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Sri Lankan vein graphite deposits are renowned for their high purity and crystal structure, making
them economically valuable. Previous studies have focused on their origins and economic potential, but
the alteration of wall rock during graphite mineralization and the role of hydrothermal Cuids have been
less explored. Understanding these Cuid-rock interactions is crucial for assessing vein graphite purity.
This study elucidates these processes through petrological analysis of host rocks from the Kahata-
gaha–Kolongaha underground mine. We examined Beld relationships, vein textures, mineralogy, and
petrological attributes of wall rock alterations to determine the inCuence of hydrothermal Cuids on wall
rock modiBcations and their impact on graphite vein purity. Significant wall rock alterations were
observed due to hydrothermal Cuids, involving changes in mineralogical composition and texture.
Mildly acidic conditions from CO2 and H2O interactions facilitated feldspar dissolution, releasing ele-
ments contributing to antiperthitization and myrmekite formation. These alterations produced biotite,
titanite, two feldspars, and calcite, aAecting graphite purity. Our Bndings align with previous research
indicating a retrograde origin following major tectonic events and large-scale folding of the Sri Lankan
basement.
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1. Introduction

Hydrothermal Cuids sourced from diverse reser-
voirs, including subducted oceanic crust, meta-
morphic Cuids, and magmatic or metamorphic
sources, are fundamental in ore deposit genesis
(Kawagucci 2015; Sillitoe 2015; Patten et al. 2017).
These Cuids constitute complex mixtures of gasses
and aqueous solutions containing highly fusible
gasses, simple ions, complex ions, dissolved bases,

and precious metals (Pirajno 2012; Keith et al.
2018). They facilitate the dissolution, transporta-
tion, and deposition of ore-forming elements under
high temperatures and pressures, with ore-forming
metals mobilizing from the source as Cuids and
conveyed to deposition sites as stable complexes
(Pirajno 1992; Ding et al. 2018). Hydrothermal
veins, acting as conduits for mineral-laden Cuids,
initiate a series of chemical reactions as they tra-
verse fractures and faults within the Earth’s crust,
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gradually depositing valuable minerals along con-
duit walls (Barnes 1997). This process inCuences
both the mineralogical composition of surrounding
rocks and imparts distinct signatures to resulting
vein deposits (Lowenstern et al. 2015).
The mineralization mechanisms of vein graphite

deposits are commonly attributed to the trans-
portation of carbon-bearing hydrothermal Cuids
through fracture systems within host rocks (Tou-
zain et al. 2010; Luque et al. 2012; Rumble 2014).
The carbon isotope composition of these graphite
exhibits a broad range, suggesting potential sour-
ces, including organic matter, carbonates, and
igneous carbon from the mantle (Wilson et al. 1995;
Binu-Lal et al. 2003; Shirey et al. 2013).
The vein graphite deposits of Sri Lanka are sit-

uated within Precambrian high-grade metamor-
phic terrain dominated by granulite facies rocks.
These deposits are known for their high purity
(*95–99% pure carbon), crystallinity, large
reserves, and mode of occurrence, and have been
extensively studied for their genesis and economic
significance (Hapuarachchi 1977; Katz 1987; Dis-
sanayake 1994; Kehelpannala 1999; Touzain et al.
2010). These studies illustrated that Sri Lankan
vein graphite deposits have been attributed to both
syngenetic and epigenetic processes throughout
history, given their high purity and crystallinity
(Erdosh 1970; Hapuarachchi 1977; Dobner et al.
1978; Wijayananda and Jayawardana 1983; Katz
1987; Silva 1987; Dissanayake 1994; Kehelpannala
1995; Binu-Lal et al. 2003; Touzain et al. 2010;
Hewathilaka et al. 2015). Despite their economic
significance, limited studies have focused on
understanding Cuid Cow processes and factors
governing the formation of distinct graphite vari-
eties (e.g., Touzain et al. 2010; Hewathilaka et al.
2015). Additionally, there have been few attempts
to study wall rock alteration during graphite min-
eralization (e.g., Silva 1987; Touret et al. 2019),
and modiBcation of the hydrothermal Cuid con-
tributed to vein graphite formation, heavily inCu-
encing the purity of graphite veins. Meanwhile,
only a handful of attempts have been made to
evaluate the temperature conditions at which gra-
phite mineralization had taken place (e.g., Touret
et al. 2019). A comprehensive understanding
necessitates interpreting Beld relationships, vein
textures, mineralogy, and petrological characteri-
zation of wall-rock alteration features to illuminate
the evolution and chemical Cuid-wall rock inter-
action history of these deposits. Moreover, the
scarcity of geochronological information has fueled

debates about accurately comprehending the
dynamics of hydrothermal graphite mineralization
in correlation with the evolution of Sri Lankan
basement rocks.
The study conducted a comprehensive petro-

logical analysis of the host rock of vein graphite,
focusing on samples from the Kahatagaha–Kolon-
gaha underground mine in Sri Lanka. This research
aimed to provide insights into several key aspects
of vein graphite formation. These include deter-
mining the probable composition of the initial Cuid
responsible for vein graphite formation and estab-
lishing the chronological sequence of vein graphite
mineralization in Sri Lanka. These insights con-
tribute to a better understanding of vein graphite
formation processes and the geological history of
the region.

2. General geology of Sri Lanka and previous
studies on Sri Lankan vein graphite

2.1 General geology of the Sri Lankan basement

The Proterozoic basement of Sri Lanka is tradi-
tionally subdivided into four units (Bgure 1): the
Wanni Complex (WC), Kadugannawa Complex
(KC), Highland Complex (HC), and Vijayan
Complex (VC), based on Nd model ages and zircon
U–Pb dating (Milisenda et al. 1988, 1994; Kr€oner
et al. 1991; Liew et al. 1991). The Nd-model ages
obtained from the Western Complex (WC) range
from 2000 to 1000 million years ago (Ma), as
reported by Milisenda et al. (1988, 1994). The WC
comprises a diverse array of rock compositions,
including granitic, granodiorite, monzonite, tona-
lite, charnockitic, and enderbitic rocks, reCecting
variations in protolith chemistry (Pohl and
Emmermann 1991). The metasedimentary rocks of
the WC are primarily situated in the eastern and
southeastern regions of the complex, adjacent to
the western margin of the HC (Kehelpannala
1997). In the western region of the WC, less
deformed granites predominate, with examples
such as the unmetamorphosed post-tectonic
K-feldspar-rich granite of Thonigala (H€olzl et al.
1991; Cooray 1994) and carbonatite at Eppawala
and Kawisigamuwa (e.g., Pitawala and Lottermose
2012; Madugalla et al. 2014; Su et al. 2022). The
peak metamorphic conditions within the WC are
estimated to have reached temperatures of
700–830�C and pressures of 5–7 kbar (Raase and
Schenk 1991; Santosh et al. 2014; Hirayama et al.
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2020; Jayathilaka et al. 2022). The intrusion ages of
Wanni gneisses typically fall within the ranges of
*1100–920 Ma, 800–750 Ma, and around 580 Ma
(H€olzl et al. 1994; Kr€oner et al. 1994, 2003; Santosh
et al. 2014; He et al. 2016). Peak metamorphism is
inferred to have occurred around 590–540 Ma
based on U–Pb zircon geochronology (H€olzl et al.
1994; Kr€oner et al. 1994, 2003; Santosh et al. 2014;
He et al. 2016). Several graphite deposits are situ-
ated in the eastern part of the Wanni Complex,
near the northwest boundary of the Highland
Complex (e.g., Wijayananda and Jayawardana
1983; Katz 1987; Silva 1987).
The HC comprises granulite facies metasedimen-

