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Abstract: Three new polyketides, including three ester derivatives (1, 3, and 5) and a new natural
product, which was a benzoquinone derivative, embelin A (4), together with nine known ones (2
and 6–13), were isolated from the mangrove-derived fungus Penicillium sp. SCSIO 41411. Their
structures were determined by detailed NMR and MS spectroscopic analyses. The X-ray single-crystal
diffraction analysis of 4 was described for the first time. Compound 9 displayed obvious inhibition
against PDE4 with an inhibitory ratio of 40.78% at 10 µM. Compound 12 showed DPPH radical
scavenging activity, with an EC50 of 16.21 µg/mL, compared to the positive control (ascorbic acid,
EC50, 11.22 µg/mL). Furthermore, compound 4 exhibited cytotoxicity against PC-3 and LNCaP with
IC50 values of 18.69 and 31.62 µM, respectively.

Keywords: mangrove-derived fungus; Penicillium sp.; polyketide; cytotoxicity

1. Introduction

Mangroves are a unique intertidal ecosystem located in tropical and subtropical
regions, with nearly 60–70% of the world’s tropical and subtropical coastlines covered by
mangroves, widely regarded as one of the most productive ecosystems [1,2]. One of the key
populations in this ecosystem is microbial diversity [2]. Fungi and bacteria make up 91%
of the microbial biomass in tropical mangroves, which produce abundant marine natural
products. As of December 2020, scientists have discovered at least 1387 new structures from
mangrove-derived fungi, numerous of which demonstrated a variety of pharmacological
activities [1–4].

Penicillium sp., as a representative of marine fungi, generates a wide range of bioac-
tive secondary metabolites, mainly including polyketides, alkaloids, peptides, etc. [5–8].
Auroglaucin, isolated from an aciduric fungus strain, Penicillium oxalicum OUCMDZ-5207,
exhibited strong selective inhibition on A549 cells, with an IC50 value of 5.67 µM [9]. Aspter-
ric acid, which was generated from the fungus Penicillium polonicum H175, displayed a
noteworthy hypoglycemic impact comparable to that of the positive drug rosiglitazone
(RSG) at 10 µM [10].

In our study, three new ester derivatives (1, 3, and 5) and one new natural product
(4), together with nine known compounds (2 and 6–13) (Figure 1), were isolated from a
mangrove sediment-derived fungus, Penicillium sp. SCSIO 41411. Herein, the specifics
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of the isolation, structural elucidation, and bioactive assessments of isolated compounds
were reported.
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Figure 1. Structures of compounds 1–13.

2. Results and Discussion
2.1. Structural Determination

Compound 1 was isolated as a brown oil, and its molecular formula of C11H12O6
was determined by HRESIMS data at m/z 241.0709 [M+H]+. The 1D NMR (Table 1)
and HSQC spectra of 1 showed signals of one carbonyl carbon (δC 168.3), five unsatu-
rated carbon signals (δC 157.3, 153.7, 134.3, 141.5, 103.4), one aromatic methine (δH/C
6.41/104.2), two oxygen-containing saturated methylenes (δH/C 5.26/81.5 and 4.18/65.1),
and two methyls (δH/C 3.69/59.7 and 1.28/20.6) (one of them was methoxyl). These afore-
mentioned data were similar to the 1D NMR data of the known compound embeurekol
C (2), a polyketide derivative obtained from the fungus Embellisia eureka [11]. HMBC and
COSY correlations (Figure 2) confirmed that the planar structures of 1 and 2 were consistent.
To determine the absolute configuration of the secondary alcohol at C-1′ in 1 and 2, we
performed the Mosher ester analysis [12]. The (R)-MPA and (S)-MPA esters were prepared.
Analysis of 1H NMR data yielded ∆δRS values (δR–δS), confirming that 1 and 2 had the
same S configuration at C-1′ (Figure 3). Therefore, two theoretical configurations containing
(3S, 1′S)-1 and (3R, 1′S)-1 were speculated for ECD calculation. Combined with the trend
of the experimental curve of 1, the absolute configuration of 1 was ultimately inferred to be
3S, 1′S (Figure 4). However, the experimental ECD spectra of 2 showed opposite trends
with 1, so it was speculated that the absolute configuration of C-3 in 2 was opposite to
that of 1, which was 3R. The specific optical rotation of 1 ([α]25

D + 49.0 (c 0.1, CH3OH)) and
embeurekol C (2) ([α]20D

− 17.0 (c 0.05, CH3OH)) [11] further confirmed their opposite
configurations at C-3. Consequently, compound 2 was identical to embeurekol C, and 1
was named embeurekol D.

