, suppression of pro-
tein synthesis or due to an unknown mechanism that has not
yet been discovered[51-53]. Therefore, further studies are
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needed to study the specific mode of action of these phyto-
toxic compounds.

Their on-site efficacy is the main factor preventing bioher-
bicides from being widely used. Bioherbicides are essential
for controlling weeds, increasing farmer profits, and provid-
ing food for a growing population, but using bioherbicides
is more challenging than it might appear. Numerous param-
eters, including the concentration of phytotoxic compounds,
plant growth stage, type of formulation, spray preparation,
application technique, type of soil, and environmental fac-
tors, can affect the efficacy of biological herbicides [34].
Further, when considering the ecological implications of
ginger extracts, previous literature has stated that stem, rhi-
zome, and leaf extracts of ginger are heterotoxic. Hence, it
may inhibit non-target species during field applications [54].
Therefore, extensive field trials, target application, and dos-
age optimization are crucial when formulating bioherbicides
using recovered compounds. However, it is notable that the
ecological implications under natural environmental condi-
tions are challenging to study through laboratory experi-
ments [55].

In the present study, several chromatography techniques,
including silica gel column chromatography and size exclu-
sion chromatography (Sephadex LH-20), were used to
extract phytotoxic compounds from crude extracts of Z.
officinale leaf waste. Accordingly, two inhibitory compounds
(R/Z0O/1 and R/Z0/2) were identified through fractionation
guided by bioassay.

"H NMR, LC-MS, and FTIR Spectral Analysis
of Recovered Compounds

The use of 'H NMR for metabolic fingerprinting analysis to
determine authenticity has gained significant interest lately
because of its excellent reproducibility, ability to produce
impartial structural information, and capacity to detect
fraudulent substances in a sample [56]. Accordingly, 'H
NMR spectral analysis of the two recovered compounds,
R/Z0O/1 and R/ZO/2, proved that the two compounds are
polar organic compounds (Fig. 5). In TLC analysis, these
two compounds moved with 10% MeOH: CHC], as the elu-
ent, indicating the compounds to be polar.

The most abundant active constituents of ginger rhizomes
are phenolic and terpene compounds. The main phenolic
substances in ginger are gingerols, paradols, and shogaols.
Gingerols, including 10-gingerol, 8-gingerol, and 6-gingerol,
are abundant polyphenols in fresh ginger. The terpenes are
monoterpenes, sesquiterpenes, and sesquiterpene alcohols
[57, 58]. Further, prior research studies have reported that
even though ginger rhizomes are high in phenolic content,
mature ginger leaves contain lower amounts of phenols than
rhizomes [59]. Since mature ginger leaf waste was used in
this study, it may have lower phenolic levels.
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Moreover, previous studies on the Alpinia species
of ginger leaves found that this type contains 6% alka-
loids, 6.7% flavonoids, 0.8% saponins, and 0.4% tannins
[12]. Further, alkaloids and terpenes are the most potent
classes of phytotoxins in plant extracts [60]. Terpenes are
abundant in ginger with high phytotoxicity and enzyme
inhibition potential [61, 62]. Moreover, it has been found
that enzymes such as proteases, lipases, and a-amylases
play a crucial role in seed germination. Previous studies
have proven that phytotoxins inhibit the enzyme activity
of plants [63]. Moreover, the literature states that Lactuca
sativa germination correlates directly with the activity of
the a-amylase enzyme [64]. To further support the argu-
ment, it has been recognized that terpenes exhibited potent
inhibition of a-amylase enzyme activity [65]. Further,
studies have discovered that the sesquiterpene p-selinene
(edema-4 (14),11-diene) is found at detectable levels in the
ginger rhizome but not in ginger leaf. The (E)-caryophyl-
lene is the most prevalent sesquiterpene in ginger leaves,
and studies suggest that the amounts of a-humulene in
ginger leaves are low [66]. Terpenes and terpenoids (modi-
fied family of terpenes) comprise various compounds with
different polarities. The primary factors determining polar-
ity are the polar functional groups such as aryl and acyl,
the structure (non-polar, linear, or cyclized hydrocarbons),
and the addition of less polar groups (hydroxyl or methyl)
from its isoprene-based skeleton. Methanol can extract the
polar compounds of terpenes, such as terpenoid glyco-
sides, from crude extracts of plant species [67]. Further,
it has been proven that polar terpenes have high levels
of phytotoxicity against Lactuca sativa seed germination,
while less polar terpenes do not play a crucial role [68].
Moreover, it has been found that terpenoids are highly sol-
uble in CHCl;, which was used in this study (10% MeOH:
CHCI,) [67]. Furthermore, it has been documented that in
"H NMR spectra, the peaks in the regions 0.5-3 ppm are
mainly terpenoids (modified triterpenoids with the tetra-
cyclic ring structure of lanosterol) [69].

