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Abstract 

High concentrations of toxic heavy metals (THM) and low micronutrients in rice grains adversely affect human health. In this research, 

we investigated the potential of using biofilm biofertilizer (BFBF) in managing THM and micronutrients in rice by conducting field 

experiments that compared BFBF practice with the practice of using chemical fertilizer (CF) alone in Sri Lanka. Bioaccumulation and 

translocation factors were evaluated to assess THM and micronutrient distribution in soil–plant systems. The human health risk was 

also estimated. The BFBF practice showed a significant reduction in estimated daily intakes in the range of ca. 0.08–0.99 µg kg−1 day−1 

for THM such as As, Co, Cd, and Cr compared to the range of 0.16–1.40 µg kg−1 day−1 when using CF alone. Thus, there were significantly 

low values of hazard quotient (HQ) and hazard index (HI) in the BFBF practice over CF indicating lower health risk. In the CF practice, 

the translocation of As from panicle to rice seed was significantly increased, and As in rice seeds is reported to exceed the safe level in 

some cases in Sri Lanka. On the contrary, reduced translocation of As and increased translocation of Cr within the safe level to rice 

seeds were observed with the BFBF application. Interestingly, the HI had been kept below the threshold value of 1.0 by significantly 

reducing the HQ values of each THM, only in the BFBF practice. These results highlight the role of increased microbial diversity and 

abundance induced by the BFBF, in mitigating the health risks and enhancing the sustainability of the soil–plant system. 
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1. Introduction 

Consumption of metal-contaminated foods has been reported as 

the main route of transmitting toxic heavy metals (THM) from 

soils to the human body [1]. Once the human body is exposed to 

THM in the long term, many adverse effects are exerted on 

human health [2]. For example, exposure to arsenic (As) may 

induce harmful effects on the cardiovascular and hematopoietic 

system, and exposure to lead (Pb) can significantly elevate blood 

Pb level, a causative factor in renal impairment [1, 3]. THM can 

also lower energy levels and damage the brain, lungs, kidneys, 

liver, blood vessels, and other vital organs. In addition, long-term 

exposure to such elements can cause physical, muscular, and 

neurodegenerative processes that mimic diseases such as chronic 

sclerosis, Parkinson’s disease, Alzheimer’s disease, and muscular 

dystrophy. Prolonged exposure to certain elements and their 

compounds can even cause cancer [4]. 

Globally, a considerable extent of paddy lands has been reported to 

have excessive amounts of THM and low concentrations of non-

THM or micronutrients, resulting from the predominant contribu-

tion of chemical inputs, such as chemical fertilizer (CF) and 

agrochemicals, and other anthropogenic activities [5–8]. THM could 

be absorbed by plants and could accumulate in edible portions, thus 

increasing the risk of chronic toxicity [6, 9]. Among agricultural 

produce, rice (Oryza sativa L.) is the principal food source for over 

half of the global population and could be a significant dietary source 

of THM, especially in Asia [5, 6, 10]. In the Sri Lankan context, 

annual rough rice production is ca. 2.7 Mt, and the per capita 

consumption fluctuates around 100 kg year−1 [11]. Therefore, 

reducing the accumulation of THM in rice grains via reduced 

contamination of agricultural soils and reduced transmission into 

the plant is crucial to food safety [5, 6, 12, 13]. 

The micronutrients govern plant growth, life cycle completion, 

electron transfers, and other important metabolic processes [14–17]. 

They also play a major role in the synthesis of nucleic acids, proteins, 

and photosynthetic pigment and contribute to the structural and 

functional integrity of cell membranes [18]. Nevertheless, at 

elevated concentrations, micronutrients also produce toxicity 

symptoms in plants [19–21]. 

However, the knowledge on heavy metal (HM) distribution and 

accumulation in rice is still limited. In this context, the involvement 

of microbes in metal remediation for reducing the bioavailability of 
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THM in rice grains [22–24] has been emphasized [1, 17]. That is 