Compound 3 was obtained as a red-brown solid. The molecular formula was deter-
mined as C14H20O5 by HRESIMS data at m/z 269.1389 [M+H]+. The one dimensional
(1D) NMR (Table 2) and HSQC spectrum of 3 showed signals of two carbonyls (δC 172.7,
150.2), three nonprotonated sp2 carbons (δC 160.0, 153.0, 144.2), one alkene methine (δH/C
6.96/115.6), six methylenes (δH/C 1.24/31.1, 1.30/28.4, 1.30/28.3, 2.68/27.5, 1.61/26.1,
1.24/22.0), and two methyls (δH/C 3.87/53.3, 0.85/13.9) (one of them was methoxyl). Ac-
cording to the HMBC correlation (Figure 2) of H-3/C-1, C-2, C-4, and C-5, compound 3
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was an unsaturated pentolactone derivative with a carboxyl group connected to C-2. The
HMBC correlations of H3-15/C-4 revealed that 15-OCH3 was located at C-4. Accord-
ing to the molecular formula, the COSY-related signal indicated a spin-coupled system
H3-14/H2-13/H2-12/H2-11/H2-10/H2-9/H2-8, indicating the presence of heptane. The
HMBC correlations of H2-8/C-7, 2, and H2-9/C-7 revealed that CH2-8 was located at C-7.
Compound 3 was unambiguously characterized, as shown in Figure 1. The structure of 3
was similar to that of dothydeopyron B [13], with the main difference being that 3 had a
carboxyl group while dothydeopyron B had a methoxy group, and there was a hydroxyl
group substituted at the branch. As a newly discovered natural product, the novelty of
compound 3 lay in its presence of an aliphatic chain, which made it potentially more
hydrophilic compared to compounds with longer chains. Finally, compound 3 was named
7-heptyl-4-methoxy-6-oxo-3H-pyran-2-carboxylic acid.

Compound 4 was obtained as a yellow solid and was determined to have the molec-
ular formula C14H20O4 from the HRESIMS data at m/z 253.1442 [M+H]+. The 1D NMR
(Table 2) and HSQC spectra of 4 showed signals of two carbonyl carbons (δC 184.5, 183.6),
three alkene carbons (δC 161.9, 156.1, 120.1), one alkene methine (δH/C 5.88/104.0), six
methylenes carbons (δH/C 1.29/33.0, 1.29/30.6, 1.32/30.2, 1.43/29.2, 1.32/23.7, 2.40/23.3),
and two methyls (δH/C 3.83/57.2, 0.90/14.4) (one of them was methoxyl). The above
data suggested that 4 had a benzoquinone skeleton and a fatty acid chain. The COSY
correlations (Figure 2) of H2-9/H2-8/H2-7 and H2-12/H3-13 and the HMBC correlations
of H3-13/CH2-11 revealed that C-7–C-13 was a fatty acid chain. The HMBC correlations
of H2-7/C-1, C-5, C-6, and H2-8/C-6 revealed that CH2-7 was located at C-6. The HMBC
correlations of H3-14/C-2 indicated that the 14-OCH3 was located at C-2. Furthermore,
the X-ray crystal structure of 4 (CCDC 2363995, Figure 5) obtained by slow evaporation
in CH3OH at room temperature further confirmed the above elucidation of the planar
structure. Compound 4 has been previously identified as a synthetic product, which was
synthesized to illustrate the structure-activity relationship against α-glucosidase of the
embelin derivatives [14]. Here we reported for the first time that this compound has been
explored from nature and confirmed as a new natural product. Therefore, the compound
was named embelin A.

Compound 5 was isolated as a brown oil and had the molecular formula C9H10O5
as determined by HRESIMS data at m/z 221.0429 [M+Na]+. The 1H NMR of compound
5 shows a typical 1,2,4-trisubstituted benzene ring [δH 6.67 (1H, d, J = 3.0 Hz); 6.50 (1H,
dd, J = 8.5, 3.0 Hz); 6.60 (1H, d, J = 8.5 Hz)]. The one-dimensional (1D) NMR (Table 1)
and HSQC spectra of 5 showed signals of one carbonyl carbon (δC 173.3), three aromatic
carbons (δC 149.7, 146.9, 126.6), three aromatic methines (δH/C 6.60/115.8, 6.50/115.2,
and 6.67/114.2), one methine connected to hydroxyl group (δH/C 5.27/67.0), and one
oxygenated methyl (δH/C 3.57/51.5). The HMBC correlations (Figure 2) of H3-9/C-1
revealed that the oxygenated methyl group 9-OCH3 was located at C-1. The HMBC
correlations of H-2/C-1, 3, 4, and 8 indicated that C-2 was next to C-1 and C-3. Moreover,
it indicated the location of the phenolic hydroxyl group (C-4) and the aromatic methine
(C-8). The HMBC correlations of H-8/C-4, 6, and H-5/C-3, 7, and the COSY correlations
of H-5/H-6 revealed the location of C-5, C-6, and C-7. The optical rotation of 5 was
almost zero, suggesting that it was a racemate. Finally, compound 5 was named methyl
α,2,5-trihydroxybenzeneacetate.

