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Abstract: The complex and diverse phenomenon of fungal bioluminescence has captured human
curiosity. Nevertheless, in the field of studies, there are not many attempts made particularly to
reveal the new species of these interesting fungi. This study comprehensively reviews the diversity,
distribution, evolution, bioluminescence mechanisms, ecological roles, and potential applications of
these fungi. Most importantly, we also present an updated list of the reported bioluminescent fungi
(122) so far identified from five distinct evolutionary lineages worldwide—Armillaria, Eoscyphella,
Lucentipes, Mycenoid, and Omphalotus—mainly in tropical and subtropical areas. Bioluminescent
fungi are descended from the last common ancestor of the Mycenoid and the Marasmioid clades of
Agaricales, which have been maintained for at least 160 million years of evolution. We underscore
the potential for future research to understand the ecological role of bioluminescent fungi, inspiring
hope and optimism for the future of this field.

Keywords: biodiversity; bioluminescence; distribution; luciferin-luciferase; mushrooms

1. Introduction
1.1. Bioluminescence as a Common Term

Bioluminescence, a captivating natural phenomenon, is found in various living organ-
isms. ‘Bio’ (in Greek) stands for life, while ‘lumen’ (in Latin) means light. Bioluminescence
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is the emission of light from living organisms, a type of chemiluminescence that produces
light without heat due to chemical reactions (luciferase-catalyzed oxidation reaction of
luciferin) accompanied by energy stores, enzymes, substrates, and other molecules [1,2]. It
is thought to represent the distribution of bioluminescent organisms throughout the Tree of
Life across approximately 17 phyla and over 700 genera [3,4].

Further, bioluminescence manifests independently in at least 94 origins in the Tree
of Life [5]. Throughout it, researchers have identified 40 distinct bioluminescent systems,
with 13 pairs of luciferin–luciferase being the most thoroughly studied, understood, and
practically applied [2,6,7]. However, the full extent of bioluminescent diversity is yet to
be uncovered.

1.2. Brief History of Studies on Bioluminescent Organisms

Looking back at the historical records of bioluminescence, Harvey’s early docu-
ments traced bioluminescent organisms back to ancient Greece and Rome [8,9]. Aristotle
(384–322 BCE) stood out as a pioneer, making groundbreaking observations and recogniz-
ing the self-luminosity of these organisms. His detailed records included observations on
dead fish, bioluminescent bacteria in the flesh of fish, and the bioluminescence of fireflies
and worms [10,11].

Pliny the Elder’s Naturalis Historia (23–79 CE) provided the first specific and compre-
hensive record of bioluminescent organisms [9]. Despite lacking independent verification,
beliefs in the existence of bioluminescent birds persisted for over a thousand years [10,11].
The Dark Ages in Europe (500 CE) witnessed a scientific slowdown, but literature described
ocean ‘phosphorescence’ and mentioned the Chinese ‘candle fly’ [12].

The Renaissance period witnessed a significant revival of learning, with reports of the
‘burning sea’ and mysterious lights at sea by Christopher Columbus. Oviedo (1478–1557)
documented bioluminescent organisms and Sir Francis Drake (1540–1596) observed tropical
fireflies, marking a significant advancement in bioluminescence studies [10]. In the 16th
century, Conrad Gestner focused studies on luminous animals, plants, and stones, further
contributing to our understanding of bioluminescence [9,11].

Three landmark bioluminescence studies were conducted during the scientific revolu-
tion in the 17th century. Philosophers like Francis Bacon (1561–1626) and René Descartes
laid bioluminescence foundational principles, leading to a surge of interest in lumines-
cent phenomena. The study of Robert Boyle (1627–1691) emphasized the importance of
interrogating nature through experimentation [13].