because microbes can counteract HM stress using diverse defensive 

systems, such as compartmentalization, exclusion, formation of 

complexes, and the synthesis of binding proteins [25]. Microbial 

processes play a significant role in bioremediation, particularly in 

solubilizing and immobilizing metals. These processes, which occur 

both in situ and ex situ, have been recognized for their potential for 

environmental cleanup. In addition, extracellular polymeric sub-

stances (EPS) produced by microbes are important in metal 

biosorption [23, 26]. The application of such a fungal–bacterial 

biofilm–based suppliant, i.e., biofilm biofertilizer (BFBF), can 

facilitate these functions in agricultural systems. The National 

Institute of Fundamental Studies (NIFS), Sri Lanka, conducted a 

long-term research [27, 28] in this regard. It is interesting to note 

that microorganisms in biofilm mode, protected by an extracellular 

matrix, are proven as an efficient and safer strategy in bio-

remediation because the results are more significant than the 

conventional microbial bioremediation [29–32]. For instance, the 

use of BFBF showed the potential to remediate THM in cropland 

soils [30], thus showing its feasibility in reducing THM concentra-

tions in edible parts of the crop. The BFBF practice is used by farmers 

in paddy cultivation [33–35] due to its ability to convert plant-

unavailable organic and mineral nutrients into available forms for 

ensuring plant growth and physiology to increase the crop yield [36, 

37]. Therefore, this study was designed to assess the effect of BFBF 

practice on the translocation of HMs in the paddy soil–plant system 

and the health risk of their accumulation in rice grains compared to 

that of the conventional practice of CF-alone application. 

2.  Materials and methods 

2.1. Experimental design 

The field experiments were carried out during the wet season 

2021–2022 in Kurunegala (7°48′N 80°36′E) district, Sri Lanka. 

Two consecutive, uniform paddy plots (each ca. 0.4 ha) were 

taken as a randomized complete block design in each location, 

and three field locations were used as replicates, viz. Thalwita, 

Minuwangete, and Galgamuwa, to compare these major two 

fertilizer practices: (1) BFBF practice [2.5 l of BFBF with 225 kg 

NPK (Urea 150, TSP 33, and MOP 42 kg ha−1)] and (2) CF-alone 

practice [340 kg NPK (Urea 225, TSP 55, and MOP 60 kg ha−1), 

recommended by the Department of Agriculture, Sri Lanka 

(2013)]. These practices are being used by farmers in Sri Lanka. 

The microorganisms contained in the BFBF are extracted from 

rice rhizosphere. As this is a patented product [Sri Lanka Patent 

No. 15958 (2013)], exact composition cannot be disclosed due to 

intellectual property right reasons. Irrigation water was managed 

separately for each plot, and pesticides were not needed due to 

the bio-controlling effect of the BFBF [33–35, 38]. The research 

sites had a typical subtropical climate with a mean annual rainfall 

of ca. 2,000 mm and consisted of variable soil types, particularly 

red-yellow podzolic and low-humic gley [39], which have been 

categorized as anthroposols under the World Reference Base for 

Soil Resources (WRB) soil classification [40]. Plots equal in 

depth were selected at the same ground level, and bunds were 

built to half a foot in height to prevent fertilizer from mixing with 

nearby or entering from outside. Paddy was broadcasted, and 

irrigation water was managed separately in the three fields, 

without mixing from the surrounding fields. All practices used 

the same rice variety (BG 360) and were installed on the same 

day. 

2.2. Sample collection and preparation 

Six plants (hills) were carefully uprooted at 50% flowering stage 

from random positions in each plot by excavating around the root 

zone without causing damage to the root system. The soil was 

separated from plant samples and allowed to air dry and then 

crushed and sieved (<0.5 mm). The plant samples were rinsed 

thoroughly with tap water followed by deionized water to remove 

dust. Air-dried plant samples were ground to a fine powder, 

stored in sealed polyethylene bags, and kept in a desiccator 

before analysis. A ground subsample of 0.25 g was put in a 

digestion tube and treated with 3 mL of trace metal grade HNO3. 

The treated plant samples were digested for 15 min at 180°C on a 

microwave digester while soil samples were kept at 210°C for 20 

min [41]. After the samples reached room temperature, they were 

added to Milli-Q water to a volume of up to 25 mL. Then, the 

samples were filtered using cellulose acetate filters (pore size 

0.45 µm). A blank was also prepared for every sample in the same 

way to be free from the interferences of sample processing. 

Arsenic (As), cadmium (Cd), lead (Pb), cobalt (Co), chromium 

(Cr), and nickel (Ni) were determined using Inductively Coupled 

Plasma Optical Emission Spectroscopy (ICP-OES, iCPA 7000, 

Thermo Scientific, Waltham, MA). The equipment was calibrated 

by using Standard Reference Materials of the elemental mixture. 

All samples were analyzed in duplicates. As per the ISO/IEC 

17025 Standards, two food samples of known concentrations of 

HMs were analyzed as Proficiency Testing to detect the accuracy 

of the analysis. 

