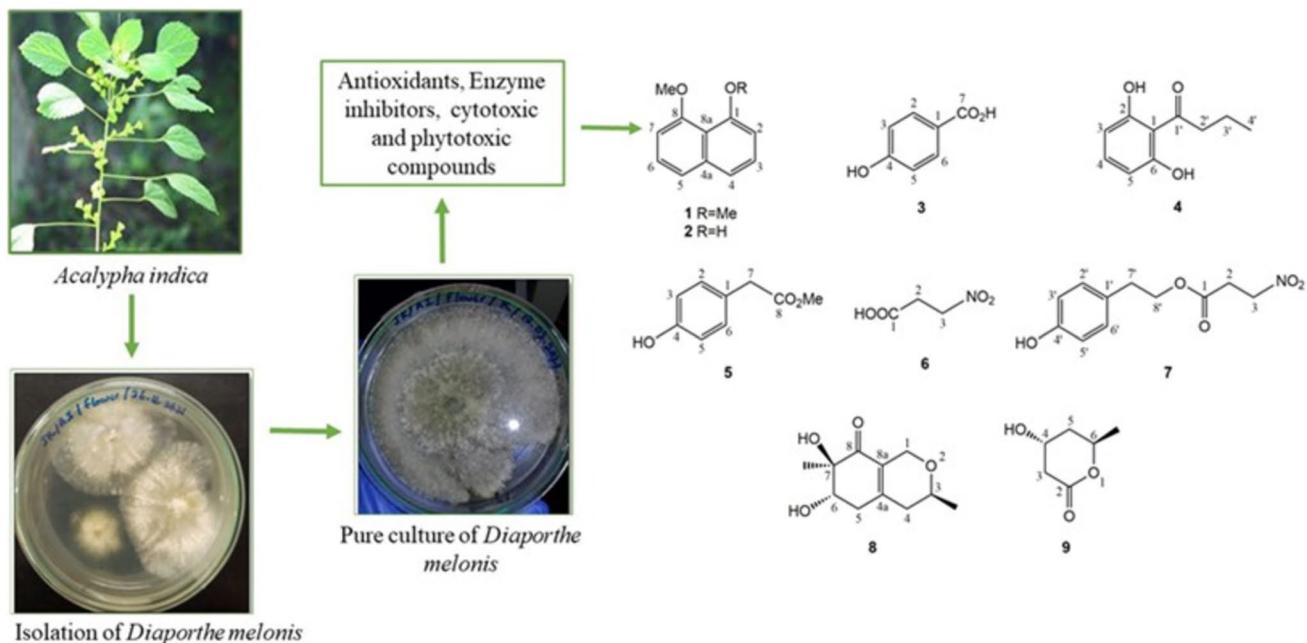


α -Glucosidase inhibitor and phytotoxic metabolite produced by an endophytic fungus *Diaporthe melonis* isolated from *Acalypha indica* L

Jayani Kalinga¹ · Kavindya Samarakoon¹ · Upesha Siriwardhane¹ · Deepthi Yakandawala² · Nimal Adikaram¹ · Lalith Jayasinghe¹ · Hiroshi Araya³ · Yoshinori Fujimoto^{1,3}


Received: 6 September 2024 / Revised: 29 April 2025 / Accepted: 6 May 2025

© The Author(s) under exclusive licence to Society for Plant Research 2025

Abstract

Nine compounds from the fermentation of *Diaporthe melonis*, an endophytic fungus in the inflorescence of *Acalypha indica* L. (Euphorbiaceae), were isolated and identified. They are 1,8-dimethoxynaphthalene (**1**), 8-methoxynaphthalen-1-ol (**2**), 4-hydroxybenzoic acid (**3**), 1-(2,6-dihydroxyphenyl)butanone (**4**), methyl (4-hydroxyphenyl)acetate (**5**), 3-nitropropanoic acid (**6**), phomonitroester (**7**), felinone A (**8**) and (4*R*,6*R*)-4-hydroxy-6-methyltetrahydro-2*H*-pyran-2-one (**9**). The EtOAc crude extract resulted in strong cytotoxicity, radicle elongation inhibition and a strong potential to inhibit α -glucosidase enzyme. This is the first report of the strong α -glucosidase and strong phytotoxicity of compound **4**.

Graphical abstract

Keywords *Acalypha indica* · *Diaporthe melonis* · Enzyme inhibition · Phytotoxicity · Naphthalene derivatives

Extended author information available on the last page of the article

Introduction

Endophytic fungi serve as a plentiful and reliable reservoir of unique and bioactive compounds, yet remain relatively understudied category of microorganisms (Kumar et al. 2014). We have previously reported several bioactive compounds from endophytic fungi from Sri Lankan plants (Bandara, et al., 2015; Piyasena et al. 2015; Siriwardena et al., 2015; Thanabalasingam et al. 2015; Quader et al., 2016; Munasinghe et al. 2017; Padmathilake et al., 2017; Quader et al., 2017a; Quader et al., 2017b; Rathnayake et al. 2018a, b; Rathnayake et al. 2018a, b; Kehelpannala et al. 2018; Sritharan et al., 2019; Dissanayake et al. 2020; Munasinghe et al. 2021; Thambalasingam et al., 2024). Continuing our studies of chemical prospecting of endophytic fungi in Sri Lankan flora, the secondary metabolites in an endophytic fungus of *Acalypha indica* L. were studied. *A. indica* is a widely distributed medicinal herb of the family Euphorbiaceae. It is used to treat many diseases in the respiratory tract, urinary tract, nervous system and skin. The diversity of the endophytic community in *A. indica* and anti-microbial activities of their crude extracts have been previously reported (Kuradawad et al., 2014; Sowparthani et al., 2016). Here, we report the isolation of nine compounds from *Diaporthe melonis*, an endophytic fungus isolated from *A. indica*. Further, their antioxidant activity, cytotoxicity, phytotoxicity and potential to inhibit acetylcholinesterase (AChE), α -amylase and α -glucosidase activity.

