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ABSTRACT

The complex interaction between Aspergillus and Bacillus has been gaining attention with the
evolution of their co-culture applications. Information reported on this interaction from different
points of view including both synergistic and antagonistic mechanisms necessitates a review for
better understanding. This review focuses on the interaction, biofilm formation, and the diverse
biotechnological applications of Aspergillus and Bacillus, giving special attention to Aspergillus niger
and Bacillus subtilis. The review demonstrates that co-cultivation of Aspergillus and Bacillus exhibits
significant transcriptional changes, impacting metabolism and secondary metabolite production in
both organisms. Signaling from living fungal hyphae, EPS production, TasA fibrils, and regulators
like Spo0A are essential in forming biofilm communities. Nutrient availability and pH levels, species
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type, and mutations in EPS-producing genes may also influence whether Bacillus will act
antagonistically or synergistically with Aspergillus. This dual-nature complex interaction activates
silent genes synthesizing novel compounds mainly with antifungal and medicinal properties,
showcasing its potential for diverse applications in various fields such as agriculture and crop
protection, bioremediation, environmental biotechnology, food science and fermentation, industrial
biotechnology, and medical biotechnology and health. The use of Aspergillus and Bacillus species
has evolved from simple monoculture applications to more sophisticated co-cultures and has
been trending toward their synergy and metabolic optimization.

HIGHLIGHTS

« Bacillus can either inhibit growth or engage in biofilm with Aspergillus

+ Aspergillus-Bacillus co-cultivation produces novel secondary metabolites

«  The metabolites can inhibit or promote Aspergillus depending on the environment
+ Cross-feeding of Aspergillus and Bacillus alters their growth and gene regulation

- Their interaction offers applications in food science, environment, medicine, etc.

1. Why it is important to review literature on
the interactions and biofilm between
Aspergillus sp. and Bacillus sp.

In nature, microbes rarely exist as planktonic or single
cells/species. They (for bacteria, it is ca. 40-80%) live in
complex communities called polymicrobial biofilms (Xu
et al. 2022). The resident microbes in these biofilms
work together with each other by division of metabolic
labor leading to more productive outcomes over the

planktonic stage (Lindemann et al. 2016). In addition,
the genetic diversity of biofilm communities and
microbial interactions play a crucial role in regulating
the growth, metabolism, and differentiation of commu-
nity members. Although competitive behaviors like
antagonism and resource depletion tend to suppress
certain populations, microorganisms have developed
mechanisms to not only resist but also cooperate
under specific conditions, thereby enhancing commu-
nity fitness. In environments where both bacterial and
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fungal species coexist, these interactions often mani-
fest as mutualistic relationships.

Aspergillus species are key producers of enzymes
and organic acids, and Bacillus species are known for
their use as probiotics, and producers of antibiotics,
and enzymes. The interaction of Aspergillus and Bacillus
is complex, and it has been reported from different
points of view, making it even more complex. In addi-
tion, even though their diverse applications are spread-
ing in various disciplines, that information has not
been sufficiently reviewed thus far. Therefore, a thor-
ough literature review on their interactions and eco-
logical/industrial uses is an urgent need for staying
updated on emerging trends like microbial
co-cultivation and addressing innovative applications
in biotechnology.

1.1. Introduction to the genus Aspergillus

Aspergillus is one of the most familiar genera of fila-
mentous fungi in the phylum Ascomycota, known for
its asexual reproduction through conidiophores, struc-
tures bearing spores. In 1729, spore heads that resem-
bled the shape of an Aspergillum, a device used in
Roman Catholic rituals described by Italian priest and
botanist Pietro Antonio Micheli (Scazzocchio 2009).
Aspergillus thrives in diverse environments, from
nutrient-poor to extreme temperature, pH, and salinity
conditions (El-Hawary et al. 2020) and has over 250
known species (Geiser et al. 2008). The soil remains the
primary habitat for most of the Aspergillus species, and
they have been isolated from almost all major biomes.
Some species of the genus have been isolated from
litter and play a major role in the degradation of
organic matter and nutrient recycling in ecosystems
(Klich 2002; Embacher et al. 2023).