2.3. Human risk assessment methods 

2.3.1. Noncarcinogenic risk assessment 

The health risk assessment model generated by the United States 

Environmental Protection Agency (USEPA) was employed to 

assess the human health risk of HMs to adults [42–44]. In ac-

cordance with this guideline, humans’ exposure to HMs via 

consumption has been considered for the evaluation. The hazard 

quotient (HQ) was used to evaluate the noncarcinogenic risk 

assessments by chronic exposure to an individual THM. The 

factors were defined based on Eqs. (1) and (2) as follows [45, 46]: 
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Here, EDIi is the estimated daily intake (mg kg−1 day−1) of HM i, 

Ci (mg kg−1) is the concentration of HM i in the rice grain, IR (g 

person−1 day−1) is the daily average consumption of rice in the 

region, BW (kg person−1) represents the body weight, EF is the 

exposure frequency (365 days year−1), ED (year) is the exposure 

duration, and AT is the average time (Table 1). HQi is the hazard 

quotient of HM i. The applied chronic oral reference doses (RfDi) 

for the HQ calculation were 0.0003, 0.001, 0.3, 0.003, and 0.02 

(mg kg−1 day−1) for As, Cd, Co, Cr, and Ni, respectively [47, 48]. 
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Table 1 • The definitions and values of exposure parameters of 

heavy metals for rice 

Parameter Definition Value Reference 

Ci Heavy metal content  

in grain (mg kg−1) 

Observed 

value 

 

EF Exposure frequency 

(day) 

365 [10] 

ED Exposure duration 

(years) 

70 [10] 

BW Body weight  

(kg person−1) 

60 [49] 

AT Average time  

(day years) 

365 × 70 [10] 

IR Ingestion rate  

(g person−1 day−1) 

293.15  [50] 

The hazard index (HI) was used to evaluate the overall non-

carcinogenic risk posed by more than one toxicant [51]. For 

several hazardous elements, the HI is calculated as the 

summation of HQ of the individual toxic element. If the value of 

HQ or HI is less than 1, it is assumed that it does not create 

harmful health effects for the exposed HMs, and hence believed 

to be safe. Otherwise, it is detrimental, and higher values increase 

the likelihood of the occurrence of adverse health effects [49, 48]. 

The HI through daily average rice consumption for a human 

being was calculated according to Eq. (3) [46, 52] as follows: 

 

 

1

HI HQ
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2.3.2. Carcinogenic risk assessments 

The likelihood of developing cancer throughout a lifetime of 

exposure to a carcinogen was calculated by Eq. (4). The THMs As, 

Cd, Cr, and Ni were considered potential carcinogenic contami-

nants, based on the order of classification group defined by the 

International Agency for Research on Cancer [53]. For chemical 

carcinogens of As, Cd, Cr, and Ni ingestion, oral carcinogenic 

slope factors (SFs) were considered as 1.5 [10, 50, 54], 15, 0.5, 

and 0.91 mg kg−1 day−1, respectively [53, 55]. 

In the presence of multiple carcinogenic elements, the carcinogenic 

risks from all carcinogens are summed as explained by Zeng et al. in 

2015 [56]. According to the USEPA, the value of cancer risk in the 

range from 10−6 to 10−4 is under the acceptable or tolerable risk, and 

a risk of less than 10−6 can be ignored. However, a risk exceeding 10−4 

was considered to be unacceptable [48]. The factors were defined 

based on the following equations: 
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Here, CRi is the carcinogenic risk of metal i, SFi is the oral 

carcinogenic slope factor (mg kg−1 day−1) of metal i, and CRt is the 

total carcinogenic risk. 

Bioaccumulation factor and translocation factor 

The translocation behaviors of the HMs in the soil–rice system 

were studied by bioaccumulation factor (BaF) and translocation 

factor (TF) [57]. They were defined based on the following 

equations: 
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Here, Croot, Csoil, Cstem, Cleaf, Cpanicle, and Cgrain are the 

concentrations of HM i in the root, paddy soil, stem, leaf, panicle, 

and grain, respectively. BaFi, s–r is the bioaccumulation factor of 

HM i from paddy soil to root. TFi, r–s, TFi, s–l, TFi, l–p, and TFi, p−g 

are the translocation factors of HM i from root to stem, stem to 

leaf, leaf to panicle, and panicle to seed, respectively [1, 43, 57]. 