Methods

General

The TLC was performed using pre-coated aluminum sheets with silica gel 60F₂₅₄ (Merck 1.05554). For column chromatography, silica gel (Merck 1.07734) and Sephadex LH20 (Fluka, 84,952) were used. The ¹H NMR were recorded on a JEOL JNM-ECP500 or JEOL JNM-AL300 spectrometer in CDCl₃ or CD₃OD solution. UV absorbance values were taken using the multimode reader (BioTek Synergy HTX). AChE enzyme (from *Electrophorus electricus*), α -amylase and α -glucosidase (from *Saccharomyces cerevisiae*) were purchased from Sigma Aldrich. All the other chemicals used were analytical grade unless otherwise specified.

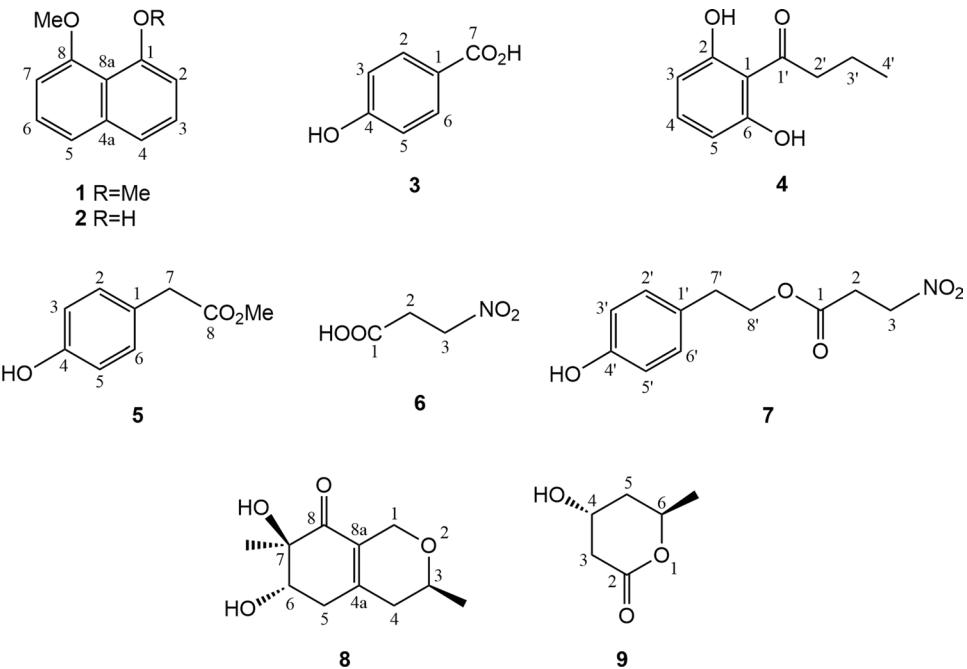
Collection and identification of plant material

Plant material: *Acalypha indica* is a native plant found in home gardens. This is a common plant, identified by Prof. Nimal Adikaram, Professor of Botany, National Institute

of Fundamental Studies (NIFS), Sri Lanka and deposited at the Natural Product Laboratory of NIFS (Specimen No. NIFS-JK/AI/01).

Isolation and identification of the endophytic fungus

Plant leaves of *Acalypha indica* were washed and triple sterilized with 90% ethanol, 2.5% sodium hypochlorite, 90% ethanol and distilled water. Tiny pieces (≥ 5 mM²) were placed on potato dextrose agar medium and incubated at room temperature (32 °C) for 7 days. The emerged fungus was carefully sub-cultured to obtain its pure cultures. The external characteristics and the spores from the pure cultures were microscopically observed. Molecular level identification was carried out by amplifying the Internal Transcribed Spacers (ITS) of rDNA gene using universal eukaryotic primers ITS 1F and ITS 4. The resulting sequence was compared for similarities by performing nucleotide BLAST. The amplified gene sequence had 99.29% similarity with *Diaporthe melonis* of the Diaporthaceae family (GenBank accession number: MW450847.1). The pure culture of the fungus (NIFS-JK/AI/K) and the photographic evidence were deposited at the Natural Products Laboratory of the National Institute of Fundamental Studies (NIFS).


Fermentation and extraction of fungus

D. melonis was large-scale grown in 1 L conical flasks, each containing 400 mL of potato dextrose broth medium. They were incubated for 30 days at room temperature. The medium was filtered. The filtrate was partitioned with EtOAc and concentrated. The residual mycelium was crushed into pieces and extracted to EtOAc by sonication. Both EtOAc extracts were combined (10.83 g) after observing the similarities in their Thin Layer Chromatography (TLC).

Separation and identification of compounds

The resulting crude extract was subjected to silica gel column chromatography (*n*-hexane–EtOAc–MeOH) followed by Sephadex LH20 (100% MeOH and 30% CHCl₃/MeOH) and further purified using PTLC. This resulted compounds 1–9 were resulted during this process. Crude extract (concentration series of 2000–31.25 mg L⁻¹) and pure compounds (100–3.12 mg L⁻¹) were tested for their bioactivities (Fig. 1).