tary and metaigneous rocks, including quartzites,
marbles, calcsilicates, pelitic gneisses, charnockites,
andorthogneisses (Cooray1984, 1994;Mathavanand
Fernando 2001; Dharmapriya et al. 2020). Nd model
ages for theHC range from 3400–2000Ma (Milisenda

et al. 1988, 1994). The Kadugannawa Complex (KC)
is exposed within doubly plunging upright folds
around the Kadugannawa area in central Sri Lanka,
historically referred to as ‘Arenas’ (Vitanage 1972;
Almond 1991). Nd-model dating of the KC suggests
ages spanning from 1800 to 1100 Ma ago (Milisenda
et al. 1988, 1994). The predominantly upper amphi-
bolite facies Vijayan Complex (VC) yields Nd-model
ages ranging between 3300 and 1100 Ma (Milisenda
et al. 1988, 1994; Malaviarachchi et al. 2021). This
Complex is primarily composed ofmicrocline-bearing
granitic gneisses, augen gneisses, migmatites, and
hornblende-biotite gneisses (Cooray 1984; Kehel-
pannala 1997;Mathavan andFernando 2001; Kr€oner
et al. 2013).
Various researchers, including Berger and

Jayasinghe (1976), Yoshida et al. (1990), Kriegs-
man (1991, 1994, 1995), Kehelpannala
(1993, 1997, 2003), Kleinschrodt (1994, 1996), and

Figure 1. A map showing the lithotectonic subdivision of Sri Lanka (modiBed after Cooray 1994) and the locations of major vein
graphite deposits in Sri Lanka.
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Tani and Yoshida (1996), have explored the
deformation history of the Sri Lankan basement.
Berger and Jayasinghe (1976) proposed three
deformation phases, suggesting that D1 and D2
formed major lineation and foliation (L–S fabric),
including primary compositional layering, while D3
mainly led to large-scale upright fold formation.
Kriegsman (1991, 1994) noted the development of
steep, high-T shear zones during the late D3 stages.
Furthermore, Kehelpannala (1997) suggested that
the Highland Complex (HC) and Wanni Complex
(WC) experienced six phases of ductile deforma-
tion. At the same time, D1 to D2 resemble earlier
descriptions. In contrast, many minor and large-
scale recumbent isoclinal folds (F3) were produced
during D3, and D4 resulted in the development of
large, gentle, nearly E–W trending upright folds.
D5 contributed to large-scale upright folds (F5).
D6 was associated with local refolding of the F5
folds.

2.2 A brief overview of previous studies on vein
graphite in Sri Lanka

Previous studies identiBed four crystalline forms of
Sri Lankan vein graphite: needle, Cake, spherulitic,
and powder (Bne-grained graphite) (Erdosh 1970;
Cooray 1984; Katz 1987; Silva 1987). Typically,
individual veins consist of a single form, arranged
in parallel sheets, with medium to coarse-grained
crystals such as Cake or needle graphite (Erdosh
1970; Katz 1987). Later research reBned this clas-
siBcation by highlighting differences in crys-
tallinity, purity, microstructure, and origin based
on graphite morphology (Kehelapannala 1993;
Balasooriya et al. 2002; Touzain et al. 2010;
Hewathilake et al. 2015). The formation of vein
graphite is attributed to carbon-bearing hydrother-
mal Cuids moving through fractures in host rocks
(Touzain et al. 2010; Luque et al. 2012; Rumble
2014). These Cuids, with varying carbon isotope
compositions from sources like organic matter,
carbonates, and mantle-derived carbon, undergo
hydrothermal redox reactions between CO2 and
methane, facilitating graphite formation (Touzan
et al. 2010; Luque et al. 2012; Rumble 2014).
Graphitization is primarily inCuenced by tem-
perature, metamorphic duration, and rock type,
with carbon deposition from CO2 or CH4 in
supercritical Cuids driven by cooling and Cuid-
rock interactions (Wada et al. 1994; Huizenger
2011).

The origin of Sri Lankan graphite is explained by
two models: syngenetic graphite formed during
prograde metamorphism and epigenetic graphite
from carbon-rich Cuids linked to igneous activity.
Graphitization is inCuenced by temperature,
metamorphic duration, and lithology, with carbon
existing as CO2 or CH4 in supercritical Cuids and
deposition driven by cooling and Cuid-rock inter-
actions (Luque et al. 1998, 2014). Touret et al.
(2019) proposed that mantle-derived CO2, stored
in the lower crust during Gondwana’s formation,
was released during decompression, forming gra-
phite veins in Sri Lanka, similar to quartz-car-
bonate shear zones in granulite terranes. The
speciBc formation of graphite or quartz-carbonate
veins depends on prevailing chemical conditions.
Graphite veins are often localized in anticlinal

structures, indicating mineralization due to struc-
tural weaknesses during the folding of metasedi-
mentary rocks (Silva 1987). Katz (1987) suggested
that CO2-rich Cuids under low fO2 conditions
caused hydraulic fracturing and vein graphite for-
mation. Kehelpannala (1995) argued this mineral-
ization is younger (550–475 Ma) and unrelated to
peak metamorphism.
Touret et al. (2019) suggested graphite formed

during rapid decompression that uplifted high-
grade metamorphic rocks. The host rocks for these
graphite deposits primarily include pelitic and
charnockitic gneisses, which often contain dissem-
inated Cake graphite. Hydrothermal alteration
near graphite veins is evident, with hydrous and
chlorine-rich minerals such as biotite, chlorite,
hornblende, and scapolite present (Silva 1987;
Kehelpannala 1999; Touret et al. 2019). This
alteration of wall rock during mineralization is a
key factor contributing to the impurities found in
vein graphite (Silva 1987; Kehelpannala 1999;
Touret et al. 2019).