Certain species within the Aspergillus genus are
known agricultural pests and producers of various
metabolites, which pose risks to global food security
(Nji, Babalola, and Mwanza 2023). The Aspergillus spp.
are capable of adjusting to different environments due
to their structural constituents like the rodlet layer in
their surfaces, functions in spore dispersion and fixa-
tion, production of aerial hyphae, and nutritional versa-
tility (Kwon-Chung and Sugui 2013; Gresnigt et al.
2014). Moreover, their ability to produce numerous
degrading enzymes allows the fungus to saprotrophi-
cally infect diverse hosts (Mellon, Cotty, and Dowd
2007). Five Aspergillus sections, viz.,, Flavi, Fumigati,
Nigri, Nidulante, and Terrei have been reported to cause
diseases in humans (Sugui et al. 2014), and they have
been reported to induce host immune responses asso-
ciated with a diverse range of fungal-bacterial

interactions, especially in the respiratory tract
(Santos-Fernandez et al. 2023). Those interactions influ-
ence microbiome colonization in lungs and the immu-
nopathogenesis of chronic pulmonary aspergillosis,
which has been acknowledged as a serious lung dis-
ease (Rozaliyani et al. 2023). Aspergillus fumigatus is a
significant cause of these infections in people with
weakened immune systems (MacAlpine, Robbins, and
Cowen 2023). Here, A. fumigatus shows an interesting
interaction with Pseudomonas aeruginosa. When in
direct contact, P. aeruginosa secretes antifungal com-
pounds and inhibits A. fumigatus biofilm formation.
However, P. aeruginosa produces volatile compounds
that promote A. fumigatus to invade the lung paren-
chyma when the two organisms are physically sepa-
rated (Briard, Heddergott, and Latgé 2016). In various
other mucosal areas of the human body, similarly to P
aeruginosa, S. aureus inhibits conidiation, filamentation,
and biofilm maturation in A. fumigatus in polymicrobial
biofilm formation (Ramirez Granillo et al. 2015).

Aspergillus spp. are important in natural ecosystems
and biotechnology due to their production of extracel-
lular enzymes, organic acids, and secondary metabo-
lites. Traditionally identified through morphology and
biochemical methods, modern techniques like DNA
sequencing have refined Aspergillus classification.
Co-cultivation of Aspergillus spp. with other microor-
ganisms is a source of novel bioactive products (Alanzi
et al. 2023). Aspergillus flavipes (Wang, Huang, et al.
2024a), A. fumigatus (Kumar et al. 2019; Wang, Cao,
et al. 2024b), A. protuberus (Kato et al. 2017), and A.
alliaceus (Mandelare et al. 2018) have been reported to
produce medicinally important bioactive compounds
such as cytochalasans, taxols and pentapeptides, nota-
mides, and allianthrones, respectively.

1.2. Introduction to the genus Bacillus

The genus Bacillus is comprised of 435 species and 12
subspecies of low G+C Gram-positive bacteria (Kingdom
Bacteria; Phylum Firmicutes; Class Bacilli; Order Bacillales;
Family Bacillaceae) (Maughan and Van der Auwera 2011;
Blanco Crivelli et al. 2024), known for their ability to
form dormant endospores under unfavorable conditions,
allowing them to survive extreme environments such as
radiation, drought, and heat (Zeigler and Perkins 2021;
Xu and Kovécs 2024). These bacteria are widely distrib-
uted in natural environments like soil, air, and ocean
sediments. Moreover, they are found in human-made
environments, including public places such as homes,
hospitals, schools, markets, offices, trains, and restau-
rants. Bacillus species play crucial ecological roles, espe-
cially in soil, where they aid in nutrient cycling, plant



growth, and stress tolerance (Saxena et al. 2020). In
addition, Bacillus spp. are recognized for their ability to
produce lytic enzymes, antimicrobial agents, and volatile
organic compounds, which have diverse applications
(Blanco Crivelli et al. 2024). Certain species are also uti-
lized as probiotics, highlighting their significant role in
biotechnology and industrial processes (Blanco Crivelli
et al. 2024; Payne et al. 2024).