Fig. 1 Chemical structures of compounds **1–9**

Antioxidant assay

DPPH radical scavenging assay

The 0.3 mM 2,2'-diphenyl-1-picrylhydrazyl (DPPH) solution was prepared by dissolving 1.2 mg in 10 mL of MeOH. For the tests, 150 μ L of the sample and 60 μ L of DPPH were added into a 96-well plate (Cellstar, 12.5 \times 8.5 \times 1 cm). For the negative control, 150 μ L of MeOH and 60 μ L of DPPH were added. The well plate was incubated in the dark for 30 min at room temperature. The absorbance (A) was measured at 517 nm. Ascorbic acid was used as the positive control. The percentage of Radical Scavenging Activity (RSA) was noted, and the IC₅₀ value was calculated using the log dose scavenging activity curve (Aliyu et al. 2010).

$$\text{Percentage RSA}(\%) = \frac{\delta A_{\text{control}} - \delta A_{\text{sample}}}{\delta A_{\text{control}}} \times 100$$

where; $\delta A_{\text{control}} = \text{Absorbance}_{\text{control}} - \text{Absorbance}_{\text{control blank}}$
 $\delta A_{\text{sample}} = \text{Absorbance}_{\text{sample}} - \text{Absorbance}_{\text{sample blank}}$

Ferric reducing antioxidant power (FRAP) assay

For the tests, 50 μ L of sample followed by 200 μ L of FRAP reagent, was added to the wells of a 96-well plate. For the test blanks, 50 μ L of sample and 200 μ L of distilled water were added. The wells of the control were filled with 50 μ L distilled water and 200 μ L of FRAP reagent. Then it was incubated for 4 min at 37 °C. The absorbance was

measured at 593 nm. The antioxidant potential of the samples was determined against the standard curve of Fe₂SO₄. The final value was expressed as the concentration of antioxidants having a ferric-reducing ability equivalent to that of 1 mM Fe₂SO₄ (Langley-Evans et al., 2000).

Brine shrimp lethality assay

A teaspoon of Brine Shrimp's eggs (*Artemia salina*) was added to artificial sea water and kept at room temperature for 48 h. During that time, the eggs hatched and developed into nauplii (1st larval stage). Next, 2 mL from each concentration of the sample, followed by ten nauplii, were added to 24-semi microplates (Biologix, dimensions 12.5 \times 8.5 \times 2 cm). After 24 h, the number of dead larvae was counted. The negative and positive controls were seawater and K₂Cr₂O₇, respectively. The percentage lethality was calculated, and the LC₅₀ value was determined from the graph between concentration and percentage lethality (Krishnaraju et al 2005).

$$\text{Percentage lethality} (\%) = \frac{\text{Number of died nauplii after 24 h}}{\text{Number of nauplii added}} \times 100$$

Phytotoxicity assay

Phytotoxicity was tested on the germination of *Lactuca sativa* (lettuce) seeds. Sterilized Whatmann No.01 filter paper discs (diameter 3.4 cm) were laid on the bottom of the wells of a 6-well plate (Biologix, 12.5 \times 8.5 \times 2 cm). 400 μ L from each dilution was evenly distributed on the filter papers. Ten viable seeds were placed on it. The plates were sealed and incubated

in the dark at room temperature for five days. On the 5th day, the length of the hypocotyl and the radicle of each seed was measured. Negative control was distilled water and, abscisic acid was used as the positive control. The percentage inhibition of radicle elongation was calculated using the following equation. Similarly, the percentage inhibition of hypocotyl elongation was also calculated and the IC_{50} value was calculated (Baratelli et al., 2012).

$$\text{Inhibition of radicle elongation (\%)} = \frac{\text{Control radicle length} - \text{Treated radicle length}}{\text{Control radicle length}} \times 100$$

Acetylcholinesterase inhibitory assay

The AChE inhibitory bioassay was performed according to the published method with minor modifications (Ellmann et al., 1961). The samples were dissolved in 1% DMSO or distilled water. 100 μL of phosphate buffer (pH 8), 25 μL of sample and 50 μL of enzyme were added to the wells of 96-well plate. After 10 min, 50 μL of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) solution and 25 μL of substrate solution (acetylthiocholine iodide) was added and incubated for 10 min at room temperature. The same procedure was followed for the controls and blanks. For the test-blanks, 50 μL of buffer was added instead of the enzyme. 25 μL of solvent was added to the controls instead of the sample. Absorbance was measured at 412 nm. Donepezil was used as the positive control. The percentage inhibition of AChE was calculated. The IC_{50} value of the sample was calculated by using the log dose-inhibitory curve.

$$\text{Enzyme inhibitory activity (\%)} = \frac{\delta A_{\text{control}} - \delta A_{\text{sample}}}{\delta A_{\text{control}}} \times 100$$

α -Amylase inhibitory assay

The samples were dissolved in either phosphate buffer (pH 6.9) or distilled water. 100 μL of sample and 100 μL of enzyme solution were mixed in an Eppendorf tube. After 30 min at room temperature, 100 μL of starch solution was added. After 10 min, 100 μL of 96 mM 3,5-dinitrosalicylic acid (DNSA) was added, vortexed, and the tubes were placed inside the water bath at 85 °C for 15 min. Finally, the reaction mixtures were diluted with 900 μL of distilled water. The same procedure was followed for the controls and the blanks. For the test blanks, 100 μL of buffer was added instead of the enzyme. 100 μL of the solvent to control wells instead of the sample was added. 250 μL from each reaction mixture was added to a 96-well plate. The absorbance was measured at 540 nm. Acarbose was used as the positive control. The IC_{50} value of the sample was calculated by using the log dose-inhibitory

curve. The percentage inhibition of α -amylase was determined (Nickavar et al. 2008).