3. Sample description and Beld relations

The Kahatagaha–Kolongaha underground mine
(Bgure 1) in Sri Lanka primarily operates as a vein
graphite deposit, located about 32 km north–north-
west of Kandy, within the Wanni Complex (see
Bgure 1). The area surrounding Kahatagaha com-
prises quartzite, quartzofeldspathic gneisses, gar-
net–cordierite–biotite, sillimanite-bearing gneisses,
granitic gneisses, charnockites, and biotite-gneisses
(Geology Map of Geological Survey and Mines
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Bureau 1996, Sheet No. 14). Within this mine, gra-
phite veins intersect granulite facies metamorphic
rocks, including charnockites and garnet-biotite
gneisses. The orientation of graphite-bearing veins is
predominantly east–west, with a dip direction
towards the south (Touret et al. 2019). The thickness
of graphite veins typically ranges from a few mil-
limeters to several decimeters (see Bgure 2a, b).
However, veins occasionally exceed a thickness of 1 m
(see Bgure 2c). Their horizontal length varies from a
few decimeters to tens of meters, with extensions
over 75 m (Kehelpannala 1999). Within certain gra-
phite veins, typical vein-type quartz devoid of evi-
dence for ductile deformation is present (see
Bgure 2d), along with clusters of precipitated calcite
(see Bgure 2e) and euhedral to subhedral or thin Blms
of pyrite (see Bgure 2f) as visible gangue minerals. In

some areas, a very thin layer of wall rock can be
observed between graphite layers, forming a sand-
wich-like structure (see Bgure 2c).
For the study of wall rock alteration, samples of

orthopyroxene- and garnet-bearing granitic gneiss
(garnet-bearing charnockite) were collected from
the Kahatagaha mine at a depth level of 345 m
(1132 feet). Samples were collected as a series from
the host rock-vein contact of relatively large gra-
phite veins (with thicknesses varying from 0.5 cm)
to *1 m away from the graphite veins.
Samples collected from *100 to 80 cm away

from graphite veins (KGK/1132/1 – see square 1 in
Bgure 3a, b, c) contain garnet, xenomorphic quartz,
two feldspars, and altered orthopyroxene, ranging
in size from 0.25 to 1 cm. Coarse-grained garnet
often exhibits a dark rim. Acicular biotite Cakes are

Figure 2. Some Beld occurrences of graphite veins nature of the graphite veins: (a), (b), and (c) various sizes crosscutting
graphite veins in the host rocks (in (c) a fragment of host rock sandwiched among graphite veins), (d) vein quartz fragment
within the graphite vein, (e) precipitated cluster of calcites collected from a graphite vein, and (f) thin pyrite vein associated with
vein graphite.
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observed as irregular laths or disseminated grains.
Occasionally, minor disseminated graphite Cakes
are also present. Sample KGK/1132/2 was
obtained *30 to 50 cm away from the main vein
(see square 2 in Bgure 3a, b). These samples con-
tain relatively narrow graphite veins, likely derived
from the thicker main vein. The mineralogy of
these hand specimens closely resembles that of
KGK/1132/1. Samples KGK/1132/3 were col-
lected adjacent to the main relatively thick (50 cm)
graphite vein (see square 3 in Bgure 3a, b, d). They
contain relatively thin graphite veins (ranging from
0.5 to 3 cm) oriented approximately parallel to the
main vein. Additionally, samples of garnet-bearing
maBc granulites (KGK/1132/4, Bgure 3e, f)
occurring as dislocated layers within host rock,
consisting of orthopyroxene and garnet-bearing
granitic gneiss were collected at a depth of 1132
feet next to an *45-cm-thick graphite vein.

4. Petrography

More than 20 petrographic thin sections were pre-
pared at the Petrological Laboratory, National
Institute of Fundamental Studies, Kandy, Sri
Lanka. Detailed petrographic observations were
conducted using Zeiss Primotech polarizing
microscopes at the Department of Geology,
University of Peradeniya, Sri Lanka. Photomicro-
graphs of the minerals were captured using the
same microscope.

4.1 Samples from location 100–80 cm adjacent
to graphite veins (sample KGK/1132/1)

The matrix of KG/1132/1 comprises xenomorphic
medium to coarse-grained garnet (0.3–0.7 cm),
hypidiomorphic to xenomorphic Bne- to
medium-grained orthopyroxene, quartz, orthoclase,

Figure 3. Relation with the graphite vein and collected samples for this study: (a) Sampling position of host rocks KGK/1132/1
(square 1), KGK/1132/2 (square 2), and KGK/1132/3 (square 3), (b) a sketch showing sampling position of the host rock KGK/
1132/1 (square 1), KGK/1132/2 (square 2), and KGK/1132/3 (square 3), (c) collected hand specimen of KGK/1132/1,
(d) collected hand specimen of KGK/1132/2, (e) a sketch showing sampling position of the host rock KGK/1132/4, and
(f) collected hand specimen of KGK/1132/4.
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and plagioclase as major mineral constituents.
Randomly oriented acicular biotite and hypid-
iomorphic medium-grained (*0.25–0.4 cm) anti-
perthite, as well as xenomorphic ilmenite, are
present as minor mineral phases. Disseminated
graphite (Bgure 4a), apatite, and zircon are present
as accessory phases. Chlorite, calcite, sericite, and
rutile are observed as overprinting products after
orthopyroxene and biotite. The orthopyroxene and
plagioclase in this rock provide evidence for at least
two generations: (a) Bne to medium xenomorphic
orthopyroxene (Opx1) and plagioclase (Pl1) in the
matrix (Bgure 4b, c) are part of the peak metamor-
phic assemblage of the rock, and (b) a corona of
orthopyroxene (Opx2) and plagioclase (Pl2) after
garnets (Bgure 4d), which originated during the
retrogression of garnet breakdown.

Quartz, plagioclase, and orthoclase in the
matrix exhibit slightly irregular grain boundaries,
representing a granoblastic interlobate texture
(see Bgure 4e, f). Antiperthite frequently com-
prises tiny orthoclase rods oriented along a single
direction in host plagioclase (Bgure 4f). Occa-
sionally, exsolved orthoclase blebs are also present
(Bgure 4g). In some microdomains, plagioclase
grains are partly replaced by secondary calcite
and sericite. Disseminated grains of biotite and
chlorite frequently overprint the matrix orthopy-
roxenes (Bgure 4b, c). Garnet also provides tex-
tural evidence for at least two generations.
Medium to coarse garnet grains containing quartz,
biotite, orthoclase, plagioclase, and ilmenite ±

rutile as inclusion phases indicate possible garnet
formation reaction (1), such as:

Figure 4. Petrography of sample KGK/1132/1. (a) The occurrences of disseminated graphite in the matrix, (b) chloritized
coarse orthopyroxene (Opx1), (c) backscattered electron image showing a coarse partial chlorites orthopyroxene (Opx1) grain,
(d) medium size orthopyroxene (Opx2) + plagioclase (Pl2) moat after garnet, (e) matrix quartz and feldspar showing
granoblastic interlobate texture, (f) a coarse antiperthite grain containing exsolved orthoclase rods, (g) a coarse antiperthite
grain containing orthoclase blabs, (h) orthopyroxene (Opx2) + plagioclase (Pl2) symplectite after coarse garnet (Grt1),
(i) orthopyroxene (Opx2) + plagioclase (Pl2) symplectite pseudomorph after garnet, (j) Bne grain garnet containing tiny quartz
inclusion associated with ilmenite and plagioclase, (k) BSE image showing Bne grain garnet containing tiny quartz inclusion
associated with ilmenite and plagioclase, (l) disseminate biotite grains in the matrix. Mineral abbreviations: Qz – quartz, Gr –
graphite, Pl – plagioclase, Opx – orthopyroxene, Ilm – ilmenite, Or – orthoclase, Anpt – antiperthite.
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Btþ PlþQz ! Grt1 þOrþV: ð1Þ

The majority of Grt1 was broken down,
producing orthopyroxene–plagioclase corona (see
Bgure 4g, h), indicating the retrograde garnet
breakdown reaction (2):

Grt1 þQz ! Opx2 þ Pl2: ð2Þ

In these coronas, Opx2 and Pl2 frequently occur
as symplectite (see Bgure 4h). Occasionally, the
outer margin of the corona contains the Opx2–Pl2
moat; the inner part of the same corona contains
the Opx2–Pl2 symplectite. Later, these moats and
symplectites experience intense alteration. Vermi-
cular orthopyroxene grains were overprinted by
biotite or chlorite (see Bgure 4h). Occasionally
pseudomorphic orthopyroxene + plagioclase
symplectite after garnet can also be observed (see
Bgure 4i).
In some local domains, Bne-grained skeletal

garnet grains are frequently present alongside
plagioclase, quartz, and iron ore (mainly ilmenite;
see Bgure 4j, k). These garnet grains intergrow with
Bne-grained plagioclase ± quartz, indicating pos-
sible reaction (3) like:

Ilmeniteþ Pl1 ! Grt2 þQz2: ð3Þ

However, reaction (3) is difBcult to chemically
balance due to the lack of the Ti-rich phase that
has been produced as a product (Perera 1987).
Some of Grt2 also has broken down, forming
Opx2–Pl2 moats via reaction (2). Occasionally,
Grt2 is partially overprinted by biotite (Bgure 4j).
Randomly oriented disseminated biotite grains are
present in the matrix (Bgure 4b, e, l). Petrographic
evidence indicates that the possible peak
metamorphic assemblage of the rock consisted of
Grt1–Pl1–Opx1–Or–Qz1–Ilm.

4.2 Sample from surrounding (30–50 cm)
graphite veins (KGK/1132/2)

This sample exhibits textures described in sample
KGK-1132/1 (Bgure 4a–h). Additionally, in sample
KGK/1132/2, the majority of plagioclase feldspar
grains have undergone conversion to antiperthite
to varying degrees (see Bgure 5a). In these anti-
perthite grains, orthoclase rods are oriented in
two different directions (Bgure 5b). Sometimes,
plagioclase is converted to mesoperthite (Bgure 5c).
Occasionally, only a portion of some matrix plagio-
clase grains were aAected by the antiperthitization

process (see Bgure 5d), butmost experienced intense
antiperthitization. Plagioclase and antiperthite fre-
quently exhibit highly irregular grain boundaries,
indicating amoeboid texture (Bgure 5e, f). Anti-
perthite grains with diffused grain boundaries are
also present. These textural features suggest that
antiperthitization in the sample is a result of the
replacement of the original plagioclase rather than
the exsolution of two feldspars during cooling after
the peak metamorphism.
Formation of myrmekite is also prevalent at the

grain boundaries of both plagioclase and anti-
perthite (see Bgure 5g, h, i) compared to sample
KGK/1132/1. Occasionally, the entire grain mar-
gin of plagioclase is replaced by tiny quartz and
orthoclase. In some microdomains, matrix ortho-
clase, plagioclase, and antiperthite are replaced
by secondary calcite and sericite (see Bgure 5f).
Matrix orthopyroxene (Opx1) is frequently over-
printed by biotite and chlorite. Locally, these bio-
tites break down to produce Bne-grain orthoclase +
ilmenite ± rutile (occasionally pseudomorphing
biotite. Tiny graphite and biotite-bearing micro-
veins cross-cut the fractures of matrix mineral
grains (Bgure 5j).
The majority of garnets broke down, producing

vermicular orthopyroxene–plagioclase symplectite
via reaction (2) (Bgure 5k), and later, these sym-
plectites experienced intense alteration. Occasion-
ally, these symplectites pseudomorph after garnets
(Bgure 5k), similar to the sample KGK/1132/1
(Bgure 4h). Vermicular orthopyroxene grains are
overprinted by biotite or chlorite. Plagioclase ver-
micules frequently dissolve. Secondary calcite for-
mation can be identiBed at some of the outer
margins of symplectites (Bgure 5l).

4.3 Sample adjacent to a relatively thick vein
(KGK/1132/3)

This sample exhibits nearly all the textures docu-
mented inKGK/1132/2 (Bgure 5a–k). Additionally,
several new mineralizations and replacement tex-
tures are present, primarily concentrated near the
graphite veins. The intensity of mineral alteration is
significantly higher in this sample compared to the
previous two. Nearly all Opx1 and Opx2 are chlori-
tized. Locally overprinted biotite also persists after
the replacement of Opx1 and Opx2. In some
domains, overprinted biotite has further altered to
orthoclase + ilmenite± rutile. Pl1 grains experience
dissolution along the grain boundaries (Bgure 6a, b,
c). Pl2 vermicules are also aAected by significant
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dissolution. The formation of myrmekite after Pl1 is
dominant compared to sample KGK/1132/2
(Bgure 6d). Tiny veins (0.2–0.3 mm) of calcite
extend from thin graphite veins toward the matrix
(1–4 cm in length) of the host rock, following the
fractures within the matrix minerals (see Bgure 6c).
Occasionally, crystallized Bne-grained quartz and
orthoclase are present close to the graphite vein
(Bgure 6e). Occasionally, disseminated biotite in the
matrix breaks down to produce Bne-grain orthoclase
+ ilmenite ± rutile ± siderite (occasionally pseu-
domorphic biotite, Bgure 6f).