1.3. Interaction between Bacillus spp. and
Aspergillus spp.: co-growth and metabolism

Aspergillus and Bacillus co-culturing has been reported
to produce novel secondary metabolites by activating
silent genes (Sun et al. 2023). In co-culture,
10-deoxygerfelin produced by A. sydowii has induced
B. subtilis to synthesize benzoic acid, which is subse-
quently converted by A. sydowii into 3-hydroxybenzoic
acid. Using this 3-hydroxybenzoic acid, A. sydowii has
produced five new compounds. Here, the bacteria have
inhibited the fungal growth causing a stress response
of the fungus, which has activated the silent secondary
metabolic pathways of the microorganism to produce
new secondary metabolites. Similarly to A. sydowiii,
co-culturing of A. versicolor with B. subtilis has led to
producing a new cyclic pentapeptide, cotteslosin C, a
new aflaquinolone, 22-epi-aflaquinolone B, and two
new anthraquinones, along with 30 known compounds,
some of which have been identified with antibiotic
and anticancer properties (Abdel-Wahab et al. 2019). It
is not yet clear which species were the source of the
novel metabolites produced in the co-culture.
Cross-feeding A. oryzae metabolites affected higher
growth and biofilm formation in B. amyloliquefaciens
(Singh, Lee, and Lee 2022). On the contrary, Bacillus
extracts cross-fed to Aspergillus reduced its mycelial
growth and conidiation indicating an ammensalic
interaction. Similar results were observed when A. fla-
vus interacted with B. tequilensis and B. velezensis (Wu
et al. 2022). The two bacterial species may have emit-
ted secondary metabolites that regulate the related
gene transcription of A. flavus to inhibit growth and
aflatoxin production. Another similar effect of metabo-
lites produced by B. subtilis on A. carbonarius growth
has been reported by Jiang et al. (2020). In addition, B.
velezensis and B. subtilis have been reported to reduce
ochratoxin production in A. carbonarius and A. niger,
respectively, while decreasing the growth of the fun-
gus (Yassein and Elamary 2021; Silveira et al. 2022).
Furthermore, volatile compounds produced by B. spo-
rothermodurans and B. megaterium have been reported
to inhibit spore germination and mycelial growth in A.
fumigatus (Mannaa and Kim 2018; Osaki et al. 2021).
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1.4. Regulatory mechanisms of Aspergillus spp.
and Bacillus spp.

The process of exchanging and utilizing secondary
metabolites between A. sydowii and B. subtilis to pro-
duce new compounds is facilitated by the upregulation
of key enzymes such as hydroxylase, hydrolase, and
acyltransferase (Sun et al. 2023). Many of those com-
pounds exhibit antifungal properties as explained above.
Li et al. (2022) have identified some of the antifungal
secondary metabolites produced by Bacillus spp. as
fengycin and iturins, which could inhibit the spore ger-
mination, and abnormal expansion of hyphae and cell
rupture by downregulating genes involved in ribosome
biogenesis (NOG1, KRE33) and aflatoxin biosynthesis
(aflK, aflR, veA, omtA) pathways in A. flavus. Moreover,
the differential transcriptomic analysis showed that the
iturin A produced by B. subtilis has downregulated the
expression of genes related to the cell membrane,
osmotic pressure, transport, energy metabolism, and
oxidation-reduction processes, which led to swelling of
the cells, thinning of the cell wall and membranes, and
inhibiting spore germination in A. carbonarius (Jiang
et al. 2020). As such, iturin A produced by B. subtilis per-
forms a crucial role in inhibiting A. carbonarius by chang-
ing the fungal cell structure and disturbing osmotic
pressure, transport, and energy metabolisms.

El-Sayed et al. (2021) reported that the release of
antifungal compounds by B. subtilis not only inhibits A.
flavipes growth but also triggers its Taxol biosynthesis
through intimate bacterial-fungal interaction. Here, pro-
teomic analysis identified 106 proteins with notable
upregulation and downregulation in key metabolic pro-
cesses. Except for B. subtilis, B. megaterium shows a sim-
ilar inhibitory effect on A. flavus and A. candidus as well
by producing mainly 5-methyl-2-phenyl-1H-indole as the
active antifungal volatile compound (Mannaa, Oh, and
Kim 2017; Mannaa and Kim 2018), and down-regulated
the expression of aflatoxin pathway gene cluster (aflF,
aflT, aflS, afl), aflL, and aflX) in A. flavus (Kong et al. 2014).