Meanwhile, the other eight known compounds were identified as protocatechuic
acid (6) [15], 5-[(3Z,5E)-3,5-nonadienyl]-1,3-benzenediol (7) [16], 2,4-Dihydroxy-6-(3E,5E)-
3,5-nonadien-1-ylbenzoic acid (8) [17,18], 3,5-Dimethoxy-4-(1-methylethyl)[1,1′-biphenyl]-
2,4′-diol (9) [19], 3-Methyl-6,8-dihydroxyisocoumarin (10) [20], 6,8-dihydroxy-5-methoxy-
3-methyl-1H-isochromen-1-one (11) [21], butyrolactone I (12) [22], polybotrin (13) [23],
respectively, by comparing their NMR data (Supplementary Information) to previous
reports. According to the literature, 11 exhibited a-glucosidase inhibitory activity with an
IC50 value of 89.4 µM [24], and 12 had an acetylcholinesterase inhibiting effect [25].
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Table 1. The 1H and 13C NMR data of compounds 1 and 5.

Pos.
1 a 5 b

δC Type δH (J in Hz) δC Type δH (J in Hz)

1 168.3, C 173.3, C
2 67.0, CH 5.27, s
3 81.5, CH 5.26, br s 126.6, C
4 134.3, C 146.9, C
5 157.3, C 115.8, CH 6.60, d (8.5)
6 104.2, CH 6.41, s 115.2, CH 6.50, dd (8.5, 3.0)
7 153.7, C 149.7, C
8 103.4, C 114.2, CH 6.67, d (3.0)
9 141.5, C 51.5, CH3 3.57, s
10 59.7, CH3 3.69, s
1′ 65.1, CH 4.18, q (5.9)
2′ 20.6, CH3 1.28, d (6.5)

a 1H (500 MHz) and 13C (125 MHz) measured in DMSO-d6. b 1H (700 MHz) and 13C (175 MHz) measured
in DMSO-d6.

Mar. Drugs 2024, 22, 384 4 of 13 
 

 

a 1H (500 MHz) and 13C (125 MHz) measured in DMSO-d6. b 1H (700 MHz) and 13C (175 MHz) meas-
ured in CD3OD. 

Compound 4 was obtained as a yellow solid and was determined to have the molec-
ular formula C14H20O4 from the HRESIMS data at m/z 253.1442 [M+H]+. The 1D NMR (Ta-
ble 2) and HSQC spectra of 4 showed signals of two carbonyl carbons (δC 184.5, 183.6), 
three alkene carbons (δC 161.9, 156.1, 120.1), one alkene methine (δH/C 5.88/104.0), six meth-
ylenes carbons (δH/C 1.29/33.0, 1.29/30.6, 1.32/30.2, 1.43/29.2, 1.32/23.7, 2.40/23.3), and two 
methyls (δH/C 3.83/57.2, 0.90/14.4) (one of them was methoxyl). The above data suggested 
that 4 had a benzoquinone skeleton and a fatty acid chain. The COSY correlations (Figure 
2) of H2-9/H2-8/H2-7 and H2-12/H3-13 and the HMBC correlations of H3-13/CH2-11 revealed 
that C-7–C-13 was a fatty acid chain. The HMBC correlations of H2-7/C-1, C-5, C-6, and 
H2-8/C-6 revealed that CH2-7 was located at C-6. The HMBC correlations of H3-14/C-2 in-
dicated that the 14-OCH3 was located at C-2. Furthermore, the X-ray crystal structure of 4 
(CCDC 2363995, Figure 5) obtained by slow evaporation in CH3OH at room temperature 
further confirmed the above elucidation of the planar structure. Compound 4 has been 
previously identified as a synthetic product, which was synthesized to illustrate the struc-
ture-activity relationship against α-glucosidase of the embelin derivatives [14]. Here we 
reported for the first time that this compound has been explored from nature and con-
firmed as a new natural product. Therefore, the compound was named embelin A. 

 
Figure 2. Key HMBC and COSY correlations of 1 and 3–5. 