α -Glucosidase inhibitory assay

The samples were dissolved in either phosphate buffer (pH 6.9) or distilled water. For the test wells of a 96-well plate, 100 μL of buffer, followed by 25 μL of sample and 25 μL enzyme, were added. The plate was incubated for 10 min at 37 °C. 50 μL of 4-nitrophenyl α -D-glucopyranoside (*p*NPG) was added and incubated for 30 min at 37 °C. The blanks and the controls were carried out in the same procedure. For the test blanks, 25 μL of buffer was added instead of the enzyme. 25 μL of the solvent to the control wells instead of the sample was added. The absorbance was measured at 410 nm. Acarbose was used as the positive control. The IC_{50} value of the sample was calculated by using the log dose-inhibitory curve. The percentage of α -glucosidase inhibitory activity was calculated (Sathya et al. 2020).

Statistical analysis

All measurements in this study were obtained by analysis in triplicate ($n = 3$). The results were presented as mean \pm standard deviation (SD). Data were analyzed statistically by one-way ANOVA using the minitab 17 software package. When the F values were significant, mean differences were compared using Dunnett's test at the 5% level of probability.

Results and discussion

This study is the first report of isolating *D. melonis* from *A. indica*. The chromatographic separation of the combined crude extract furnished nine known compounds: 1,8-dimethoxynaphthalene (**1**) (Yang et al. 2008), 8-methoxynaphthalen-1-ol (**2**) (Ballantine et al. 2009; Wen et al. 2013), 4-hydroxybenzoic acid (**3**) (Yoshioka et al. 2004), 1-(2,6-dihydroxyphenyl)butanone (**4**) (Dai et al., 2006), methyl (4-hydroxyphenyl)acetate (**5**) (Fleming, et al., 2011), 3-nitropropionic acid (**6**) (Flores et al., 2013), phomonitroester (**7**) (Rukachaisirikul et al., 2008), felinone A (**8**) (Du et al. 2014) and (4*R*,6*R*)-4-hydroxy-6-methyltetrahydro-2*H*-pyran-2-one (**9**) (Sann et al. 2005). Their structures were elucidated by spectroscopic methods and confirmed by comparison with the literature. Due to the availability of metabolites, compounds, **1–4** were

Table 1 Results obtained for the bioassays of *D. melonis* crude extract and isolated compounds **1–4**

Bioassays	Sample					
	Crude extract	Comp. 1	Compo. 2	Compo. 3	Comp. 4	(+) control
DPPH radical scavenging assay IC ₅₀ value (mg L ⁻¹)	297.38 ± 2.10	ND	15.55 ^a ± 0.53	ND	> 100	1.86 ^a ± 0.43
FRAP assay (μmol FeSO ₄ per mg of the sample)	0.58 ± 0.02	0.16 ± 0.01	9.68 ± 0.06	ND	0.85 ± 0.13	12.07 ^a ± 0.30
Brine shrimp lethality assay LC ₅₀ value (mg L ⁻¹)	65.37 ± 0.65	> 100	54.67 ± 1.30	> 100	ND	34.40 ^a ± 0.30
Hypocotylelongation inhibition IC ₅₀ value (mg L ⁻¹)	166.68 ± 3.16	> 100	39.54 ± 6.04	64.03 ± 9.62	> 100	1.46 ^a ± 0.26
Radicle elongation inhibition IC ₅₀ value (mg L ⁻¹)	12.17 ^a ± 4.73	4.41 ^a ± 2.22	5.07 ^a ± 0.86	11.47 ± 3.20	7.00 ^a ± 3.25	1.85 ^a ± 0.17
AChE inhibitory assay IC ₅₀ value (mg L ⁻¹)	763.53 ± 47.07	22.22 ± 1.33	19.41 ± 2.31	26.51 ± 3.61	ND	2.39 ^a ± 0.78
α-amylase inhibitory assay IC ₅₀ value (mg L ⁻¹)	271.06 ± 1.10	ND	> 100	ND	ND	1.30 ^a ± 0.57
α-glucosidase inhibitory assay IC ₅₀ value (mg L ⁻¹)	172.88 ± 81.37	59.39 ± 0.41	ND	> 100	30.97 ± 0.18	816.36 ^a ± 22.08

The values in the table are given as mean ± SD of triplicates. The means of inhibition% that are labeled with the lowercase superscription letter 'a' are not significantly different from the positive control at 95% confident ($\alpha=0.05$). ND: Not detected (inhibition% less than 1% at all tested concentrations were considered as ND)