A schematic diagram of the methodology is depicted in Figure 1. 

 

Figure 1 • A schematic diagram of the methodology followed in the study. 
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2.4. Statistical analysis 

Data were analyzed using the statistical package Minitab, version 

17. Analysis of variance followed by Tukey’s Honestly Significant 

Difference (HSD) test was performed to compare the means. The 

probability of <0.05 was used as the threshold for significance. 

3. Results and discussion 

3.1. Heavy metal concentrations in the root-zone soils 

of biofilm biofertilizer and chemical fertilizer–alone 

practices 

The concentrations of all HMs analyzed (Table 2) were within 

the previously observed ranges in rice soils of Sri Lanka [58]. The 

differences in their concentrations were not significant between 

the BFBF and CF practices (P > 0.05). This indicated that the two 

practices had similar concentrations of HMs in the root-zone soil. 

The soil’s physicochemical properties and other parameters of 

BFBF and CF varied due to microbial actions [34]. 

Table 2 • Different heavy metals in the root-zone soils of 

biofilm biofertilizer and chemical fertilizer–alone practices 

Element Heavy metal concentration (µg kg−1) 

 

CF alone BFBF Difference 

As 1,443.6 ± 49.23 1,607 ± 101.46 163.4 (0.157) 

Cd ND ND - 

Pb 5,314 ± 129.64 5,323 ± 179.12 9 (0.968) 

Co 6,584 ± 1,061.86 5,697 ± 839.95 887 (0.517) 

Cr 22,340 ± 2,172.95 21,093 ± 1,663.94  1,247 (0.652) 

Ni 7,078 ± 738.85 6,942 ± 606.95 136 (0.887) 

Mean ± standard error. Values within parentheses are probability levels at 

which the differences are significant. CF, chemical fertilizer; BFBF, biofilm 

biofertilizer; ND, not detected. 

3.2. Bioaccumulation factor and translocation factor 

Both BaF and TF are important parameters for assessing the 

potential risks of contaminants in the environment and are used 

in regulatory frameworks to set limits on the concentration of 

contaminants in the environment. By understanding the BaF and 

TF of different THMs in the paddy plant, we would be able to 

better realize their potential impacts on human and environmen-

tal health and take steps to minimize those impacts. 

The BaF of As, Pb, and Cr, except Co and Ni, from soil to plant 

roots were higher in the BFBF practice than in the CF-alone 

practice (Table 3). This could be attributed to the triggering of 

binding HM by HM-complexation [21, 59], as revealed by the 

strong correlations among As, Pb, and Cr for their enhanced 

bioaccumulation [60]. Generally, negatively charged soil EPS 

synthesized by the applied BFBF induces the chelation/binding 

of these HMs in the soil [61]. However, the BFBF practice caused 

increased bioaccumulation of the three HMs in the roots against 

their soil chelation. This shows that ecosystem intelligence has 

played a role in selectively removing As and Pb, in particular, 

from the soil, and to store them in the roots in the BFBF practice, 

because the two HMs are activated by the microbes, and in turn 

adversely affect them [62–64]. The selective removal of the two 

HMs has taken place under similar concentrations in the soil of 

the two practices (Table 2), reiterating the role of intelligence 

[64]. 

The application of BFBF enhanced the translocation of Co, whereas 

the CF increased the translocation of Pb and Cr at significant paces 

from root to stem (P < 0.01). Even in the absence of Cd in soils, its 

end-up with the rice grain is probably due to long-term 

accumulation and grain-filling mechanism changes. Once in the soil 

environment, even at extremely low concentrations, Cd can mobilize 

and become bioavailable due to soil conditions such as low pH, high 

salinity, or poor cation exchange capacity [65]. These factors 

facilitate the uptake of Cd by rice plants through root systems, often 

because of similarities in ionic charge and radius between Cd and 

essential nutrients such as Zn or Ca [66, 67]. In the CF-alone 

practice, Co and Pb showed greater TF from stem to leaf, whereas Pb 

showed greater TF from leaf to panicle, leaving Co in leaves. This 

might tend to concentrate Co in the leaves causing chlorosis and/or 

necrosis [68]. Low chlorophyll content in rice leaves in the CF 

practice compared to the BFBF practice is a frequent observation 

reported in the field (Ekanayake et al. in manuscript). In the CF 

practice, the TF of As from panicle to seed was significantly 

increased, while that of Cr was significantly decreased (P < 0.01) in 

comparison to the BFBF practice. The increased translocation of As 

from panicle to seed might have been caused by the increased 

translocation of Pb from leaf to panicle, because As and Pb are 

positively correlated in plants [60]. In rice consumed in Sri Lanka, 

As is frequently reported to exceed the maximum permissible level 

in some cases, whereas Cr does not show toxicity [69]. Further, As 

accumulation in rice has been reported to reduce the levels of 

essential micronutrients manganese (Mn), Ni, and selenium (Se) 