Expanding research in the field perspective globally, evidence of bioluminescent species
in Eastern countries, particularly China and Japan, became apparent. Records from the
Chinese Tang and Liang dynasties trace bioluminescence back centuries [12]. The first ap-
pearance of bioluminescent fungi in Japanese literature was in ancient tales in Japan’s Heian
Period (6–12th century) [14]. The 19th century brought a renewed focus, with significant
contributions by Dubois and Harvey, shedding light on the mechanisms of bioluminescence.
Since the 20th century, more precise identifications and research have been carried out
thanks to methodological and technological advancements. The blooming of molecular
approaches over the past 20 years has brought significant changes in fungal taxonomy,
and several databases have been launched to the public, e.g., Index Fungorum [15] and
MycoBank [16]. The Amsterdam Declaration on Fungal Nomenclature “One fungus = one
name” [17], ITS designated as a universal barcode for fungi, and the NCBI RefSeq Targeted
Loci project for ITS has initiated [18,19], obligate registration for the valid publication of
new fungal names [20]. Remarkably, the progression of molecular phylogeny has unveiled
an unprecedented spectrum of fungal diversity, connecting researchers worldwide. Incor-
porating culture-independent techniques, notably high-throughput amplicon sequencing,
has substantially escalated the enumeration of fungal operational taxonomic units. Further,
throughout the last two decades, numerous innovative taxa encompassing novel divisions,
classes, orders, and families have been methodically established. Molecular phylogenetics,
in particular, has been instrumental in morphologically similar species, thereby advanc-



Diversity 2024, 16, 539 3 of 20

ing the understanding of fungi. Correspondingly, this genomic revolution has similarly
contributed to discovering and characterizing new bioluminescent mushrooms.

Today, bioluminescent fungi (e.g., Armillaria, Mycena, and Roridomyces) [21–23] and
bacteria (e.g., Photobacterium and Vibrio) [24,25] are the most recognized microorganisms,
while animals such as fishes (e.g., Lanternfish) [26] and insects (e.g., Cheguevaria and Photuris)
are also among the popularly studied groups [27,28]. Recently, the continuous identifica-
tion of bioluminescent fungi has drawn enormous attention from many research groups
worldwide, leading to the discovery of many novel species [29,30]. This ongoing study
trend is the driving force behind this review, which aims to provide a comprehensive
overview of the current state of bioluminescent research.

1.3. Aspects of Bioluminescent Fungi

Bioluminescent fungi, also known as glowing fungi, can be spotted in nature by
emitting a green light (delayed fluorescence), generally growing on the base of dead
bamboo, tree trunks, roots, decaying wood, and fallen leaves [31]. Visible at nightfall,
bioluminescence can be observed in living cultures and fruiting bodies for at least days or
even a week. However, in a dense forest’s darkest place, they are best observed with the
naked eye at nighttime. Significant progress has been made in unraveling the mysteries
surrounding these bioluminescent fungi, yet certain aspects remain unresolved. Recent
taxonomic studies have shown that many works have been attempted on the taxonomy
and evolution of bioluminescent mushrooms, reporting more than 40 bioluminescent
mushroom species in the last decade [2,22,32–35].

This review addresses the recent surge of interest in bioluminescent fungi, particularly
their diversity, worldwide distribution, evolution, glowing mechanism, and ecological sig-
nificance. Furthermore, this review explores the potential applications of these fascinating
organisms, offering a glimpse into the exciting future of bioluminescent research. Our
study meticulously screened 35 papers to compile the species list, including reviews and
original articles. We conducted an extensive literature survey across various platforms
and databases, such as Scopus, National Center for Biotechnology Information (NCBI),
Google Scholar, and China National Knowledge Infrastructure (CNKI), using the keywords
‘bioluminescence’, ‘bioluminescence mushroom’, and ‘light fungi’. We also gathered gray
literature through Google’s general platform. The papers were chosen based on relevance,
recent publication dates, peer-review status, and citation count, ensuring a rigorous and
comprehensive literature review. Note that each scientific name was cross-checked in
Index Fungorum (http://www.indexfungorum.org/) (accessed on 5 June 2024) and My-
cobank (https://www.mycobank.org/) http://www.indexfungorum.org/) (accessed on
5 June 2024).