2. Aspergillus niger and B. subtilis

Aspergillus niger and B. subtilis are key index species in
their respective genus due to their widespread applica-
tions in biotechnology and research. Therefore, those
two species have been selected in this review to ana-
lyze their interaction in depth.

2.1. Introduction to A. niger

Aspergillus niger, a filamentous fungus known as a prom-
inent cell factory, is extensively used in industrial
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biotechnology to produce enzymes like cellulases, pecti-
nases, and xylanases, as well as organic acids such as
citric acid (Kumar, Sharma, and Sarkar 2011; Krijgsheld
et al. 2012; Oyeleke et al. 2012; Behera 2020; Li et al.
2020). In 1917, James Currie discovered that A. niger
could create citric acid from sugar using the surface fer-
mentation method. This finding served as the founda-
tion for Aspergillus's application in industrial production
(Cairns, Nai, and Meyer 2018; Corbu et al. 2023). A. niger
produces higher citric acid yields than other microor-
ganisms by fermenting diverse inexpensive materials
(Show et al. 2015). As such, the ability of A. niger to pro-
duce enzymes that aid in the digestion of complex car-
bohydrates and fibers could facilitate recycling of
nutrients in ecosystems (Krzisnik and Goncalves 2023).
In addition, A. niger can form biofilms, particularly in
response to nutrient limitations or environmental stress.
These biofilms have been shown to enhance the degra-
dation of organic substrates and plastic waste, making
them highly effective in waste management and biopro-
cessing applications (Mathur, Mathur, and Prasad 2011).

2.2. Introduction to Bacillus subtilis

Bacillus subtilis is a well-known Gram-positive, rod-shaped
model bacterium with outstanding capabilities as a pro-
biotic, biofertilizer, and enzyme producer. Its role in pro-
moting plant growth highlights its biotechnological
importance (Gémez-Godinez et al. 2023; Mourouzidou
et al. 2023). Moreover, it is widely recognized for pro-
ducing antibiotics (Miao et al. 2024) and extracellular
enzymes such as proteases, amylases, and lipases
(Kumari and Rajas 2023; Lee and Moon 2023), which
have significant industrial applications (Chen et al. 2019).
Furthermore, B. subtilis is well-known for forming bio-
films, that play a crucial role in environmental adapta-
tion, stress resistance, and host interaction (Vlamakis
et al. 2013). On a molecular level, the biofilm matrix
comprises polysaccharides, proteins, and extracellular
DNA (eDNA), which provide structural integrity and pro-
tect the cells within hostile environments.

2.3. Interaction between Aspergillus niger and
Bacillus subtilis: co-growth and metabolism

Bacillus  subtilis produces antifungal compounds
(Mohammadipour et al. 2009; Meena and Kanwar
2015), but interestingly, it also forms biofilms on fungal
hyphae (Benoit et al. 2015). When B. subtilis
co-inoculated with A. niger, the bacteria adhere and
colonize the surface of the fungal mycelium, damaging
the cell wall, leading to its lysis (Podile and Prakash
1996). At 0, 6, and 12h of the co-inoculation, B. subtilis

has reported to significantly suppress A. niger growth
achieving over 90% inhibition, with lower inhibition for
older fungal cultures (Podile and Prakash 1996). On the
contrary, it has also been reported that B. subtilis pro-
liferates on A. niger's hyphae while facilitating co-growth
(Benoit et al. 2015). Currently, an increasing interest
can be seen in the scientific world in studying these
astonishing interactions between B. subtilis and A. niger,
especially when they form biofilms.