subjected to bioactivity determination and their results are presented in Table 1. The IC₅₀ values, which had no significant difference ($p > 0.05$) with the positive controls, are mentioned as strong inhibitions. Moderate inhibitions were defined for crude extract when the IC₅₀ was lower than 500 mg L⁻¹ and pure compounds when the IC₅₀ was lower than 100 mg L⁻¹. In vivo reaction of oxygen-centered radicals with biomolecules causes serious damage to the cellular structures and functions, which leads to many chronic diseases. *D. melonis* crude extract resulted in moderate antioxidant potential in the DPPH radical scavenging assay and the FRAP assay. However, strong antioxidant activity was observed in compound **2**, which had no significant difference ($p > 0.05$) with the positive control ascorbic acid in the DPPH assay and a high FRAP value as well. Rukachaisirikul et al. (2007) has reported similar results (Rukachaisirikul et al. 2007). Compound **2** neutralizes itself (after transferring the proton) by forming intermolecular hydrogen bonds and being resonance stabilized (Foti et al. 2002). Even though 4-hydroxybenzoic acid (**3**) is a phenolic compound, it had no activity. The carboxylic group in benzoic acids has a negative influence on the hydrogen-donating ability of hydroxybenzoic acids when the hydroxyl group is at ortho and para positions (Rice-Evans et al. 1996). The antioxidant potential of compounds **1–4** was mostly determined by the DPPH radical scavenging assay in the existing literature. Hence, their FRAP values are reported here for the first time. Further, compound **2** could be the major active compound in the crude extract of *D. melonis*. Identification of naturally occurring cytotoxic

compounds has become one of the major research projects in the twenty-first century. This simple screening can be considered as an initial step in discovering highly effective cytotoxic compounds. The crude extract showed a moderate activity in the brine shrimp lethality assay, which had no significant difference ($p > 0.05$) with the positive control, K₂Cr₂O₇. Among the isolated compounds, only compound **2** showed the moderate percentage of lethality. Researchers suggested that methylation of the hydroxyl group might be the reason, and the phenolic hydroxyl moiety of naphthalene plays a crucial role in the activity (Li et al. 2008; Matsushita et al. 2011). Secondary metabolites from phytopathogenic fungi are found to be more phytotoxic and their activity is relatively easier to detect than screening higher plants (Xu et al. 2021). Henceforth, kingdom fungi were largely investigated for phytotoxic compounds. *D. melonis* crude extract resulted in a strong inhibition in radicle elongation of lettuce seeds, which had no significant difference ($p > 0.05$) with that of the positive control abscisic acid. But the inhibition of hypocotyl elongation resulted in a significant difference ($p < 0.05$) with that of abscisic acid. This is the first report on the phototoxic activity of *D. melonis*, although some *Diaporthe* species were reported to show phytotoxic activities. For example, crude extract of *D. schini* has the potential to inhibit the shoot growth of several grass species (Brunn et al., 2022) and crude extract of *D. kongii* has shown phytotoxicity on tomato leaves (Hilario et al., 2022). The two naphthalene derivatives **1** and **2** in this study exhibited almost the same potency in radicle elongation

inhibition. Naphthalene and its derivatives are known for being strong plant growth inhibitors (Henner et al., 1999; Dubrovskaya., 2016). 4-Hydroxybenzoic acid (**3**) is known to show phytotoxic effects to several plants including lettuce germination and is reported as one of the metabolites produced by *D. gulyae* (Cimmino, et al. 2011). This is the first report of the phytotoxicity of compound **4**. Inhibition of AChE is considered one of the best approaches to treat Alzheimer's disease (AD), because it permits the accumulation of acetylcholine in the synapse, which strengthens the neuro transmission. The natural AChE inhibitors have been explored from endophytic fungi as well. *D. melonis* crude extract inhibited moderately AChE enzyme. Compounds **1–3** showed high inhibitory potentials but with a significant difference ($p < 0.05$) with donepezil (positive control). The AChE inhibition observed in the crude extract of *D. melonis* could be due to compounds **1–3**. The AChE inhibition potential of naphthalene derivatives has been reported in extensive studies using mice brain and the inhibition potentials of compound **1** and **2** have been confirmed. AChE inhibition potential of naphthalene derivatives, including compounds **1** and **2**, has been reported in extensive studies using mice brain (Anwar et al., 2020). Settu & Arunachalam (2023) have reported that crude extract of *Phomopsis* sp. is a potent of antidiabetic source (Settu et al., 2023). This study also reported its ability to inhibit α -amylase and α -glucosidase enzymes which helps in lowering postprandial hyperglycemia. *D. melonis* crude extract inhibited α -amylase enzyme moderately but compounds **1–4** resulted no inhibition as shown in Table 1. In the α -glucosidase inhibitory assay compounds **1** and **4** have resulted a strong α -glucosidase inhibition potential which were significantly lower ($p > 0.05$) than the positive control acarbose. Several studies have reported the α -glucosidase inhibition potential of naphthalene derivatives (Ieyama et al. 2011; Jung et al. 2017). Some have mentioned that presence of naphthalene moiety in several antidiabetic compounds have improved their antidiabetic effect (Makar et al. 2019). These discoveries can be used as evidence for accepting the high α -glucosidase inhibitory potential of 1,8-dimethoxynaphthalene (**1**). However, there is a scarcity of literature data to discuss the results obtained for 1-(2,6-dihydroxyphenyl)-butanone (**4**). The potent α -glucosidase inhibitory activity found in the crude extract of *D. melonis* can be attributed to compounds **1** and **4**.

Compounds **1–5** have been previously isolated from several endophytes as secondary metabolites. 3-Nitropropionic acid (**6**), also reported from endophytic fungi (Flores et al., 2013; Chomcheon et al. 2005), is a mitochondrial toxin and a few papers have been reported in relation with Huntington's disease (Ayala et al. 2007; Upadhyay et al. 2023). Phomonitroester (**7**) is 4-hydroxyphenethyl alcohol

ester of compound **6** and has been isolated from several fungi including *Phomopsis* sp. PSU-D15 (Rukachaisirikul et al., 2008). Felinone A (**8**) was isolated from a marine-derived entomopathogenic fungus, *Beauveria felina* and its absolute stereochemistry was proposed as *3R,6R,7S* based on a CD study (Du et al. 2014). Later, its absolute stereochemistry was revised to *3S,6S,7R*-enantiomer by the chemical synthesis of the optically active the *3R,6R,7S*-compound (Abe et al. 2017). Compound **9** (*4R,6R*-isomer) has been isolated from *Daldinia* sp. and chemically synthesized by several groups (Buchanan, et al. 1996).