4.4 Mineralogy and textural features of rocks
at contact zones and within graphite veins

The percentages of graphite to gangue minerals in
veins vary with the thickness of the veins. In tiny

veins (0.3–1 cm in thickness), the graphite to
gangue mineral percentages range from *80–95%
graphite to 20–5% gangue minerals (see Bgure 7a,
b, c). However, as the thickness of the vein
increases, the intergrowth of gangue minerals with
graphite drastically decreases.
At the contact between the host rock and gra-

phite veins (abbreviated as CHGV), the crystal-
lization of new mineral phases is prominent.
Titanite is a mineral concentrated at CHGV,
identiBed in three types of microdomains: (a)
Xenomorphic Bne-grained titanite (\0.1–0.25 cm)
is present in domains where orthopyroxene–
plagioclase (+ ilmenite) symplectite/moat pseu-
domorphs garnet (Bgure 7d). Occasionally, this
titanite contains ilmenite inclusions. (b) Titanite
occurs in chloritized matrix Opx1-bearing domains
(where the prominent mineral phases are chlorite,

Figure 5. Petrography of sample KGK/1132/2. (a, b) Plagioclase feldspar grains have undergone conversion to antiperthite to
varying degrees, (c) BSE image showing a mesoperthite, (d) a plagioclase grain (at the center of the Bgure) showing only half of
the grain of plagioclase converted to antiperthite, (e, f) plagioclase and antiperthite frequently exhibit highly irregular grain
boundaries, indicating amoeboid texture, (g, h, i) formation of myrmekite at the grain boundaries of both plagioclase and
antiperthite, (j) tiny graphite and biotite-bearing microveins cross-cut the fractures of matrix mineral grains, (k) vermicular
orthopyroxene–plagioclase symplectite in which orthopyroxene overprinted by biotite, (l) dissolved plagioclase vermicules in
orthopyroxene + plagioclase symplectite. Secondary calcite formation can be identiBed at some of the outer margins of
symplectites. Abbreviations are similar to Bgure 4. In addition, M – myrmekite.
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ilmenite, and crystallized plagioclase, Bgure 7e).
(c) Rarely, titanites surrounded by precipitated
quartz, plagioclase, and orthoclase are present
(Bgure 7f). Clusters of monazites can also be
identiBed in such domains.
Within the tiny graphite veins (0.3–0.75 cm in

thickness), in addition to dominant graphite Cakes
(0.2–0.5 cm in length), xenomorphic quartz, pla-
gioclase, orthoclase, and biotite are frequently

present (Bgure 7a, b, c). Locally, xenomorphic
pyrite (Bgure 7g) and calcite (Bgure 7h) are also
present. Calcite veins originate from graphite veins
that extend along the mineral fractures of the host
rocks (Bgure 7i, j). In the central part of these tiny
graphite veins, the majority of graphite Cakes are
oriented parallel to the direction of the vein.
However, at the CHGV, the orientation of gra-
phite Cakes varies based on the mineralogy of the

Figure 6. Petrography of sample KGK/1132/3. (a, b, c) Matrix plagioclase grains experience dissolution along the grain
boundaries, (d) intense myrmekitization after matrix plagioclase, (e) crystallized Bne-grained quartz and orthoclase are present
close to the graphite vein, (f) biotite in the matrix breakdown to produce Bne-grain orthoclase + ilmenite ± rutile ± siderite.
Abbreviations are similar to Bgure 4. In addition: M – myrmekite, Sd – siderite, Ru – rutile, Zrn – zircon.

Figure 7. Petrography of graphite veins in the sample KGK/1132/3. (a, b, c) Occurrence of quartz, biotite feldspars among
graphite Cacks ((c) is a BSE image), (d) xenomorphic Bne-grained titanite in domains where orthopyroxene–plagioclase moat.
Orthopyroxene in highly chloritized, (e) titanite occurs in chloritized matrix orthopyroxene bearing domains, (f) titanites
surrounded by precipitated quartz, plagioclase, and orthoclase, (g) occurrences of pyrite in graphite vein, (h, i) calcite veins are
originated from graphite veins extend along the mineral fractures of the host rocks. Abbreviations are similar to Bgure 4. In
addition, Ttn – titanite.
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host rock. Under the presence of medium to
coarse-grained quartz, a sharp contact between
graphite and quartz grains can be observed. Fre-
quently, graphite Cakes are oriented parallel to
the grain margin of the quartz. In contrast, when
the CHGV contains feldspars (primary or sec-
ondary), graphite Cakes are arranged approxi-
mately perpendicular or oblique to the grain
margins of the host rock.

4.5 Characteristics of the wall rock (sample
KGK/1132/4)

The matrix of this garnet-bearing maBc granulite
(wall rock) contains xenomorphic Bne to medium-
sized (0.2–0.5 cm) garnet, hypidiomorphic to
xenomorphic plagioclase, alkali feldspar (\0.2 up
to 0.5), xenomorphic orthopyroxene, and
clinopyroxene as major minerals. Xenomorphic
Bne to medium-grain quartz and ilmenite are
present as minor mineral phases. Apatite and
biotite are the accessory constituents. Chlorite is
the main secondary product. Additionally, the
rock contains quartz and orthoclase feldspar-
bearing melt ribs and nabs. Garnets are frequently
broken down, forming corona textures via reac-
tion (2). The outer margins of the corona mainly
contain orthopyroxene–plagioclase motes, while
the inner side of the corona contains orthopyrox-
ene–plagioclase symplectites. At the CHGV in
this sample, titanite, biotite, crystallized two
feldspars, secondary calcite, and formation of
myrmekite after plagioclase feldspar can be
observed. Microcrystalline quartz, two feldspars,
and biotite-bearing thin Blms (0.1 cm) are less
parallel to the contact between the host rock and
the graphite veins. Medium-grain titanite with
ilmenite inclusions can be identiBed next to the
immediate rock–vein contact.

5. Mineral chemistry

Mineral compositions were determined using JEOL
JXA-8230 Field Emission Electron Probe Micro-
analyzers (EPMA) at the Centre for Earth Sci-
ences, Indian Institute of Science, Bangalore, India.
The analyses were conducted with an accelerating
voltage of 15 kV, a beam current of 12 nA, and a
spot size ranging from 1 to 3 lm. Mineral standards
were utilized following the Astimex 53 Minerals
Mount MINM25-53 protocol. The standards used
were Na-albite-11.59, Fe-hematite-Fe3+-99.68/

Fe2+-89.68, Mg-olivine-50.97, Si-quartz-100, Mn-
rhodonite-42.3, Ti-rutile-100, K-orthoclase-15.57,
Zn-willenite-64.68, Ca-diopside-24.8, Cr-chromium
oxide-100, and for Al, Y-Al garnet-42.95. Data
were calibrated using an oxide-ZAF correction
program supplied by JEOL.