2.4. Regulatory mechanisms of Bacillus subtilis in
co-culture with Aspergillus niger

In co-culture, B. subtilis is capable of secreting various
lipopeptides such as surfactins, iturins, and fengycins
regulated by several genes, viz, srf, sfp, degQ, aspAT,
and yczE (Kim et al. 2017; Gao et al. 2022; Yaraguppi
et al. 2023; Yin et al. 2023). These lipopeptides have
been reported to inhibit fungal growth, reduce
fungal-mediated acidification, or even kill fungal cells
(Mohammadipour et al. 2009; Meena and Kanwar 2015;
Richter et al. 2024). Some B. subtilis strains block
fungal-mediated acidification of the medium during
co-cultivation with several Aspergillus species including
niger, indicating an advantage of increased spreading
by B. subtilis during competition for space and nutri-
ents on a surface (Richter et al. 2024). In nutrient-
poor environments, B. subtilis may switch to the
biofilm-forming mode as a survival strategy, using the
fungal hyphae as a surface to establish biofilms and
enhance resource acquisition. The microhabitat created
by the mycelium network of A. niger has been reported
to maintain a water layer surrounding fungal hyphae
and facilitates B. subtilis to cover a larger area, reaching
more nutrients (Abeysinghe et al. 2020; Richter et al.
2024). Bacillus subtilis uses quorum sensing to regulate
biofilm formation. In response to signals, particularly
from fungal hyphae, that is, molecules that can act as
signals to bacteria (Wang, Zeng, et al. 2024c) or exter-
nal stresses, the bacteria can change their gene expres-
sion, leading to biofilm formation (Benoit et al. 2015).
Interestingly, it has been reported that the attachment
of B. subtilis cells on A. niger mycelium is possibly
dependent on living A. niger mycelium or on specific
cell wall components, and this process could also be
facilitated with the proteins produced by A. niger
(Benoit et al. 2015; Fifani et al. 2022). Moreover, B. sub-
tilis produces an extracellular matrix, which consists of
proteins like TasA and extracellular polymeric sub-
stances (EPS), which allows the bacteria to adhere to
fungal hyphae, providing a stable environment for the
bacteria and enabling the colonization of fungal struc-
tures (Romero et al. 2010; Arnaouteli et al. 2021).



In addition, A. niger and B. subtilis exhibit significant
transcriptional changes. For A. niger, ca. 5.4% (786 genes)
of its genome has reported to show altered expression
when exposed to B. subtilis (Benoit et al. 2015). Among
these, 47% were upregulated, and 53% were downregu-
lated, particularly genes involved in detoxification/sec-
ondary metabolite production (15%) and carbon
metabolism (10%). Notably, genes related to fungal cell
wall biosynthesis, such as those for chitin synthesis, are
upregulated, suggesting enhanced structural support.
About 25% of the altered genes encode hypothetical
proteins of unknown function, and some are linked to
fungal defense mechanisms. For B. subtilis, the interac-
tion has reported to trigger expression changes in
around 7% (279 genes) of its genome, particularly genes
involved in late sporulation and anaerobic metabolism,
indicating a shift toward a sessile lifestyle (Benoit et al.
2015). Genes related to moatility, autolysis, and stress
response are downregulated. Interestingly, surfactin, a
key antibiotic and biosurfactant produced by B. subtilis
are reduced in the presence of A. niger, possibly due to
downregulation of the srfA operon: However, Richter
et al. (2024) showed that some of the B. subtilis strains
enhance surfactin production leading to inhibiting fun-
gal growth and acidification of the environment. These
characteristics were explained by specific mutations in
the DegS-DegU two-component system. Co-evolutionary
dynamics of B. subtilis-A. niger interaction have led to
mutual adaptation, including secondary metabolite pro-
duction and inhibition of A. niger growth. These tran-
scriptional changes reflect the complex and multifaceted
nature of microbial interaction, impacting both metabo-
lism and secondary metabolite production in both
organisms.

Transcriptomic analyses during biofilm development
have identified regulatory pathways controlled by mas-
ter regulators like SpoOA, which coordinate the transi-
tion of B. subtilis from planktonic growth to biofilm
formation (Hamon and Lazazzera 2001; Verhamme,
Murray, and Stanley-Wall 2009; Vlamakis et al. 2013). It
has been reported that the SpoOA enables B. subtilis to
make an attachment to the fungal hyphae (Kjeldgaard
et al. 2019), possibly regulating genes that encode pro-
teins that contribute to attachment.