2. Diversity and Distribution of Bioluminescent Fungi

A team of fungal experts [36] recently assessed the fungal diversity in the world
using four main academic pathways, viz. scaling laws, fungus/plant ratios, actual versus
previously known number of species, and DNA-based studies; according to them, there are
likely to be 2–3 million species of fungi, with a best estimate of 2.5 million. Nevertheless, the
findings of these magnificent organisms are far behind; as of 2024, around 155,000 species
have only been recorded and described by taxonomists, which is comparatively lower
than other particular types of fungi. For example, more than 800 genera of endophytic
fungi [37] and 50,000 species of mycorrhizal fungi [38] have been recognized. Currently,
over 2500 species of novel fungi are named yearly; if this continues at the current rate, it will
take 750–1000 years to name the remaining unknown species [36]. According to the most
recent report by Stefani et al. [39], over 125 bioluminescent fungi have been highlighted.
However, this study identified the presence of 122 species (see Table 1). Different parts
of fungi may glow based on the species: comparatively, 37 species (30.3%) have been
reported to have both fruiting body and mycelium bioluminescence, 38 species (44.7% of
known bioluminescent fruiting bodies) display undetermined mycelium bioluminescence,

http://www.indexfungorum.org/
https://www.mycobank.org/
www.indexfungorum.org/
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36 species (29.5%) present only mycelium bioluminescence, one species shows an undeter-
mined fruiting body bioluminescence, and 48 species (39.3%) present only fruiting body
bioluminescence. Furthermore, 14 species (29.1%) have not been specified where they emit
light. Figure 1 shows the global distribution of all these bioluminescent fungi. Despite the
regional study bias, according to the available findings, bioluminescent fungi are mainly
documented in Asia, North America, and South America.
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Table 1. The list of bioluminescent fungi reported worldwide. Bioluminescence can be produced by the entire fungus or, sometimes, only through mycelia, fruiting
bodies, or spores.

Fungal Taxa Distribution
Glowing Part

References
Mycelium Fruiting Bodies Cap Stipe Spores

Armillaria Lineage

Armillaria borealis Russia + / / / / [40]
Armillaria calvescens The USA + / / / / [41]
Armillaria cepistipes The USA + / / / / [41]
Armillaria fuscipes Malaysia + / / / / [42]
Armillaria gallica Europe and the USA + / / / / [42]
Armillaria gemina The USA + / / / / [42]
Armillaria mellea China, Europe, India, and the USA + / / / / [42–44]
Armillaria nabsnona The USA + / / / / [41]
Armillaria novae-zelandiae New Zealand + / / / / [45]
Armillaria ostoyae Europe and USA + / / / / [42]
Armillaria sinapina The USA + / / / / [41]
Desarmillaria ectypa Europe + + + / / [46]
Desarmillaria tabescens Europe and the USA + + / / / [42]

Eoscyphella
Lineage Eoscyphella luciurceolata Brazil ? + ? ? ? [47]

Lucentipes
Lineage

Mycena lucentipes South America and ♣ + + ? + / [42]
Gerronema viridilucens South America + + + + / [42]

Mycenoid Lineage

Cruentomycena orientalis Japan + + + + / [14]
Dictyopanus foliicola Japan + + / / / [42]
Favolaschia xtbgensis China + + + + + [48]
Favolaschia tonkinensis China ? + + + / [49]
Favolaschia peziziformis Japan ? + + + / [50,51]
Filoboletus manipularis Africa, China, Sri Lanka, Thailand, and ♪ ? + / + / [52–54]
Filoboletus hanedae Japan ? + / + / [42]
Filoboletus pallescens ♪ ? + ? ? ? [42]
Filoboletus yunnanensis China ? + ? ? / [52,54,55]
Gerronema glutinipes Africa and China ? + / / / [52]
Mycena abieticola Brazil ? + + + / [55]
Mycena aspratilis Brazil and Puerto Rico / + / + / [55]
Mycena asterina South America + + + / / [42]
Mycena cahaya ♪ + + + + / [56]
Mycena chlorophos China, Japan, the Pacific Islands, Sri Lanka, and ♪ + + + + / [42,53]
Mycena citricolor South America and the USA + / / / / [42]
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Table 1. Cont.