 
Figure 3. ΔδRS (δR–δS) data for the MPA esters of 1–2. 

Figure 2. Key HMBC and COSY correlations of 1 and 3–5.

Table 2. The 1H and 13C NMR data of compounds 3 and 4.

Pos.
3 a 4 b

δC Type δH (J in Hz) δC Type δH (J in Hz)

1 172.7, C 183.6, C
2 144.2, C 161.9, C
3 115.6, CH 6.96, s 104.0, CH 5.88, s
4 160.0, C 184.5, C
5 150.2, C 156.1, C
6 120.1, C
7 153.0, C 23.3, CH2 2.40, t (7.7)
8 27.5, CH2 2.68, t (7.5) 29.2, CH2 1.43, m
9 26.1, CH2 1.61, m 30.2, CH2 1.32, m

10 28.3, CH2 1.30, m 30.6, CH2 1.29, m
11 28.4, CH2 1.30, m 33.0, CH2 1.29, m
12 31.1, CH2 1.24, m 23.7, CH2 1.32, m
13 22.0, CH2 1.24, m 14.4, CH3 0.90, t (7.1)
14 13.9, CH3 0.85, t (6.8) 57.2, CH3 3.83, s
15 53.3, CH3 3.87, s

a 1H (500 MHz) and 13C (125 MHz) measured in DMSO-d6. b 1H (700 MHz) and 13C (175 MHz) measured
in CD3OD.
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Meanwhile, the other eight known compounds were identified as protocatechuic acid 
(6) [15], 5-[(3Z,5E)-3,5-nonadienyl]-1,3-benzenediol (7) [16], 2,4-Dihydroxy-6-(3E,5E)-3,5-
nonadien-1-ylbenzoic acid (8) [17,18], 3,5-Dimethoxy-4-(1-methylethyl)[1,1′-biphenyl]-
2,4′-diol (9) [19], 3-Methyl-6,8-dihydroxyisocoumarin (10) [20], 6,8-dihydroxy-5-methoxy-
3-methyl-1H-isochromen-1-one (11) [21], butyrolactone I (12) [22], polybotrin (13) [23], re-
spectively, by comparing their NMR data (Supplementary Information) to previous re-
ports. According to the literature, 11 exhibited a-glucosidase inhibitory activity with an 
IC50 value of 89.4 µM [24], and 12 had an acetylcholinesterase inhibiting effect [25]. 
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Figure 5. X-ray single-crystal structure of 4.

As we can see, compounds 1/2 and 10/11 had similar parent nucleus structures, with
the main difference being that 1/2 were five-membered lactone rings, while compounds
10/11 were six-membered lactone rings. The example of the development of furan and
pyran rings in monoterpenoids illustrated the mechanism of biosynthesis. Aspergillus niger
could be used to biotransformation linalool into both furanoid and pyranoid linalool oxide
simultaneously [26]. The phenomena suggested that these two types of compounds had a
certain biological relationship in the isolated strain.



Mar. Drugs 2024, 22, 384 6 of 13

2.2. Bioactivity Assay

The isolated compounds were evaluated for their antibacterial and cytotoxic activities
(Table 3). Compounds 7 and 9 exhibited activities against Staphylococcus aureus, with
the MIC values of 100 µg/mL. Compounds 3, 7, 8, and 9 exhibited activities against
Streptococcus suis, with MIC values of 100 µg/mL. In addition, compound 12 had a DPPH
inhibitory activity with an EC50 of 16.21 µg/mL, compared to the positive control (ascorbic
acid, with an EC50 of 11.22 µg/mL). Phosphodiesterase 4 (PDE4) is an important target for
the treatment of inflammation [27]. In screening for PDE4 inhibitory activity, compounds
1–3 and 9–13 at 10 µM displayed inhibition against PDE4 with inhibitory ratios of 18.62%,
14.95%, 19.67%, 40.78%, 27.42%, 27.39%, 29.10%, and 26.22%, respectively. Among these,
compound 9 exhibited moderate inhibitory activity against PDE4.

Table 3. Antibacterial and cytotoxicity activities of compounds.

Compounds
Antibacterial
(MIC, µg/mL)

Cytotoxicity
(IC50, µM)

S. aureus S. suis PC-3 LNCaP DU145

1 - a - - - -
3 - 100 - - -
4 - - 18.69 31.62 >100
7 100 100 - - -
8 - 100 - - -
9 100 100 - - -

12 - - - - -
Positive 25 b 50 c 0.12 d 0.0018 d 0.0033 d

a “-” means no activity; b Streptomycin; c Penicillin; d Docetaxel.