TasA, a protein in B. subtilis biofilms, assembles into
ordered fibrils that contribute to the biofilm’s extracel-
lular matrix (ECM) (Chai, Zaburdaev, and Kolter 2024).
Its assembly is triggered by environmental factors like
pH reduction or the presence of hydrophobic surfaces.
TasA interacts with TapA, a chaperone-like protein, to
accelerate fibril formation. Depending on the ratio of
TasA to TapA, the fibrils can vary in structure ranging
from TasA-rich fibrils to branched or capped forms. This
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regulated assembly of TasA fibrils helps organize the
ECM, providing structure and stability to biofilms.
Recently, it has been reported that the N-terminal tail
of TapA is necessary for the structured biofilm forma-
tion, suggesting that the strand-exchange fibrils are
the active form in the biofilm matrix (Arnaouteli et al.
2021; Bamford et al. 2024). Furthermore, TasA interacts
with other biofilm matrix proteins and modulates bio-
film development, especially when colonizing fungal
hyphae (Kjeldgaard et al. 2019). The hyphal biofilm for-
mation by B. subtilis was diminished by deletion of
spo0A, epsA-O, or TasA genes (Kjeldgaard et al. 2019)
and mutations to TapA genes (Arnaouteli et al. 2021).

Dual-species biofilms can gain unique characteristics
as compared to their respective monoculture colonies,
altering their metabolism during interaction (Benoit
et al. 2015; Duanis-Assaf et al. 2018). Kjeldgaard et al.
(2019) demonstrated that the biofilm matrix compo-
nents of B. subtilis are essential for colonization on the
hyphae of A. niger. In addition, the secretion of these
matrix components is sufficient to rescue biofilm for-
mation of matrix deficient strains suggesting that social
interaction shapes the co-evolution of fungi and bacte-
ria in the environment.

An overview of the complex interactions explained
above is depicted in Figure 1.

3. Applications of Bacillus subtilis and
Aspergillus niger

Bacillus subtilis and A. niger have been explored for
their potential in biofertilizers, where they promote
nutrient solubilization and root colonization (Sivasakthi,
Usharani, and Saranraj 2014; Escobar Diaz et al. 2021).
Studies have shown that their biofilms enhance plant
growth by improving the uptake of minerals such as
phosphorus and iron (Kalayu 2019). Moreover, B. subti-
lis and A. niger have demonstrated long-lasting effects
on crop protection (Sivasakthi, Usharani, and Saranraj
2014), as the biofilm matrix provides a stable environ-
ment for these microorganisms to exert biocontrol
over plant pathogens (Rafique et al. 2015).

In biotechnology, B. subtilis is widely used for its
ability to express and secrete heterologous proteins,
making it a model organism for industrial enzyme pro-
duction (Das and Prasad 2010). Its biofilm-forming abil-
ity enhances its role as a biocontrol agent, as biofilms
enable robust root colonization and long-term protec-
tion against pathogens in agricultural applications
(Khezri et al. 2011; Wang et al. 2018).

In the human gut, B. subtilis biofilms act as a
potential probiotic strategy, helping maintain gut
health by improving colonization and protecting
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Figure 1. An overview of the complex interactions between Aspergillus and Bacillus. Arrows: Red—inhibition, green—promotion/

production, and orange—affect.

beneficial microbes from gastrointestinal stresses.
Bacillus subtilis biofilms shield the cells from low pH
and bile salts, thereby enhancing their persistence in
the gut environment (Elshaghabee et al. 2017; Larsen
et al. 2014). Moreover, the biofilm matrix has been
found to modulate immune responses, protect the
intestinal barrier, and prevent the colonization of
pathogenic bacteria, suggesting potential therapeutic
uses in treating inflammatory bowel disease
(Palkovicsné Pézsa et al. 2022).

3.1. Applications of Aspergillus spp. and Bacillus
spp. in diverse fields

Diverse applications of Bacillus species: B. subtilis, B.
velezensis, B. licheniformis, B. pumilus, B. cereus, B. amylo-
liquefaciens, B. megaterium, and B. circulans, and
Aspergillus species: A. brasiliensis, A. sydowii, A. violaceo-
fuscus, A. niger, A. versicolor, A. flavipes, A. oryzae, A. fla-
vus, A. fumigatus, and A. kawachii are depicted in Table 1.