Fungal Taxa Distribution
Glowing Part

References
Mycelium Fruiting Bodies Cap Stipe Spores

Mycena coralliformis ♪ + / / / / [53]
Mycena cristinae Brazil + + / / / [57]
Mycena crocata Switzerland + / / / / [58]
Mycena daisyogunensis Japan ? + ? ? / [42]
Mycena deeptha India + / / / / [59]
Mycena deformis Brazil + / / / / [60]
Mycena discobasis Africa and South America ? + + + / [42]
Mycena epipterygia Europe, the USA, and Japan + / / / / [42]
Mycena fera South America ? + + + / [42]
Mycena flammifera Japan + + + + / [50,51]
Mycena fulgoris Mexico / + / + / [61]
Mycena galopus Europe, the USA, and Japan + / / / / [42]
Mycena globulispora Brazil and Mexico ? + / + / [60,61]
Mycena gombakensis ♪ + + + + / [53]
Mycena guzmanii Mexico + + + + / [61]
Mycena haematopus China, Europe, the USA, Japan, and South America + + + / / [42]
Mycena illuminans Japan and ♪ ? + + / / [42,53]
Mycena inclinata Africa, China, Europe, and the USA + / / / / [42]
Mycena jingyinga China + / / / / [34]
Mycena kentingensis China + + + / / [61]
Mycena lacrimans South America ? + / + / [42]
Mycena lamprocephala Brazil + + + + ? [62]
Mycena lazulina Japan + + + + / [50,51]
Mycena luceata Mexico ? + + / ? [23]
Mycena luciferina Mexico ? + + / ? [23]
Mycena lucinieblae Mexico + / / / ? [23]
Mycena luguensis China + / / / / [34]
Mycena lumina Mexico + + + + / [61]
Mycena luxaeterna Brazil + + / + / [55]
Mycena luxarboricola Brazil ? + + + / [55]
Mycena lux-coeli Japan ? + + + / [42]
Mycena luxfoliata Japan + / / / / [50,51]
Mycena luxfoliicola Mexico + + + + / [61]
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Table 1. Cont.

Fungal Taxa Distribution
Glowing Part

References
Mycelium Fruiting Bodies Cap Stipe Spores

Mycena luxmanantlanensis Mexico + + + / ? [23]
Mycena luxperpetua Puerto Rico + + + + / [42]
Mycena maculata Africa, Europe, and the USA + / / / / [42]

Mycena margarita Belize, Dominican Republic, Jamaica, Puerto Rico,
and Brazil / + + + / [42,63]

Mycena nebula Mexico ? + + + / [61]
Mycena nocticaelum ♪ + + + / / [53]
Mycena noctilucens Pacific Islands and ♪ ? + + + / [42,53]
Mycena oculisnymphae Brazil / + + + / [60]
Mycena olivaceomarginata Europe and the USA + / / / / [42]
Mycena perlae Mexico / + + / / [61]
Mycena polygramma China, Europe, the USA, Japan, and Africa + + / / / [42]
Mycena pseudostylobates Japan + ? ? ? / [42]
Mycena pura China, Europe, the USA, Japan, and South America + / / / / [42]
Mycena rosea Europe + / / / / [42]
Mycena roseoflava New Zealand + + / + / [45]
Mycena sanguinolenta China, Europe, the USA, and Japan + / / / / [42]
Mycena seminau ♪ + + + / / [56]
Mycena silvaelucens ♪ ? + + + / [42,56]
Mycena sinar ♪ + + + + / [56]
Mycena singeri South America and ♣ ? + + + / [42]
Mycena sophiae Mexico + / / / ? [23]
Mycena sp. (PDD 80772) New Zealand ? + / / / [42]
Mycena sp. (SP #380150) South America + + / / / [42,64]
Mycena sp. (SP #380281) South America ? + / / / [42,64]
Mycena stellaris Japan + + + + / [50,51]
Mycena stylobates Africa, China, Europe, the USA, and Japan + / / / / [42]
Mycena tintinnabulum Europe + / / / / [42]
Mycena venus China + / / / / [34]
Mycena zephirus Europe + / / / / [42]
Panellus luminescens ♪ + + + + ? [65,66]
Panellus luxfilamentus Sri Lanka and ♪ + / / / / [56]

Panellus pusillus Africa, Australasia, China, Japan, the USA, South
America, and ♪ ? + ? ? / [42,49]
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Table 1. Cont.