5.1 Garnet

Both Grt1 and Grt2 predominantly consist of
almandine–pyrope solid solutions. Core and rim
compositions of both Grt1 indicate slight compo-
sitional zoning of Fe (table 1). The cores of Grt1
and Grt2 are slightly depleted in the almandine
component, while the pyrope content shows the
opposite behaviour to almandine. The grossular
value of Grt1 (XGrs * 0.15) is slightly greater than
that in Grt2 (XGrs * 0.05). Grt1 contains a rela-
tively high weight percent of MnO (MnO 1.9 wt%),
compared to Grt2 (MnO 0.5 wt%). The XMg of Grt2
is slightly richer than Grt1 (table 1).

5.2 Biotite

Biotite in the matrix of KGK/1132/1 and biotite in
the tiny graphite veins, as well as overprinting
after orthopyroxene in Opx–Pl symplectite in
sample KGK/1132/3, are Mg-rich (XMg of *0.65,
0.8, and 0.8, respectively). Matrix biotite exhibits a
relatively high TiO2 content (up to 7 wt%) com-
pared to the latter two types (5.6 and 6 wt%,
respectively).

5.3 Feldspars

The matrix plagioclase (Pl1) in KGK/1132/1 is
albite-rich (Ab 0.60–0.65, table 1), while the
matrix alkali feldspars are orthoclase-rich (Or up
to 0.95, table 1). Alkali feldspar intergrown with
graphite and crystallized alkali feldspars in the
CHGV is also orthoclase-rich (Or 0.95, table 2).
However, the total weight percentage of oxides in
the latter orthoclase type is significantly low (up to
95.5 wt%) and indicates depletion of SiO2 (up to
61.5%, table 2).

5.4 Orthopyroxene

The XMg value of unaltered matrix orthopyroxene
(Opx1) in KGK/1132/1 is *0.6 (table 1). The
Al2O3 content is around 2.5 wt%. The XAl value of
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Opx1 is*0.06 (table 1). Due to extreme alteration,
the composition of symplectitic orthopyroxene
after garnet (Opx2) could not be measured, and
only pseudomorphic shapes of vermicular
orthopyroxene have been preserved.

5.5 Titanite

The total oxide weight present in titanite is close
to 97.75, indicating the possible incorporation of
some metallic elements (table 2). Titanite contains
Al2O3 up to 1.5 wt%.

6. Discussion

6.1 Wall rock alteration due to graphite
mineralization

The petrographic evidence from this study reveals
a progressive increase in wall rock alteration
towards the graphite vein. Antiperthitization
(Bgure 5b, d) and myrmekite formation (Bgure 5g,
h, i) are prominent alteration features, with both
intensifying from the host rock to the vein, indi-
cating their link to hydrothermal alteration pro-
cesses. Similar Bndings have been reported by
Kehelpannala (1995, 1999) and Touret et al. (2019)
in the Kahatagaha and Bogala mines in Sri Lanka.
The following sections explore the mechanisms
that contributed to the antiperthitization and
myrmekite observed in the samples studied.
Yuguchi and Nishiyama (2008) have emphasized

the involvement of exchange cycles in the forma-
tion of myrmekite and reaction rims, elucidating a
fundamental mechanism rooted in the albitization
of plagioclase facilitated by the diffusive transport
of NaO1/2 and SiO2 (4):

CaAl2Si2O8 þNaO1=2 þ SiO2

¼ NaAlSi3O8 þ CaOþAlO3=2: ð4Þ

The formation of myrmekite necessitates higher
SiO2 content than reaction rim development. Some
SiO2 comes from plagioclase decomposition
(Bgure 5e–h), while the surrounding environment
contributes to the plagioclase boundary (Yuguchi
and Nishiyama 2008). Simpson and Wintsch (1989)
observed enhanced myrmekite growth in deformed
rocks under high normal stress on feldspar,
attributing strain energy as the driving force.
Models for antiperthite formation occur
concurrently with those for myrmekite (Song
et al. 2024), suggesting mechanisms such asT
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metasomatic replacement of plagioclase by alkali
feldspar in slowly cooled granulite-facies rocks (Sen
1959), simultaneous crystallization (Vogel 1970), and
exsolution from ternary feldspar (Kay 1977). The
increasing antiperthitization from the host rock to
the graphite vein in this study (Bgures 4, 5, and 6)
indicates metasomatic replacement as the key
mechanism. Kehelpannala (1995) noted that alkali
metasomatism forms alteration zones around
graphite veins, transforming plagioclase to
antiperthite and then to sericite. Crystallization of
alkali feldspar in potassium-poor plagioclase likely
occurs via heterogeneous nucleation on plagioclase
interfaces due to low activation energy (Vogel 1970).
Feldspar dissolution has been identiBed as a

potential mechanism for facilitating CO2 seques-
tration through several processes, including the

consumption of hydrogen ions (H+), generation of
bicarbonate ions (HCO3

�), and buAering of pH in
formation water (Giles and Marshall 1986; Emery
et al. 1990; Franc�a et al. 2003; Bjørlykke and Jahren
2012; Yuan et al. 2019). When CO2 dissolves in
water-bearing Cuids, it forms carbonic acid, releasing
H+ ions that catalyze feldspar dissolution reactions
(Giles and Marshall 1986; Emery et al. 1990; Franc�a
et al. 2003; Bjørlykke and Jahren 2012).
The dissolution of feldspar in the host rock is

commonly observed towards the graphite vein
(Bgure 6) and plays a significant role in the long-
term fate of injected CO2. This dissolution not only
consumes acidity but also produces alkalinity,
increasing the saturation index of carbonate phases
and potentially leading to the permanent storage of
CO2 in carbonate minerals (Bickle 2009; Wigley

Table 2. Representative EPMA data of minerals in sample KGK/1132/3.

Mineral

Bt* Bt**

Tit* Tit** Or* Or** Ilm* Qz* Cal** Sd** Py*Core Rim Core Rim

SiO2 37.91 37.82 37.71 37.17 30.15 30.25 61.34 61.54 0.67 99.62 0.13 bdl 0.36

TiO2 5.52 5.41 5.76 6.18 37.34 37.27 0.00 0.12 52.87 0.05 0.00 bdl bdl

Al2O3 13.12 13.24 13.47 13.42 1.60 1.45 18.77 18.55 0.06 0.06 0.11 0.04 0.08

Cr2O3 0.11 0.15 0.19 0.19 0.13 0.11 bdl bdl 0.23 0.02 bdl 0.01 bdl

FeO 15.87 15.36 15.31 16.06 0.70 0.57 0.21 0.36 44.71 0.11 0.21 14.38 40.25

MnO 0.06 0.06 0.09 0.04 0.14 0.10 0.04 0.00 1.30 0.03 0.52 0.19 bdl

MgO 12.45 12.46 12.59 12.03 0.07 0.10 0.04 0.06 0.50 0.05 0.18 11.28 0.02

CaO 0.12 0.11 0.11 0.05 27.50 27.88 0.10 0.06 bdl 0.08 56.04 26.81 0.01

Na2O 0.07 0.04 0.03 0.02 0.01 0.00 0.40 0.43 bdl bdl bdl 0.02 0.15

K2O 9.79 9.61 9.68 9.64 0.00 0.00 14.09 14.27 bdl bdl 0.26 0.04 bdl

ZnO bdl 0.09 0.08 0.18 0.01 0.00 0.05 bdl bdl bdl 0.48 0.11 bdl

CO2 42.07 47.13

Total 95.03 94.33 95.01 95.01 97.65 97.73 95.04 95.39 100.37 100.01 100.0 100.00 40.87