In the LC-MS (Fig. 6) analysis of R/Z0O/1 and R/Z0/2,
peaks were found at m/z 954.46 and m/z 166.99, respec-
tively. These peaks were observed at retention times of
42.64 min and 32.93 min, respectively. Based on the com-
prehensive review of IH-NMR, LC-MS, and FTIR results
(Fig. 5), it was predicted that R/ZO/1 is composed of sapo-
nins. Saponins are a group of high molecular weight phyto-
chemicals that consist of aglycone linked to sugar moieties.
Saponins are further categorized into triterpenoids and ste-
roidal saponins [70]. This identification has been supported
by (Mroczek et al. 2012) [71], who demonstrated that sapo-
nins with an m/z value of 954 could be separated between
40 and 55 min retention time.

It has been reported that saponins exhibit significant
phytotoxicity effects on several test plant species. Pérez
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et al. (2015) [72], identified three triterpenoid saponins
that showed growth inhibitory effects against lettuce seed-
ling growth from the aerial parts of the Trifolium argu-
tum Sol. plant species. The researchers also noted that the
phytotoxicity of triterpenoid saponins can be significantly
increased with minor changes in aglycone or a glycoside
chain structure.

Similarly, based on the comprehensive overview of 'H
NMR, LC-MS, and FTIR results, it was predicted that R/
Z0/2 is an auto-oxidized fatty acid derivative. According to
the LC-MS results, a significant peak was observed between
30 and 35 min retention time with m/z 166.99. Furthermore,
Karlova et al. (2022) [73], identified an unsaturated fatty
acid anion called geranate (C,;H,50,), a conjugate base of
geranic acid (belonging to the class of terpenoids) with m/z
167.10, which could be closely related to the compound that
was recovered as R/ZO/2. Moreover, previous research has
proven the presence of geraniol and its derivative compo-
nents in Z. officinale plant parts and the potency of geraniol-
related compounds to integrate into bioherbicidal produc-
tion due to their proven phytotoxic activity [74, 75], which
further supports our prediction on R/ZO/2.

Accordingly, based on the literature, chemical shifts of
"H NMR spectral peaks, and LC-MS analysis, the closely
related structures suggested for the two recovered com-
pounds, R/Z0O/1 and R/Z0/2, are given in Table 5.

The FTIR analysis of the two recovered compounds
(Fig. 7) showed peaks at 3263-3483 cm™!, 22502500 cm ™,
1700-1750 cm™", and 1640-1655 cm™" in R/ZO/1 and peaks
at 3466-3535 cm™', 2250-2500 cm™', 1700-1750 cm™",
1330-1420 cm™', and 1645-1650 cm~'in R/ZO/2. The
functional groups corresponding to each peak are presented
in Table 6. The FTIR peaks prove the functional groups in
modified terpenoids and oxidized fatty acid derivatives.