Fungal Taxa Distribution
Glowing Part

References
Mycelium Fruiting Bodies Cap Stipe Spores

Panellus stipticus Africa, Australasia, China, Europe, Japan, the USA,
and South America + + + / / [42]

Resinomycena fulgens Japan ? + + + / [50,51]
Resinomycena petarensis Brazil + / / / / [60]
Roridomyces irritans Australasia / + + / ? [42]

Roridomyces lamprosporus Brazil, Ceylon, Malaysia, and Papua New Guinea,
Singapore, and Trinidad / + / / + [67]

Roridomyces phyllostachydis India ? + / + / [10,22]
Roridomyces pruinosoviscidus Australasia and ♪ + + + + ? [42,53]
Roridomyces roridus China, Europe, the USA, South America, and Japan + / / / / [42,68]
Roridomyces sublucens Indonesia and ♪ / + + + / [42]
Roridomyces viridiluminus China + + + + / [69]

Omphalotus
Lineage

Marasmiellus venosus Japan + + / / / [50,51]
Marasmiellus lucidus Japan ? + + + / [50,51]
Neonothopanus gardneri South America ? + + + / [42]
Neonothopanus nambi Australasia, China, South America, Thailand, ♪, and ♣ ? + + + / [42,53,54]
Nothopanus noctilucens Japan ? + / / / [42]
Omphalotus guepiniiformis China and Japan + + / / / [42,54,70]
Omphalotus illudens Europe and the USA + + + / / [42]
Omphalotus mangensis China ? + + / / [42,54,71]
Omphalotus nidiformis Australasia ? + + + / [42]
Omphalotus olearius China and Europe + + + + / [42,54]
Omphalotus olivascens The USA / + / / / [42]
Omphalotus subilludens The USA ? + / / ? [72]
Pleurotus decipiens ♪ ? + / / / [42]
Pleurotus nitidus Japan ? + / / / [50,51]

Ascomycota Xylaria hypoxylon Europe ? + ? ? / [73]

Note: For Armillaria novae-zelandiae, Mycena roseoflava, and Omphalotus subilludens, there is no published literature for them as bioluminescent mushrooms; however, mushroom hunters
have posted glowing mushroom photos of those species. ♪ = refers to distribution within Malaysia, South Asia region; ♣ = refers to distribution within Central America and the
Caribbean region; + = glow; / = do not glow; ? = no report. The original references sometimes provided only continental-level distribution information for some species, lacking specific
country-level details. We have adhered to the available data for these species and recorded the distribution at the continental level. However, we have documented the specific countries
accordingly for species with detailed country-level distribution information.
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All bioluminescent fungi records belong to the Basidiomycota division except for
Xylaria hypoxylon (L.) Grev., which falls under the Ascomycota [56,74]. It is worth noting
that despite analyses of multiple specimens of Xylaria hypoxylon, differing conclusions
have been drawn regarding its bioluminescence [73]; Ludwig and Gueguen reported the
detection of bioluminescence in X. hypoxylon, whereas Molisch cultivated pure cultures
for four years without observing any bioluminescent properties (for more information
see [73]). This conclusion may be attributed to variations in geographical distribution
and cultivation conditions. Therefore, further investigation is warranted to determine
its luminescent properties conclusively [73]. Figure 2 shows five lineages that comprise
all known species of bioluminescent fungi. They are part of the Mycenoid (92 species),
Armillaria (13 species), Omphalotus (14 species), Lucentipes (two species), and Eoscyphella
(one species) lineages [47].
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Mycena is the main genus that exhibits bioluminescence in fungi and is distributed
worldwide [41,42,75]. Furthermore, accounting for the species level, for example, Mycena
chlorophos, M. inclinata, and Neonothopanus nambi show a wide distribution worldwide [4,56,76].
Meanwhile, species like Favolaschia xtbgensis and Roridomyces viridiluminus show a restricted
habitat, particularly in some places in Southwestern China (Figure 3) [48,69].

Bioluminescent fungi are not confined to a single region; their distribution spans
the globe. For instance, Gerronema viridilucens was reported only in Brazil [77], and
Neonothopanus gardneri from the states of Maranhão, Piauí, and Tocantins in Brazil [78].
Interestingly, some species, like Pannellus stipticus, are naturally found in different coun-
tries, showcasing the global nature of bioluminescent fungi. However, they did not show
bioluminescence in all the recorded places. For instance, P. stipticus shows biolumines-
cence grown in North America but not in Eurasian [79]. In addition, Armillaria mellea,
Mycena chlorophos, M. deeptha, Nothopanus eugrammus, Omphalotus olearius, O. olivascens,
and Roridomyces cf. phyllostachydis have been reported from India [22,59,80,81]. In contrast,
Filoboletus manipularis, Mycena chlorophos, and Panellus luxfilamentus have been found in Sri
Lanka [56].