O 22.00 22.00 22.00 22.00 22.00 22.00 8.00 8.00 3.00 2.00 2.00 2.00

Si 5.72 5.73 5.68 5.63 4.43 4.44 2.96 2.97 0.02 1.00 bdl bdl

Ti 0.63 0.62 0.65 0.70 4.13 4.11 bdl bdl 0.99 bdl bdl bdl

Al 2.33 2.36 2.39 2.39 0.28 0.25 1.07 1.05 bdl bdl bdl bdl

Cr 0.01 0.02 0.02 0.02 0.01 0.01 bdl bdl bdl bdl bdl bdl

Fe 2.00 1.95 1.93 2.03 0.09 0.07 0.01 0.01 0.93 bdl 0.46 0.42

Mn 0.01 0.01 0.01 0.01 0.02 0.01 bdl bdl 0.03 bdl 0.01 0.01

Mg 2.80 2.81 2.82 2.71 0.02 0.02 bdl bdl 0.02 bdl 0.54 0.58

Ca 0.02 0.02 0.02 0.01 4.33 4.39 0.01 bdl bdl bdl 0.95 0.99

Na 0.02 0.01 0.01 0.01 bdl bdl 0.04 0.04 bdl bdl bdl bdl

K 1.89 1.86 1.86 1.86 bdl bdl 0.87 0.88 bdl bdl bdl bdl

Zn bdl 0.01 0.01 0.02 bdl bdl 0.00 bdl bdl bdl bdl bdl

Total cation 15.43 15.39 15.40 15.40 13.30 13.31 4.96 4.96 1.99 1.00 1.96 2.01

Fe3+ 1.19 1.14 1.14 1.15

Fe2+ 0.81 0.81 0.78 0.88

XMg 0.77 0.78 0.78 0.75

An 0.01 0.00

Ab 0.04 0.04

Or 0.95 0.95

* Minerals within tiny graphite vein. ** Minerals within the contact zone of the host rock with graphite vein.
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et al. 2013). The precipitation of secondary min-
erals, such as calcite, following feldspar dissolution
further enhances CO2 capture (Yuan et al. 2019).
Specifically, the formation of secondary calcite
(Bgures 2e, 6h) in altered wall rock results from the
combination of Ca2+ from plagioclase dissolution
and CO3

2� from CO2.
The crystallization of two feldspar varieties at

the CHGV also indicates the products of wall rock
alteration (Bgure 5a, b, e). Key elements – Ca, Na,
K, Al, and Si – likely originate from feldspar dis-
solution and antiperthitization during this alter-
ation process, with additional silica contributions
from hydrothermal Cuids responsible for graphite
mineralization. The presence of vein quartz within
graphite veins in this study (Bgure 2d), also as
reported by Kehelpannala (1995, 1999) and Touret
et al. (2019), supports the role of Si in hydrother-
mal Cuids during graphite precipitation. Further-
more, the dissolution–reprecipitation mechanisms
of feldspar have been thoroughly examined in
various studies (Hellmann et al. 2003, 2012, 2015;
Ruizggudo et al. 2012, 2016; Putnis 2014).
Biotite crystallization at the CHGV (Bgure 6a,

b) and its overprint on symplectitic orthopyroxene
(Bgures 4h, 5k) indicate the role of H2O during wall
rock alteration. Elements like K and Al likely
originate from antiperthitic plagioclase (Bgure 5b,
d) and feldspar dissolution (Bgure 6a, b, c), while
Si may come from feldspar alteration and
hydrothermal Cuid activity. Fe in biotite may have
been sourced from orthopyroxene (Bgures 4h, 5k)
or the hydrothermal Cuid, as supported by the
presence of pyrite in Sri Lankan vein graphite
(Kehelpannala 1995, 1999; Touret et al. 2019)
(Bgure 2f), suggesting Fe as a component of the
Cuid.
H2O could originate from two potential sources:

pre-existing retrograde H2O-saturated Cuids/melts
within the host rock, possibly from prograde
dehydration (Touret and Huizenga 2012; Huizenga
et al. 2014; Dharmapriya et al. 2015a, b), or from
the mineralization of vein graphite. Retrograde
biotite formation provides evidence for H2O-rich
Cuids during retrogression, which facilitated sym-
plectitic textures (White et al. 2007).
Regarding vein graphite formation, Cuid cooling

(Huizenga 2011; Luque et al. 2014), rather than
Cuid–Cuid mixing, likely led to graphite precipita-
tion (Touret et al. 2019). CO2 reduction, driven by
redox contrast between CO2 Cuid and the host
rock, likely facilitated graphite formation (Tour-
et and Huizenga 2012), as shown in the reaction:

CO2 ! CþO2: ð5Þ

This process, occurring under granulite facies
conditions, was likely key during near-isothermal
decompression. The association of pyrite and
graphite (Katz 1987) suggests that pyrrhotite
may have acted as a reducing agent, contributing
to early graphite and pyrite formation under high-
temperature conditions (Kirilova et al. 2018a, b).
Touret et al. (2019) proposed that during cool-

ing, the graphite precipitation reaction (6), as
described by Huizenga (2011), occurs:

CO2 þ 2H2 ! Cþ 2H2O: ð6Þ

The H2O produced could support biotite
formation during wall rock alteration. Consuming
H2O in hydrous mineral formation may drive
further graphite precipitation, similar to the
Borrowdale graphite deposit in the UK (Ortega
et al. 2010).
Titanite, primarily associated with ilmenite at

CHGV (Bgure 6d, e, f), suggests that Ti comes
from ilmenite, while Ca is derived from plagioclase
alteration. Si contributions likely come from feld-
spar alteration and hydrothermal Cuids. Kehel-
pannala (1995, 1999) noted the absence of primary
graphite in the host rock, but this study reveals
disseminated graphite associated with the veins.
This indicates hydrothermal Cuid inBltration along
grain boundaries and fractures, supported by pla-
gioclase alteration (Bgure 6a, b, c) and calcite
precipitation in fractures (Bgure 6h, i). Decom-
pression-induced grain fracturing, as discussed by
Hiroi et al. (2014), further supports this
interpretation.
Earlier studies found higher gangue mineral

concentrations in smaller graphite veins, decreas-
ing towards the center of thicker veins (Silva 1987;
Dissanayake et al. 1988; Kehelpannala 1999; Tou-
zain et al. 2010). Gangue minerals mechanically
adhere to graphite surfaces or are intercalated
between graphene layers (Touzain et al. 2010).
Chemical analysis of these deposits reveals trace
elements like Fe, Ca, Mg, Si, Al, and Na, along
with lower concentrations of transition metals such
as Cu, Ni, Co, and Zn (Dissanayake et al. 1988).
Based on petrographic observations in this study