Conclusion

A. indica exhibits a rich diversity of endophytic fungi, yet their bioactive compounds have been inadequately explored. As an attempt to fill this gap, *D. melonis* from *A. indica* was isolated for the first time. *D. melonis* was only one endophytic fungus obtained in this study. Based on the screening of crude extract, *D. melonis* resulted strong cytotoxicity in brine shrimp lethality assay and phytotoxicity against the radicle elongation inhibition in lettuce germination. *D. melonis* crude extract also had strong potential to inhibit α -glucosidase which can be attributed to the activity of compound **1** and **4**. Further, compound **2** resulted a significant antioxidant activity. This study is the first to document enzyme inhibitory potentials of these compounds as well as first report about the phytotoxicity of compound **4**. Consequently, further studies are recommended to harness the potential of these bioactive compounds for the well-being of living organisms and to encourage chemical prospecting of endophytic fungi.

Supplementary Information The online version contains supplementary material available at <https://doi.org/10.1007/s42535-025-01313-y>.

Declarations

Conflict of interest The authors declare no conflict of interest. Data sharing is not applicable to this article as no data sets were generated or analyzed during this study.

References

- Abe H, Tango H, Kobayashi T, Ito H (2017) Asymmetric total synthesis and revision of absolute configurations of azaphilone derivative felinone A. *Tetrahedron Lett* 58(45):4296–4298
- Aliyu A, Musa A, Ibrahim M, Ibrahim H, Oyewale A (2010) Preliminary phytochemical screening and antioxidant activity of leave extract of *Albizia chevalieri* harms (Leguminosae-Mimosoideae). *Bayero J Pure Appl Sci* 2(1):149–153

Ayala A, Venero JL, Cano J, Machado A (2007) Mitochondrial toxins and neurodegenerative diseases. *Front Biosci* 12(3):986–1007

Ballantine M, Menard, Tam W (2009) Isomerization of 7-oxabenzonorbornadienes into naphthols catalyzed by $[\text{RuCl}_2(\text{CO})_3]_2$. *J Org Chem* 74(19):7570–7573

Bandara HMSKH, Kumar NS, Jayasinghe L, Masubuti H, Fujimoto Y (2015) A 3-vinyl cepham derivative, useful intermediate in the synthesis of cepham antibiotics, from *Aspergillus awamori* associated with banana fruit. *Nat Prod Commun* 10(10):1663–1666

Brun T, Rabuske JE, Confortin TC, Luft L, Toderi I, Fischer M, Zabot GL, Mazutti MA (2022) Weed control by metabolites produced from *Diaporthe schini*. *Environ Technol (United Kingdom)* 43(1):139–148

Buchanan MS, Hashimoto T, Takaoka S, Kan Y, Asakawa Y (1996) A 10-phenyl-[11]-cytochalasan from a species of *Daldinia*. *Photochemistry* 42(1):173–176

Chomcheon P, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Isarangkul D, Kittakoop P (2005) 3-Nitropropionic acid (3-NPA), a potent antimycobacterial agent from endophytic fungi: Is 3-NPA in some plants produced by endophytes? *J Nat Prod* 68(7):1103–1105

Cimmino MA, Ferrone C, Cutolo M (2011) Epidemiology of chronic musculoskeletal pain. *Best Pract Res Clin Rheumatol* 25(2):173–183

Dai J, Krohn K, Flörke U, Draeger S, Schulz B, Kiss-Szikszai A, Antus S, Kurtán T, van Ree T (2006) Metabolites from the endophytic fungus *Nodulisporium* sp. from *Juniperus cedre*. *Eur J Org Chem* 15:3498–3506

de Baratelli TG, Candido Gomes AC, Wessjohann LA, Kuster RM, Simas NK (2012) Phytochemical and allelopathic studies of *Terminalia catappa* L. (Combretaceae). *Biochem Syst Ecol* 1:119–125

Dissanayake D, Kumar NS, Adikaram NKB, Jayasinghe L, Araya H, Fujimoto Y (2020) Production of small molecules by an endophytic fungus, *Neofusicoccum parvum* from the fruits of *Elaeocarpus serratus*. *Asian J Tradit Med* 15(2):20–27

Du FY, Li XM, Zhang P, Li CS, Wang BG (2014) Cyclodepsipeptides and other O-containing heterocyclic metabolites from *Beauveria felina* EN-135, a marine-derived entomopathogenic fungus. *Mar Drugs* 12(5):2816–2826

Dubrovskaya EV, Pozdnyakova NN, Muratova AY, Turkovskaya OV (2016) Changes in phytotoxicity of polycyclic aromatic hydrocarbons in the course of microbial degradation. *Russ J Plant Physiol* 63(1):172–179

Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. *Biochem Pharmacol* 7:88–95

Fleming P, O’Shea DF (2011) Controlled anion migrations with a mixed metal Li/K-TMP amide: general application to benzylic metalations. *J Am Chem Soc* 133(6):1698–1701