In an early study, Desjardin et al. [42] presented a revised list of bioluminescent fungi
with 64 species in their distribution. Desjardin et al. [56] reported seven new luminescent
fungi species two years after publication. Later, Aravindakshan et al. [59] and Shih et al. [82]
reported two additional novel species from India and the Taiwan Province of China,
respectively. In addition, Chew et al. [53,56] disclosed 15 bioluminescent fungi from
Peninsular Malaysia, where eight were reported for the first time. Mihail [41] detected the
bioluminescent mycelia of five Armillaria species for the first time.



Diversity 2024, 16, 539 10 of 20Diversity 2024, 16, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 3. Glowing piece of wood (a). Glowing mycelia on a wood in the Xishuangbanna Tropical 
Botanical Garden of China (b). The whole fruiting body and spores glowing in Favolaschia xtbgensis 
in the Xishuangbanna Tropical Botanical Garden of China (c). Stipe glowing in Roridomyces phyl-
lostachydis from Northeast India (d) (photo credit: Stephen Axford). 

Bioluminescent fungi are not confined to a single region; their distribution spans the 
globe. For instance, Gerronema viridilucens was reported only in Brazil [77], and Neono-
thopanus gardneri from the states of Maranhão, Piauí, and Tocantins in Brazil [78]. Inter-
estingly, some species, like Pannellus stipticus, are naturally found in different countries, 
showcasing the global nature of bioluminescent fungi. However, they did not show bio-
luminescence in all the recorded places. For instance, P. stipticus shows bioluminescence 
grown in North America but not in Eurasian [79]. In addition, Armillaria mellea, Mycena 
chlorophos, M. deeptha, Nothopanus eugrammus, Omphalotus olearius, O. olivascens, and 
Roridomyces cf. phyllostachydis have been reported from India [22,59,80,81]. In contrast, Filo-
boletus manipularis, Mycena chlorophos, and Panellus luxfilamentus have been found in Sri 
Lanka [56]. 

In an early study, Desjardin et al. [42] presented a revised list of bioluminescent fungi 
with 64 species in their distribution. Desjardin et al. [56] reported seven new luminescent 
fungi species two years after publication. Later, Aravindakshan et al. [59] and Shih et al. 
[82] reported two additional novel species from India and the Taiwan Province of China, 
respectively. In addition, Chew et al. [53,56] disclosed 15 bioluminescent fungi from Pen-
insular Malaysia, where eight were reported for the first time. Mihail [41] detected the 
bioluminescent mycelia of five Armillaria species for the first time. 

In a most recent study, Terashima et al. [50] identified another eight new species of 
glowing mushrooms from Japan, thus bringing the country’s total reported number up to 
25 [14]. Seven species of bioluminescent fungi were recorded from the cloud forests in 
Mexico, where six species have been identified as a new species of Mycena, whereas M. 
globulispora made a new distribution record for the country [61]. Furthermore, several 
other new species have been reported from the Taiwan Province (M. jingyinga, M. luguensis 
and M. venus) and Yunnan Province of China (Favolaschia xtbgensis and Roridomyces viridi-
luminus) and India (R. phyllostachydis) [22,34,48,69]. All known bioluminescent mush-
rooms form gilled or poroid basidiomata within the order Agaricales. However, the latest 
bioluminescent species Eoscyphella luciurceolata represents a new lineage with a reduced 

Figure 3. Glowing piece of wood (a). Glowing mycelia on a wood in the Xishuangbanna Tropical
Botanical Garden of China (b). The whole fruiting body and spores glowing in Favolaschia xtb-
gensis in the Xishuangbanna Tropical Botanical Garden of China (c). Stipe glowing in Roridomyces
phyllostachydis from Northeast India (d) (photo credit: Stephen Axford).