[70]. At its safety levels, Cr is beneficial for human brain health and 

insulin regulation [71]. In this manner, reduced translocation of As 

and increased translocation of Cr to rice grains with the BFBF 

application imply a sign of intelligence in the soil–plant system [64]. 

The BFBF significantly enhanced the bioaccumulation of As, Pb, 

and Cr. This could be attributed to the fact that BFBF triggered 

the synthesis of phytochelatins (PCs) by itself and the plant, 

enabling the binding of HM by HM-complexation, compartmen-

talization, and sequestration into vacuole for enhanced bioaccu-

mulation of toxic metals [72, 73]. It is interesting to note that PCs 

are also trafficking essential HMs of Co and Ni though not at a 

significant rate, as demonstrated in this study. Moreover, 

negatively charged EPS synthesized by BFBF is believed to induce 

the chelation of these HMs [74]. Consequently, the BFBF’s 
natural chelating abilities regarding toxic and essential HMs 

emphasize that biofilms can act as biosensors, thus detecting the 

substrate efficiently. Moreover, the immobilization of HMs in the 

soil via biosorption, precipitation, and biofilm formation, while 

chelating agents such as siderophores and organic acids bind 

metals, limiting their uptake [75–77]. Microbes also alter HM 

bioavailability through redox transformations, compete with 

plants for metal absorption, and enhance root defense mecha-

nisms such as efflux pumps and selective nutrient transport [78]. 

In addition, they sequester metals within root tissues, regulate 

xylem and phloem transport, and promote plant growth to 

reduce HM stress [79, 80]. These interactions ensure reduced 

accumulation of toxic metals in edible plant parts, offering a 

sustainable approach to minimizing HM contamination in agri-

culture while producing healthy food. 
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Table 3 • Bioaccumulation and translocation factors of the different heavy metals in the biofilm biofertilizer and  

chemical fertilizer–alone practices 

Factor Treatment As Cd Pb Co Cr Ni 

BaFs–r BFBF 1.414 ± 0.10 - 0.344 ± 0.02 2.275 ± 0.26 0.302 ± 0.03 0.147 ± 0.01 

CF alone 1.166 ± 0.05 - 0.225 ± 0.01 2.584 ± 0.40 0.190 ± 0.03 0.130 ± 0.02 

P-value 0.032  0.000 0.519 0.004 0.369 

TFr–s BFBF - - 0.720 ± 0.05 0.186 ± 0.04 0.666 ± 0.05 2.257 ± 0.17 

CF alone - - 1.350 ± 0.87 0.077 ± 0.00 1.534 ± 0.07 2.531 ± 0.48 

P-value   0.000 0.004 0.000 0.598 

TFs–l BFBF - - 2.117 ± 0.15 0.600 ± 0.10 1.752 ± 0.28 1.752 ± 0.28 

CF alone - - 2.410 ± 0.21 0.882 ± 0.08 0.981 ± 0.08 1.499 ± 0.13 

P-value   0.026 0.035 0.468 0.412 

TFl–p BFBF - - 0.434 ± 0.07 1.009 ± 0.21 0.430 ± 0.06 0.511 ± 0.13 

CF alone - - 0.739 ± 0.13 0.664 ± 0.04 0.508 ± 0.02 0.650 ± 0.07 

P-value   0.049 0.188 0.229 0.359 

TFp–g BFBF 0.050 ± 0.01 0.173 ± 

0.02 

- 0.083 ± 0.02 0.166 ± 0.01 1.540 ± 0.43 

CF alone 0.093 ± 0.01 0.218 ± 

0.03 

- 0.117 ± 0.02 0.125 ± 0.00 0.734 ± 0.18 

P-value 0.003 0.176  0.165 0.000 0.090 

Mean ± standard error. P-values indicate the probability levels at which the differences between the biofilm biofertilizer and chemical fertilizer–alone practices 

are significant. BaFs–r is the bioaccumulation factor of a given heavy metal from paddy soil to root. TFr–s, TFs–l, TFl–p, and TFp−g are the translocation factors of a 

given heavy metal from root to stem, stem to leaf, leaf to panicle, and panicle to seed, respectively. CF, chemical fertilizer; BFBF, biofilm biofertilizer. 