Flores AC, Pamphile JA, Sarragiotti MH, Clemente E (2013) Production of 3-nitropropionic acid by endophytic fungus *Phomopsis longicolla* isolated from *Trichilia elegans* A. JUSS ssp. elegans and evaluation of biological activity. *World J Microbiol Biotechnol* 29(5):923–932

Foti MC, Johnson ER, Vinqvist MR, Wright JS, Barclay LRC, Ingold KU (2002) Naphthalene diols: a new class of antioxidants intramolecular hydrogen bonding in catechols, naphthalene diols, and their aryloxy radicals. *J Org Chem* 67(15):5190–5196

Henner P, Schiavon M, Druelle V, Lichtfouse E (1999) Phytotoxicity of ancient gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination. *Org Geochem* 30(8B):963–969

Hilario S, Goncalves MFM (2022) Endophytic *Diaporthe* as promising leads for the development of biopesticides and biofertilizers for a sustainable agriculture. *Microorganisms* 10(2453):1–21

Ieyama T, Gunawan-Puteri MDPT, Kawabata J (2011) α -Glucosidase inhibitors from the bulb of *Eleutherine americana*. *Food Chem* 128(2):308–311

Jung HA, Ali MY, Choi JS (2017) Promising inhibitory effects of anthraquinones, naphthopyrone, and naphthalene glycosides, from *Cassia obtusifolia* on α -glucosidase and human protein tyrosine phosphatases 1B. *Molecules* 22(1):28

Kehelpannala CL, Kumar NS, Jayasinghe L, Araya H, Fujimoto Y (2018) Naphthoquinone metabolites produced by *Mycosporium ambrosium*, the ectosymbiotic fungus of tea shot-hole borer, *Euwallacea fornicatus*, in stems of tea. *Camellia Sinensis J Chem Ecol* 44(1):95–101

Krishnaraju AV, Rao TVN, Sundararaju D, Vanisree M, Tsay H-S, Subbararaju GV (2005) Assessment of bioactivity of Indian medicinal plants using brine shrimp (*Artemia salina*) lethality assay. *Int J Appl Sci Eng* 3(2):125–134

Kumar S, Aharwal RP, Shukla H, Rajak RC, Sandhu SS (2014) Endophytic fungi as a source of antimicrobials bioactive compounds. *World J Pharmace Pharm Sci* 3(2):1179–1197

Kurandawad JM, Lakshman HC (2014) Diversity of the endophytic fungi isolated from *Oxalis corniculata* Linn. *Int J Sci Res* 3(4):393–397

Langley-Evans SC (2000) Antioxidant potential of green and black tea determined using the ferric reducing power (FRAP) assay. *Int J Food Sci Nutr* 51(3):181–188

Li N, Liu JH, Zhang J, Yu BY (2008) Comparative evaluation of cytotoxicity and antioxidative activity of 20 flavonoids. *J Agric Food Chem* 56(10):3876–3883

Makar S, Saha T, Singh SK (2019) Naphthalene, a versatile platform in medicinal chemistry: sky- high perspective. *Eur J Med Chem* 161:252–276

Matsushita Y, Takanori IJ, Fukushima K, Park JLH, Lee S (2011) Antioxidant and cytotoxic activities of naphthalene derivatives from *Diospyros kaki*. *J Wood Sci* 57:161–165

Munasinghe MVK, Kumar NS, Jayasinghe L, Fujimoto Y (2017) Indole-3-acetic acid production by *Colletotrichum siamense*, an endophytic fungus from *Piper nigrum* leaves. *J Biol Active Prod Nature* 7(6):475–479

Munasinghe MVK, Kumar NS, Adikaram NKB, Jayasinghe L, Araya H, Fujimoto Y (2021) Secondary metabolites from an endophytic fungus *Aspergillus fumigatus* from *Solanum insanum* L. *Asian J Traditi Med* 16(2):53–59

Nickavar B, Abolhasani L, Izadpanah H (2008) α -Amylase inhibitory activities of six *Salvia* species. *Iran J Pharm Res* 7(4):297–303

Padmathilake KGE, Bandara HMSKH, Qader, Kumar NS, Jayasinghe L, Masubuti H, Fujimoto Y (2017) Talarofuranone, a new talaroconvolutin analog from the endophytic fungus *Talaromyces purpurogenus* from *Pouteria campechiana* seeds. *Nat Prod Commun* 12(14):489–490

Piyasena KGNP, Wickramarachchi WART, Kumar NS, Jayasinghe L, Fujimoto Y (2015) Two phytotoxic azaphilone derivatives from *Chaetomium globosum*, a fungal endophyte isolated from *Amaranthus viridis* leaves. *Mycology* 6(3–4):158–160

Qader MM, Kumar NS, Jayasinghe L, Fujimoto Y (2016) Production of antitumor antibiotic GKK1032B by *Penicillium citrinum*, an endophytic fungus isolated from *Garcinia mangostana* fruits. *Medicinal and Aromatic Plant* 5(1): 225

Qader MM, Kumar NS, Jayasinghe L, Fujimoto Y (2017) Shikimic acid production by *Fusarium decemcellulare*, An endophytic fungus isolated from *Flacourtie inermis* fruits. *J Biol Active Prod Nature* 8(1):43–50.