Compounds 1–4 and 7–13 were tested at 10 µM in the cytotoxicity assay on two human
prostate cancer cell lines, PC-3 and 22Rv1 (Figure 6). Compound 4 exhibited significant
inhibition on PC-3, with an IC50 value of 18.69 µM. Furthermore, Compound 4 was eval-
uated against two additional prostate cancer cell lines, LNCaP and DU145. It effectively
inhibited the LNCaP cell line with an IC50 value of 31.62 µM, while its IC50 value against
the DU145 cell line was greater than 100 µM. The above results indicated that the cyto-
toxicity activity of 4 was selective, with the strongest activity against the PC-3 cell line.
Among these three common prostate cancer cell lines, PC-3 was androgen-independent
and had moderate metastatic potential [28]. Therefore, we speculated that compound 4
inhibited the mid-term stage of prostate cancer cell development. As a new natural product,
4 had a similar skeleton structure to auroglaucin-related analogs [29], both of which had
a six-membered ring structure and a long chain. However, compounds 3 and 4 differed
mostly in the characteristics of their six-membered rings. The cytotoxicity of 4 indicated
that lengthy fatty chains had a minimal impact on the cytotoxicity of this kind of structure.

AKT1 (NP_005154.2) was involved in the growth, survival, and metabolism of cells [30].
Studies have shown that AKT1 protein could interact with UHRF1, but inhibited AKT1-
induced phosphorylation of UHRF1 could induce degradation of UHRF1 protein, thereby
reducing the interaction between UHRF1 and deubiquitinase USP7 and promoting its
interaction with E3 ubiquitin-protein ligase BTRC, which is of great significance for the
treatment of prostate cancer [31]. Therefore, AKT1 was selected as the docking target for
further research. Compound 4 demonstrated a perfect interaction with the AKT1 protein
(PDB ID: 3O96) with a docking score of −5.886. As shown in Figure 7, hydroxyl and ketone
carbonyl groups of 4 formed two hydrogen bonds with the active site residues SER 205 and
LYS 268.
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 Figure 7. Molecular docking of 4 with AKT1 (PDB code: 3O96). (A) The two-dimensional (2D)
interaction details of the predicted binding mode of 4 with the AKT1. The purple arrows in the Figure
represent hydrogen bonds, indicating that 4 interacted with the active sites of the AKT1 protein
pocket through hydrogen bonds. (B) The binding sites of molecule 4 with the AKT1 protein. On the
left is the overall diagram of the interaction between 4 and AKT1, and on the right is the specific
detail diagram. Among them, the distance between 4 and SER 205 is 1.9 Å, and the distance between
4 and LYS 268 is 2.5 Å.
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3. Materials and Methods
3.1. General Experimental Procedures

Optical rotations were measured with an Anton Paar MPC500 (Anton, Graz, Austria)
polarimeter. The UV spectra were recorded on a Shimadzu UV-2600 PC spectrometer
(Shimadzu, Beijing, China), while the IR spectra were determined by an IR Affinity-1 spec-
trometer (Shimadzu). The ECD spectra were performed on a Chirascan circular dichroism
spectrometer (Applied Photophysics, Leatherhead Surrey, UK). High-resolution electro-
spray ionization mass spectroscopy (HRESIMS) spectra were obtained on a Bruker maXis
Q-TOF mass spectrometer (Bruker BioSpin International AG, Fällanden, Switzerland).
The NMR spectra were collected on a Quantum-I Plus 500 MHz (Q-one Instrument Co.,
Ltd., Wuhan, China) operating at 500 MHz for 1H NMR and 125 MHz for 13C NMR
and were collected on an AVANCE III HD 700 MHz (Bruker Switzerland AG, Fällanden,
Switzerland) operating at 700 MHz for 1H NMR and 175 MHz for 13C NMR, which used
tetramethylsilane as an internal standard. Semipreparative high-performance liquid chro-
matography (HPLC) was performed on the Hitachi Primaide with a DAD detector (Hitachi,
Tokyo, Japan), using ODS columns (ChromCore 120 C18, 10 × 250 mm, 5 mm; YMC-pack
ODS-A, 10 × 250 mm, 5 mm; COSMOSIL πNAP 10 × 250 mm; COSMOSIL 5C18-AR-II
10 × 250 mm). Column chromatography was detected by silica gel (200–300 mesh), and
spots were detected on TLC (Qingdao Marine Chemical Factory, Qingdao, China) under
254 nm UV light, respectively. All solvents used were provided by Tianjin Fuyu Chemical
and Industry Factory, Tianjin, China, and were of analytical grade.