The use of monocultures and co-cultures of numer-
ous Aspergillus and Bacillus species is highlighted in the
fields of agriculture and crop protection, bioremediation,
environmental biotechnology, food science and fermen-
tation, industrial biotechnology, and medical biotechnol-
ogy and health (Table 1). Most of the applications have
focused on synergy and metabolic optimization of the
microbes to achieve more productivity.

4. Future perspectives

Understanding the interaction of Aspergillus and
Bacillus species has facilitated to evolution of their

applications from use in agriculture for pathogen inhi-
bition and plant growth promotion to novel applica-
tions such as complex biocontrol strategies and stress
resilience, pollutant  degradation, bio-catalytic
approaches, producing bioactive compounds, nanopar-
ticles, and enzymes, optimizing processes in wastewa-
ter treatment and fermentation, improving nutrient
content and fermentation quality, and generating
health-promoting bioactive molecules. Overall, the
trend reveals increasing reliance on microbial synergy
and metabolic engineering to enhance sustainability
and efficiency in agriculture, environment, food, and
health industries. In addition, challenges remain in
optimizing biofilm formation conditions, and in silico
animal and human models would be beneficial for
ensuring that the developed/engineered biofilms are
stable and safe for use in health-related applications.

5. Conclusion

Cross-feeding mechanisms play a crucial role in shap-
ing growth and biofilm formation in Aspergillus and
Bacillus, indicating that the metabolic exchanges
between these two organisms are vital for their sur-
vival and ecological success. The production of EPS,
fibrils like TasA, and signaling from living fungal hyphae
seem to be essential in forming syntrophic biofilm
communities. Environmental conditions, such as nutri-
ent availability and pH levels, species type, and gene
mutations, especially in EPS-producing genes may
influence whether Bacillus will act antagonistically or
synergistically with Aspergillus. This flexibility in behav-
ior features the adaptive strategies that these microbes
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Table 1. Continued.

Field of application

References
Abd El Mageed et al. (2022)
Khadse and Babar 2018

Application/outcome

Growth mode

Microbial species

Enhanced a-amylase production.

Monoculture
Monoculture

Aspergillus niger and Bacillus subtilis

Industrial

Enhanced a-amylase production.

Aspergillus niger NCIM 1054 and B. subtilis NCIM

biotechnology

2439
Aspergillus niger GIO and Bacillus megaterium.

Bacillus subtilis, Aspergillus oryzae

Fasiku, Bello, and Odeniyi (2023)
Horikoshi and lida (1959)

Cha et al. (2012)

Synergistic xylanase production.

Co-culture
Co-culture
Co-culture

Lytic enzymes from Bacillus circulans act on Aspergillus oryzae.

B. subtilis fermented silkworm powder reduced alcohol-induced hepatotoxicity and oxidative stress.
Selenium nanoparticles produced showing antifungal activity against Aspergillus fumigatus and

Bacillus subtilis and Aspergillus kawachii

Medical

Shakibaie, Salari Mohazab, and

Monoculture

Bacillus species Msh-1 and Aspergillus fumigatus

biotechnology
and health

Ayatollahi Mousavi (2015)

Hamed et al. (2024)

Candida albicans.
Significant induction of bioactive compounds with antimicrobial and antioxidant properties.

Co-culture

Aspergillus sp. CO2 and Bacillus sp. COBZ21
Bacillus subtilis and Aspergillus oryzae

Enhances immunity, stimulates the production of antibodies, and enhances resistance against Iwashita et al. (2015)

Monoculture

Aeromonas hydrophila and Streptococcus iniae infections in juvenile tilapia.
Production of new compounds with antibacterial and anticancer properties.

Taxol biosynthesis.

Abdel-Wahab et al. (2019)
El-Sayed et al. (2021)

Co-culture
Co-culture

Aspergillus versicolor and Bacillus subtilis

Aspergillus flavipes and Bacillus subtilis

employ in diverse settings. The dual-nature (both
antagonistic and synergistic) complex interaction acti-
vates silent genes synthesizing novel compounds
mainly with antifungal and medicinal properties. This
showcases the potential of their co-cultivation for
diverse applications in various fields providing innova-
tive biotechnological solutions. The trend in using
Aspergillus and Bacillus species has evolved from sim-
ple monoculture applications to more sophisticated
co-cultures, increasingly focusing on synergy and met-
abolic optimization.
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