(Bgures 4, 5, 6), feldspar dissolution likely con-
tributes to a slightly acidic environment by con-
suming hydrogen ions (H+), generating
bicarbonate ions (HCO3

�), and buAering the pH of
formation water (Yuan et al. 2019). This process
adds Ca, Na, K, and Si to the CO2-rich
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hydrothermal Cuid, potentially facilitating the
formation of antiperthite and myrmekite. Addi-
tionally, Fe, Ca, Mg, Si, Al, and Na likely originate
from the alteration of host rock minerals, including
feldspar, biotite, and pyroxene, during wall rock
alteration. Silicon may also be present in the
hydrothermal Cuid, as evidenced by large vein
quartz formations within graphite veins (Touret
et al. 2019). Moreover, the occurrence of trace
metals such as Cu, Ni, Co, and Zn in hydrothermal
Cuids has been well-documented in various mineral
deposits worldwide (Liu et al. 2011, 2012; Migdisov
et al. 2011; Tian et al. 2012; Jonsson and Liu 2020).

6.2 Implications for the relative timing of vein
graphite mineralization in Sri Lanka

The petrographic evidence presented herein facili-
tates the determination of the relative age of vein
graphite mineralization in Sri Lanka. Several
researchers have proposed a clockwise P–T trajec-
tory for the rocks in the Highland Complex (HC)
and Western Complex (WC) (Hiroi et al. 1994;
Raase and Schenk 1994; Dharmapriya et al.
2014, 2015a, b, 2017b; Hirayama et al. 2020). These
studies suggest that after reaching peak metamor-
phic conditions, both HC and WC rocks experi-
enced a period of near isobaric cooling (IBC) as
evidenced by the formation of Bne-grained granules
(Perera 1987; Prame 1991; Schumacher et al. 1990;
Mathavan and Fernando 2001; Dharmapriya et al.
2014, 2015a, b). Subsequently, the rocks underwent
a near-isothermal decompression stage (ITD)
(Perera 1987; Sandiford et al. 1988; Schumacher
et al. 1990; Prame 1991; Dharmapriya et al.
2015b, 2021a, b).
The graphite veins observed cutting across

gneissic foliations of granulite-facies rocks in the
Kahatagaha mine indicate their retrograde origin
(Kehelpannala 1999). Furthermore, these graphite
veins intersect the axial planes of large-scale syn-
forms and antiforms, providing solid evidence for
the origin of graphite veins postdating the major
folding event of the Sri Lankan basement (Kehel-
pannala 1999; Touret et al. 2019).
Thermobarometric calculations on rocks from

the HC revealed that the isothermal decompression
corresponded to temperatures *750–830�C and
pressures ranging from 6.5 to 5 kbar (Schenk et al.
1991; Hiroi et al. 1994; Kleinschrodt 1994; Raase
and Schenk 1994). Dharmapriya et al. (2014) also
noted that in the southwestern part of the HC,
close to the inferred HC–WC boundary, the rocks

experienced post-peak evolution characterized by a
stage of nearly isobaric cooling down to T of 770�C
and P of 7.5 kbar, followed by a late stage of
isothermal decompression down to P \ 6.5 kbar
and T of 770�C. These conditions are indicative of
granulite facies metamorphism, as evidenced by
orthopyroxene-bearing symplectites. Alterations
observed in both orthopyroxene and plagioclase
near the graphite veins, produced during decom-
pression, indicate that vein graphite formation
occurred during or after the decompression stage
(Kehelpannala 1995). Similar observations were
made by Kehelpannala (1995) in the same mine.
However, the absolute timing of this decompres-
sion stage has yet to be established by geochrono-
logical studies. New minerals frequently form by
overprinting existing minerals during the retro-
gression of high-grade metamorphic rocks (e.g.,
Brown 2002; Ouzegane et al. 2003; Beach and
Tarney 1978; Zhang et al. 2020). The generation of
minerals and assemblages during retrograde
metamorphism has been reported in both the HC
and WC of Sri Lanka by several authors, with
biotite being one of the common retrograde min-
erals (e.g., Hiroi et al. 1994; Raase and Schenk
1994; Dharmapriya et al. 2014, 2017a, b, 2021a, b).
However, in the studied samples, the tiny biotite
Cakes in the CHGV indicate that their formation
occurred simultaneously with the mineralization of
vein graphite. Some of the biotite intergrown with
graphite Cakes clearly supports this interpretation
(Bgure 7a, b). The alteration of orthopyroxene in
the Opx–Pl symplectite after garnet (Bgure 4h),
occurring only near the CHGV, also indicates a
direct inCuence of the hydrothermal Cuid respon-
sible for graphite mineralization on the aforemen-
tioned alteration. Meanwhile, the mineral
chemistry of overgrowth biotite after orthopyrox-
ene in these symplectites and biotite intergrown
with graphite at the CHGV shows similar mineral
chemistry (table 2), indicating their cogenesis.

7. Conclusions

The detailed analysis of wall rock alteration and gra-
phite mineralization in the Kahatagaha–Kolongaha
sheds light on the complex geological processes gov-
erning vein graphite formation. The petrographic
examination has uncovered a progressive increase in
alteration in wall rock towards graphite veins. This
included the formation of antiperthite andmyrmekite,
alteration of orthopyroxene, dissolution of plagioclase,
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and the crystallization of new minerals, such as two
feldspar varieties, biotite, and titanite, indicative of
hydrothermal alteration processes. The existence of
slightly acidic conditions, attributed to the interaction
of CO2 and H2O, facilitates the dissolution of feldspar
in the host rock, contributing to the derivation of Ca,
Na, K, Si, and Al, serving as potential sources for
antiperthitization and myrmekite formation. Overall,
wall rock alterations suggest the combined contribu-
tion of both host rock minerals and hydrothermal Cu-
ids to the formation of alteration products such as
biotite, titanite, two feldspars, and calcite.
Our Bndings support previous research indicat-

ing that these graphite veins formed after major
tectonic events, such as large-scale folding, during
a period of retrograde metamorphism. This study
emphasizes the critical role of Cuid-rock interaction
in the genesis of vein graphite. Revealing these
processes is essential for guiding future exploration
and development eAorts targeting such economi-
cally valuable mineral resources.
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