3.2. Fungal Material

The strain Penicillium sp. SCSIO 41411 was isolated from the rhizosphere sediment
sample of the mangrove Aegiceras corniculatum in Gaoqiao Mangrove, Zhanjiang. It was
stored in the CAS Key Laboratory of Tropical Marine Bioresources and Ecology, South
China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China. The
strain was designated Penicillium sp. SCSIO 41411 is based on BLAST analysis of the
ITS sequence (Supplementary Information) because it shared 99% of the similarities with
Penicillium brefeldianum (NR_138263.1). Finally, the sequence was deposited in GenBank
with the accession number OQ052995.

3.3. Fermentation and Extraction

The fungal strain Penicillium sp. SCSIO 41411 was statically cultivated on MA medium
and then was cultured in 200 mL seed medium (1.5% malt extract, 2.0% sea salt) in 1 L
Erlenmeyer flasks at 28 ◦C for 3 days on a rotary shaker (180 rpm). A large-scale fermen-
tation was incubated at 26 ◦C for 28 days using a rice medium (200 g rice, 2% sea salt,
230 mL H2O) in the 1 L flask (×80) under static conditions. The whole fermented culture
was extracted with EtOAc three times to afford a brown extract (150 g).

3.4. Isolation and Purification

The whole ethyl acetate extract was subjected to a silica gel vacuum liquid chromatog-
raphy using a step gradient elution of petroleum ether (PE)-dichloromethane (DCM) (ν:ν
1:0, 1:1, 0:1), DCM-methyl alcohol (CH3OH) (ν:ν 100:1, 100:3, 50:3, 10:1, 5:1, 10:3, 5:2, 2:1,
10:7, 5:4, 10:9, 0:1), to yield 15 fractions (Frs. 1–15) in the light of TLC profiles. Fr. 2 was
further purified by semipreparative HPLC (72% CH3OH/H2O, 3.0 mL/min) to afford 4
(2.4 mg, tR 18.2 min). Fr. 4 to Fr. 6 were merged and then was divided into 18 subfractions
(Frs. 4-1–4-18) by ODS silica gel eluting with CH3OH/H2O (5–100%). Based on this, Fr. 4–8
was directly separated by semipreparative HPLC (69% CH3OH/H2O, 3.0 mL/min) to offer
12 (37.4 mg, tR 21.0 min). Compound 9 (6.3 mg, tR 13.3 min) was further purified from Fr.
4–9 by semipreparative HPLC (60% CH3CN/H2O, 3.0 mL/min). Compound 3 (9.6 mg, tR
13.3 min), compound 7 (25.0 mg, tR 15.2 min), and Fr. 4-10-1 were further obtained from
Fr. 4–10 by semipreparative HPLC (80% CH3OH/H2O, 2.0 mL/min; 60% CH3CN/H2O,
2.5 mL/min), respectively. Meanwhile, Fr. 4-10-1 was separated by semipreparative HPLC
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(52% CH3CN/H2O, 0.04% formic acid, 3.0 mL/min) to gain 8 (9.7 mg, tR 22.0 min). Fr. 4–2
to Fr. 4–7 were merged once again and then were divided into 15 subfractions (Frs. 4-2-1–4-
2-15) by ODS silica gel eluting with CH3OH/H2O (5–100%). Compound 10 (2.3 mg, tR 9.8
min) and 11 (12.7 mg, tR 10.4 min) were further obtained from Fr. 4-2-5 by semipreparative
HPLC (63% CH3OH/H2O, 2.5 mL/min), respectively. Compound 1 (6.83 mg, tR 14.0 min),
5 (2.2 mg, tR 9.7 min), 6 (4.5 mg, tR 7.8 min) and Fr. 7-5 were firstly obtained from Fr.
7 by semipreparative HPLC (30% CH3OH/H2O, 2.5 mL/min; 5% CH3OH/H2O, 0.04%
formic acid, 3.0 mL/min; 13% CH3CN/H2O, 0.04% formic acid, 3.0 mL/min, respectively.
Meanwhile, Fr. 7-5 was further separated by semipreparative HPLC (12% CH3CN/H2O,
0.04% formic acid, 2.5 mL/min) to gain 2 (56.09 mg, tR 12.0 min). Compound 13 (24.9 mg,
tR 7.4 min) was further purified from Fr. 9 by semipreparative HPLC (15% CH3OH/H2O,
2.5 mL/min).