Qader MM, Kumar NS, Jayasinghe L, Araya H, Fujimoto Y (2017) Bioactive sesquiterpenes from an endophytic fungus *Bipolaris sorokiniana* isolated from a popular medicinal plant *Costus speciosus*. *Mycology* 8(1):17–20

Rathnayake GRN, Kumar NS, Jayasinghe L, Araya H, Fujimoto Y (2018a) Chemical investigation of metabolites produced by an endophytic fungi *Phialemonium curvatum* from the leaves of *Passiflora edulis*. *Nat Prod Res* 32(20):2483–2486

Rathnayake GRN, Kumar NS, Jayasinghe L, Araya H, Fujimoto Y (2018b) Secondary metabolites produced by an endophytic fungus *Pestalotiopsis microspora*. *Nat Prod Bioprospect* 9(6):411–417

Rice-Evans C, Miller N, Paganaga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. *Free Radic Biol Med* 20(7):933–956

Rukachaisirikul V, Sommart U, Phongpaichit S, Hutadilok-Towatana N, Rungjindamai N, Sakayaroj J (2007) Metabolites from the *xylariaceous* fungus PSU-A80. *Chem Pharm Bull* 55(9):1316–1318

Rukachaisirikul V, Sommart U, Phongpaichit S, Sakayaroj J, Kirtikara K (2008) Metabolites from the endophytic fungus *Phomopsis* sp. PSU-D15. *Phytochemistry* 69(3):783–787

Sann CL, Munoz DM, Saunders N, Simpson TJ, Smith DI, Soulas F, Watts P, Willis CL (2005) Assembly intermediates in polyketide biosynthesis: enantioselective syntheses of β -hydroxycarbonyl compounds. *Org Biomol Chem* 3(9):1719–1728

Sathya S, Amarasinghe NR, Jayasinghe L, Araya H, Fujimoto Y (2020) Enzyme inhibitors from the aril of *Myristica fragrans*. *South African J Bot* 130:172–176

Settu S, Arunachalam S (2023) Anti-diabetic effect of *Daldinia eschscholtzii* and *Phomopsis mangiferae* isolated from *Bryophyllum pinnatum*. *Bangladesh J Pharmacol* 18(2):58–71

Siriwardane AMDA, Kumar NS, Jayasinghe L, Fujimoto Y (2015) Chemical investigation of metabolites produced by an endophytic *Aspergillus* sp. isolated from *Limonia acidissima*. *Nat Prod Res* 29(14):1384–1387

Sowparthani K (2016) In-vitro phytochemical analysis, high-performance liquid chromatography, and antibacterial activity of endophytic fungi *Pestalotiopsis* sp isolated from *Acalypha indica* (Linn). *Asian J Pharm Clin Res* 9(4):101–103

Sriitharan T, Kumar NS, Jayasinghe L, Araya H, Fujimoto Y (2019) Isocoumarins and dihydroisocoumarins from the endophytic fungus *Biscogniauxia capnodes* isolated from the fruits of *Averrhoa carambola*. *Nat Prod Commun*. <https://doi.org/10.1177/1934578X19851969>

Thanabalasingam D, Kumar NS, Jayasinghe L, Fujimoto Y (2015) Endophytic fungus *Nigrospora oryzae* from a medicinal plant *Coccinia grandis*, a high yielding new source of phenazine-1-carboxamide. *Nat Prod Commun* 10(10):1659–1660

Thanabalasingam D, Dissanayake D, Samarakoon K, Kumar NS, Adikaram N, Jayasinghe L, Araya H, Fujimoto Y (2024) Oryzanigril: a new polyketide from an endophytic fungus *Nigrospora oryzae* isolated from *Coccinia grandis*. *Nat Prod Res* 38(15):2703–2710

Upadhyay S, Yedke NG, Rahi V, Singh S, Kumar S, Arora A, Chandolia P, Kaur P, Kumar M, Kosha P, Jamwal S, Kumar P (2023) An overview of the pathophysiological mechanisms of 3-nitropropionic acid (3-NPA) as a neurotoxin in a Huntington's disease model and its relevance to drug discovery and development. *Neurochem Res* 48(6):1631–1647

Wen L, Wei Q, Chen G, Cai J, She Z (2013) Chemical constituents from the mangrove endophytic fungus *Sporothrix* sp. *Chem Nat Compd* 49(1):137–140

Xu D, Xue M, Shen Z, Jia X, Hou X, Lai D, Zhou L (2021) Phytotoxic secondary metabolites from fungi. *Toxins (Basel)* 13(4):261

Yang Y, Lowry M, Xu X, Escobedo JO, Sibrian-Vazquez M, Wong L, Schowalter CM, Jensen TJ, Fronczeck FR, Warner IM, Strongin RM (2008) Seminaphthofluorones are a family of water-soluble, low molecular weight, NIR-emitting fluorophores. *Proc Natl Acad Sci USA* 105(26):8829–8834

Yoshioka T, Inokuchi T, Fujioka S, Kimura Y (2004) Phenolic compounds and flavonoids as plant growth regulators from fruit and leaf of *Vitex rotundifolia*. *Z Naturforsch C* 59(7–8):509–514

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Authors and Affiliations

Jayani Kalinga¹ · Kavindya Samarakoon¹ · Upesha Siriwardhane¹ · Deepthi Yakandawala² · Nimal Adikaram¹ · Lalith Jayasinghe¹ · Hiroshi Araya³ · Yoshinori Fujimoto^{1,3}

 Lalith Jayasinghe
lalith.ja@nifs.ac.lk; ulbj2003@yahoo.com

¹ National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka

² Department of Botany, University of Peradeniya, Peradeniya, Sri Lanka

³ School of Agriculture, Meiji University, Kawasaki, Japan