For the exact identification of the phytotoxic substances,
further purification and in-depth analysis are needed. Char-
acterization of compounds R/Z0/1 and R/Z0O/2 suggests
they are a terpenoid saponin and a monoterpene, respec-
tively. The phytotoxic effects of these compounds can
largely arise from their disruption of microtubule dynam-
ics and compromise of membrane integrity. At the cellular
level, these phytotoxins induce lipid peroxidation and alter
specific enzymatic activities, while rapidly causing depo-
larization of root cell membranes. This results in increased
membrane permeability, which impairs the plant’s ability to
absorb nutrients. Given the critical role of the root system
in connecting the plant to its environment and facilitating
water and nutrient uptake, any impairment in root develop-
ment can adversely affect the plant’s physiological status,
thereby stunting plant growth. This mechanism could be
efficiently utilized in weed management. The most pro-
nounced allelopathic suppression is likely to occur when
the peak concentrations of phytotoxins coincide with the
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Fig.6 LC-MS of R/ZO/1 and R/ZO/2
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Table 5 Possible compounds to be represented in recovered compounds R/ZO/1 and R/ZO/2 based on the LC-MS and H-NMR spectral data

Recovered
Com-
pound

Predicted Phytochemical Class and Closely Related

Supported Data

Structures Identified Through Spectroscopic and Literature-

H-NMR Chemical Shifts of
the Recovered Compound
(PPM)

m/z [M-H] — Value and References
Molecular Weight

R/Z0O/1 o Triterpenoid saponin

e Generalized triterpenoid saponin structure predicted for
R/ZO/1

R/ZO/2 CHa CHs 0

o HaC -

Monoterpene

e An unsaturated fatty acid anion called geranate (C,yH;50,),

a conjugate base of geranic acid

0.88 mlz=954.44 [76,77]
1.255

1.602

1.678

2.039

2.296

3.403

3.648

4.696

5.1

5.4

1.60-1.68 (terminal CHj)
2.007 (CH;)

2.041 (-CH-)

5.132(-C=CH-)
5.36(-CH-COO)

mlz=166.99 [78]
m/z of ger-
anate=167.10

early developmental stages of the target plants. Hence, the
methanolic extracts from ginger leaves identified through
this study may represent potent regulators of weed growth,
offering promising prospects for sustainable weed manage-
ment in agricultural practices.

In this study, the active compounds were only fraction-
ated using Lactuca sativa as the test plant species. However,
it would be beneficial to conduct future studies to investi-
gate the efficacy of these compounds on various other weed
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species and to evaluate their effectiveness in field condi-
tions. This expansion would enable a more comprehensive
understanding of the potential applications of these active
compounds. The low yield of recovered active compounds
was identified as a significant limitation of this study, and
to conduct further trials and purify recovered compounds,
the extraction processes should be optimized with novel
technologies.
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Fig.7 FTIR spectra of R/ZO/1 and R/ZO/2

Table 6 Functional groups correspond to FTIR spectral peaks of R/
Z0/1 and R/ZO/2

‘Wavenumber ‘Wavenumber
(em™") (R/ZO/1) (ecm™") (R/ZO/2)

Functional groups

3263-3483 3466-3535 OH stretch /C-H stretching
vibration of methyl groups

2250-2500 2250-2500 A peak due to CO,

1700-1750 1700-1750 C=0

- 1330-1420 O-H bending of carboxylic acid

1640-1655 1645-1650 C=C stretch/COO™

Conclusions

Ginger leaf waste is a valuable source of bioactive chemi-
cals with phytotoxic effects. Methanol proves to be the
most effective solvent for extracting these compounds
from Zingiber officinale leaves. Phytotoxicity assays show
that ginger leaf extracts inhibit root and shoot growth in
Lactuca sativa. Notably, compounds R/ZO/1 and R/Z0O/2
demonstrated 100% growth inhibition and are identified as
polar organic compounds, including a triterpenoid saponin
and an unsaturated fatty acid anion related to geranic acid.
Further purification and analysis are required for confir-
mation, indicating the potential of ginger leaf waste as a
bioherbicide.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s12649-025-03025-5.
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