3.5. Spectroscopic Data of Compounds

Embeurekol D (1): brown oil; [α]25
D + 49.0 (c 0.1, CH3OH); UV (CH3OH) λmax (logε) 214

(4.43), 257 (4.02), 302 (3.85) nm; ECD (0.83 mM, CH3OH) λmax 208 (+16.47), 226 (−2.28), 234
(−0.02), 256 (−3.33), 306 (+1.62); IR (film) νmax 3370, 1732, 1616, 984 cm−1; 1H and 13C NMR
data, see Table 1; HRESIMS m/z 241.0709 [M+H]+ (calculated for C11H13O6

+, 241.0707).
7-heptyl-4-methoxy-6-oxo-3H-pyran-2-carboxylic acid (3): red brown solid; UV (CH3OH)

λmax (logε) 226 (4.29), 312 (3.61) nm; IR (film) νmax 3256, 2930, 1742, 1636, 1260, 1207 cm−1;
1H and 13C NMR data, see Table 2; HRESIMS m/z 269.1389 [M+H]+ (calculated for
C14H21O5

+, 269.1384).
Embelin A (4): yellow solid; UV (CH3OH) λmax (logε) 205 (4.05), 287 (4.27) nm; IR

(film) νmax 3339, 2924, 2853, 1663, 1634, 1593, 1204, 691 cm−1; 1H and 13C NMR data, see
Table 2; HRESIMS m/z 253.1442 [M+H]+ (calculated for C14H21O4

+, 253.1434).
Methyl α,2,5-trihydroxybenzeneacetate (5): brown oil; [α]25

D 0.0 (c 0.1, CH3OH); UV
(CH3OH) λmax (logε) 205 (4.16), 301 (3.45) nm; IR (film) νmax 3377, 2918, 2851, 1734, 1576,
1456, 1219, 762 cm−1; 1H and 13C NMR data, see Table 1; HRESIMS m/z 221.0429 [M+Na]+

(calculated for C9H10NaO5
+, 221.0420).

3.6. X-ray Crystallographic Analysis

Compound 4 was dissolved in CH3OH and slowly evaporated to obtain the clear
light crystal. Crystallographic data for the structure that have been submitted to the
Cambridge Crystallographic Data Centre (CCDC) can be seen and copies of which can be
freely accessed applying to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK [P: +44 (0)
1223 336408].

Crystal data for 4: C14H20O4, Mr = 252.30, crystal size 0.3 × 0.05 × 0.05 mm3, tri-
clinic, a = 5.1888 (8) Å, b = 9.6297 (8) Å, c = 14.1355 (17) Å, α = 74.175 (9)◦, β = 89.844 (12)◦,
γ = 79.330 (10)◦, V = 666.93 (15) Å3, Z = 2, T = 99.98 (10) K, space group P-1,
µ (Cu Kα) = 0.746 mm−1, Dcalc = 1.256 g/cm3, 4793 reflections measured (6.508◦ ≤ 2Θ ≤
151.438◦), 2535 unique (Rint = 0.0620, Rsigma = 0.0720). The final R1 was 0.0950 (I > 2σ(I)),
and wR2 was 0.2899 (all data). The goodness of fit on F2 was 1.090 (CCDC 2363995).

3.7. ECD Computation Section

Compounds 1 and 2 were placed in Spartan’14, which used the MMFF molecular force
field to perform a conformational search on the potential isomers separately. Then, the
stable conformers of the first 5% in methanol solvent were optimized at the B3LYP/6-31+G
(d) level via Gaussian 09 (D.01, Pittsburgh, PA, USA). A TDDFT polarizable continuum
model at the level of B3LYP/6-311+G (d, p) was used to calculate the optimized low-energy
conformations [32]. The calculated ECD spectra were generated from GaussView (6.0.16,
Pittsburgh, PA, USA) and Origin 2021 with a half-bandwidth of 0.3–0.4 eV, wavelength
corrected by the calculated UV curve with the measured curve and weighted by Boltzmann
distribution to obtain the calculated ECD spectra.
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3.8. Mosher’s Method

Compound 1 (2.01 mg, 0.0084 mmol), followed by the addition of (R)-MPA (8.50 mg,
0.0512 mmol), DCC (0.3455 mg, 0.0017 mmol), and DMAP (0.2046 mg, 0.0017 mmol), was
dissolved in chloroform-d (0.6 mL) and then stirred at room temperature for 6 h. The reac-
tion was monitored by TLC detection [12]. (R)-MPA ester (1a) was purified by semiprepar-
ative HPLC (60% CH3OH/H2O, 3.0 mL/min) to yield 1a (0.7 mg). Compound 1b (0.7 mg)
was prepared using the same protocol as for 1a. The determination of the configuration of
the hydroxyl group at C-1′ for 2 was performed the same way as for 1.