3.3. Human risk assessment 

3.3.1. Noncarcinogenic risk assessment 

The highest and lowest EDI values were observed in Ni and Cd, 

respectively, in both practices (Table 4). The application of 

BFBF pointed out that the daily intake of As, Co, Cd, and Cr could 

be reduced significantly compared to the CF-alone practice (P < 

0.05). It is reported that reducing the daily intake of THM such 

as Cd and As can lessen serious diseases such as lung cancer, 

bone defects, and also bronchitis [81]. The reduced EDI of the 

THM in the BFBF practice seems to have played a role in 

ecosystem intelligence [64]. 

All the HQ values were less than one, except As in CF-alone 

practice (Figure 2), which has reached the noncarcinogenic 

health risk level. The HQ is a measure of the potential risk 

associated with exposure to a single THM [82, 83]. In the BFBF 

practice, As, Cd, Co, and Cr showed significantly lower HQ 

values, possibly due to the binding of the HM to fungal cell walls 

[50] with the increased microbial diversity and abundance under 

the BFBF application [38, 84]. As such, the HQ values were 

significantly reduced by the BFBF intervention, except for the 

micronutrient Ni (Figure 2). Even if it is nontoxic as a single 

HM, we consume the HM collectively. Thus, HI value that depicts 

the potential health risk associated with exposure to multiple 

THM is a better parameter [85]. 

Interestingly, the HI of the BFBF practice had been kept below 

the threshold value (Figure 3) by significantly reducing the HQ 

values of the single HM though the values were well below the 

threshold of the HQ (Figure 2). This is clear evidence for the 

action of ecosystem intelligence with the BFBF practice com-

pared to that of the CF practice [64]. 

Table 4 • Estimated daily intake of the different heavy metals 

in the biofilm biofertilizer and chemical fertilizer–alone 

practices 

Heavy metal 
EDI (µg kg−1 day−1) 

BFBF CF alone 

As 0.12 ± 0.016 0.32 ± 0.014 

(0.000) 

Cd 0.08 ± 0.0085 0.16 ± 0.023 

(0.004) 

Pb - - 

- 

Co 0.12 ± 0.026 0.20 ± 0.024 

(0.027) 

Cr 0.99 ± 0.038 1.40 ± 0.058 

(0.000) 

Ni 3.79 ± 1.0 4.40 ± 1.1 

(0.688) 

Mean ± standard error. Values within parenthesis are probability levels at which 

the differences between the biofilm biofertilizer and chemical fertilizer–alone 

practices are significant. EDI, estimated daily intake; CF, chemical fertilizer; 

BFBF, biofilm biofertilizer. 
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Figure 2 • Hazard quotients of different heavy metals in both biofilm biofertilizer and chemical fertilizer–alone practices and the 

threshold value of the quotient. CF, chemical fertilizer; BFBF, biofilm biofertilizer. 

 

Figure 3 • Hazard index values in the biofilm biofertilizer and chemical fertilizer–alone practices. CF, chemical fertilizer; BFBF, 

biofilm biofertilizer. 

Ecosystem intelligence is an outcome of the complex signaling 

among microbes, plants, and animals in the system for sustainability 

[64, 86]. Microbes are the focal point of ecosystem intelligence. 

When the microbial cells commune in great numbers, their startling 

collective talents for solving problems and controlling their environ-

ment have been observed through awareness, understanding, or 

other capacities implicit in real intellect [87–89]. As such, increasing 

microbial diversity and abundance contributes immensely to 

reinstating the intelligence in degraded ecosystems, in particular, for 

beneficial outcomes, as was seen with the BFBF application [64]. 

4. Conclusions 

This study demonstrated that the application of BFBF could 

effectively manipulate THM levels and micronutrients within the 

soil–plant system, resulting in the production of high-quality 

rice. This indicates a level of ecosystem intelligence. Further-

more, the use of HQ and HI is expected to provide enhanced 

health benefits in both short and long run. On the other hand, the 

CF-alone application blunted this intelligent feature. This clearly 

shows the importance of introducing microbial interventions like 

BFBF to paddy cultivation for a healthy plate of rice. It is 

concluded from this study that the BFBF should be developed 

and tested globally in paddy cultivations to minimize the health 

risks of rice consumption for healthy human generations ahead. 
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