3.9. Antibacterial Activity Assay

Two bacteria (Staphylococcus aureus ATCC 25923, Streptococcus suis SC19) were assessed
on 96-well plates. As positive controls against the two microorganisms, streptomycin and
penicillin were employed, respectively. Then, compounds were assessed using a two-fold
serial dilution approach on nutrient agar on a 96-well plate as previously described [33].
The medium’s OD value was determined at 490 nm (OD490) using a microplate reader
(Thermo Scientific, Bremen, Germany) following a 24-h incubation period.

3.10. Antioxidant Activity Assay

The obtained compound 12 was evaluated for its antioxidant activities against DPPH.
The effect of the compound on DPPH radical was estimated according to the method of
Hatano et al. (1988) [34] and Yen et al. (1995) [35]. In summary, a methanolic DPPH solution
was supplemented with compound 12 to obtain a final concentration of 2.5–250 µg/mL.
After shaking the mixture and letting it stand for 30 min at room temperature in the dark,
the OD517 values were measured using the PerkinElmer Enspire Multi-mode micro-orifice
detector and enzyme labeling instrument (PerkinElmer, Waltham, MA, USA). Ascorbic
acid was used as the positive control. Then, the free radical scavenging rate K (%) was
computed based on the acquired OD517 value using the formula, and Origin 2021 was
utilized to determine EC50.

3.11. PDE4 Inhibitory Screening Assays

The PDE4D2 expression, purification, and enzymatic assay procedures were com-
parable to those we previously described [36]. In brief, the inhibition of PDE4D2 by
13 was measured using 3H-cAMP as substrates (20,000–30,000 cpm/assay), and reactions
took place in a mixture that also contained 50 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 0.5 mM
(DTT) at room temperature (25◦) for 15 min. Subsequently, the reaction was stopped
with 0.2 M ZnSO4, the unreacted 3H-cAMP was precipitated out using 0.2 N Ba(OH)2.
The leftover supernatant was used to gauge the radioactivity in 2.5 mL of Ultima Gold
liquid scintillation cocktails (PerkinElmer) by a liquid scintillation counter (PerkinElmer
2910) [36].

3.12. Cytotoxicity Bioassay

Human prostate cancer LNCaP, 22Rv1, PC-3, and DU145 cells were purchased from
the Cell Bank/Stem Cell Bank of the Chinese Academy of Sciences (Shanghai, China). All
cell lines were cultured in the medium according to the recommendations of the Chinese
Academy of Sciences Cell Bank/Stem Cell Bank. The cells were incubated at 37 ◦C and
5% carbon dioxide. All culture media supplemented with 10% (v/v) fetal bovine serum
(Biological Industries, Beit Haemek, Israel) and 1% penicillin/streptomycin. All cell lines
were tested and found to be free of mycoplasma contamination. The MTT assay, which
has been previously reported, was used to assess cytotoxicity [37]. To sum up, cells were
treated with compounds after being seeded at a density of 5 × 103 per well on a 96-well
plate overnight after 72 h incubation. Following drug treatment, 10 µL of MTT solution
(5 mg/mL) was added to each well at the indicated timings, and the wells were then
incubated for 4 h at 37 ◦C in a humidified 5% CO2 incubator. After the supernatants were
eliminated, DMSO (100 µL) was added. Then, the OD570 values after 10 min were measured
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using a TECAN Infinite 200 PRO Nano Quant multimode microplate reader [37,38]. Three
separate runs of the experiment were conducted.

3.13. Molecular Docking

Using the structure of AKT1 (PDB code: 3O96) [30], which was obtained from the
Protein Data Bank as a starting model, it was then handled following the Protein Preparation
Wizard workflow in Maestro 11.9. The optimized ligand was docked into the receptor with
the default parameters, which were obtained from Receptor Grid Generation [39–42].

4. Conclusions

In conclusion, three new polyketides (1, 3, and 5) and one new natural product (4),
together with nine known ones (2 and 6–13), were isolated from the mangrove sediment-
derived fungus Penicillium sp. SCSIO 41411. Their structures were determined by extensive
spectroscopic analyses, ECD calculations, and X-ray single-crystal diffraction. Compound 9
inhibited PDE4 with an inhibitory ratio of 40.78% at 10 µM. Compound 12 showed moderate
antioxidant inhibitory activity with an EC50 of 16.21 µg/mL. Moreover, compound 4
demonstrated selective inhibitory activity against tumor cells, which provides a promising
avenue for the development of anti-prostate cancer therapeutics.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/md22090384/s1, physicochemical data of 2 and 6–13;
Figures S1–S55: The NMR, HRESIMS, UV, and IR spectra of 1–13; ITS sequence data of the strain.
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