In a most recent study, Terashima et al. [50] identified another eight new species of
glowing mushrooms from Japan, thus bringing the country’s total reported number up
to 25 [14]. Seven species of bioluminescent fungi were recorded from the cloud forests
in Mexico, where six species have been identified as a new species of Mycena, whereas
M. globulispora made a new distribution record for the country [61]. Furthermore, several
other new species have been reported from the Taiwan Province (M. jingyinga, M. luguen-
sis and M. venus) and Yunnan Province of China (Favolaschia xtbgensis and Roridomyces
viridiluminus) and India (R. phyllostachydis) [22,34,48,69]. All known bioluminescent mush-
rooms form gilled or poroid basidiomata within the order Agaricales. However, the latest
bioluminescent species Eoscyphella luciurceolata represents a new lineage with a reduced
cyphelloid form [47]. The discovery of new bioluminescent cyphelloid basidiomata chal-
lenges existing biological classification systems and deepens this study’s understanding of
bioluminescent diversity within the fungal kingdom. There is a wealth of undiscovered
species, particularly in unexplored ecosystems such as forest floors, tropical regions, and
polar areas, where diverse bioluminescent mushroom species may exist and represent
a biodiversity hotspot for these organisms [47]. These discoveries have the potential to
significantly enhance our understanding of bioluminescence mechanisms, evolutionary
adaptations, and contributions to ecosystem stability.

3. Evolution and Mechanisms of Bioluminescent Fungi
3.1. Evolution

Understanding the development of bioluminescence in fungi is a challenging and
fascinating subject. Bioluminescence is most likely the result of ancient beginnings, conver-
gent evolution, and potentially horizontal gene transfer [83]. Numerous fungal lineages
have distinctive characteristics that have recently been investigated concerning the ge-
netic and environmental factors that have influenced them [83]. Nonetheless, two main
hypotheses have been proposed to explain the scattered phylogenetic distribution and
lesser occurrence of bioluminescence in fungi. These hypotheses can be summarized as the
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genes associated with bioluminescence shared by the common ancestor were missing in
some branches and multiple convergent evolutions of bioluminescence in fungi [2]. Like
other bioluminescent organisms, bioluminescent fungi have independent evolutionary
occurrences, converging multiple times. Genomic analysis shows that this fragmented phy-
logenetic position may be another case. These findings are significant as they contribute to
our understanding of the evolutionary origins and genetic mechanisms of bioluminescence
in fungi, advancing mycology.

Oliveira et al. [21] uncovered a significant revelation in their research, suggesting
that the origin of fungal bioluminescence can be traced back to a single evolutionary
ancestry. Their evidence, demonstrated by successful light production from cross-reactions
between the luciferins and luciferases of distant lineages, sheds new light on this fascinating
phenomenon.

Recent studies by Kotlobay et al. [33] and Ke et al. [83] have reached a consensus,
concluding that bioluminescence in fungi can be traced back to the last common ancestor
of the Mycenoid and Marasmioid clades of Agaricales. This consensus echoed in recent
surveys by Ke and colleagues [84], provides a solid foundation for our understanding of
fungal bioluminescence.

Ke et al. [83] revisited the evolutionary dynamics of the luciferase cluster previously
studied by Kotlobay et al. [33] and noted that the ancestral luciferase cluster on the same
chromosome contains the genes luciferase (Luz), hispidin-3-hydroxylase (H3H), cytochrome
P450 (CYP450), hispidin synthase (HispS), and caffeylpyruvate hydrolase (CPH). Their study
corroborates and extends upon earlier findings, providing additional insights into the genes’
genomic organization and evolutionary history.

Further studies revealed that gene clusters frequently undergo either deletions or
retention due to differences in genomic plasticity, which explains the frequent loss of the
bioluminescence property of Mycenaean fungi [2,83,85]. The conservation of the gene
cluster during the process of evolution signifies that, unlike other groups of biolumines-
cent organisms, bioluminescence evolves once in fungi with Luz, H3H, and HispS genes
generated through gene duplications [33]. Moreover, the species phylogenetic tree and
reconstructed phylogenetic trees of Luz, H3H, and HispS genes of the family Agaricaceae
reveal the evolution of bioluminescent cascades in fungi. The primary Luz enzyme formed
through a gene duplication at the base of Agaricales, followed by the duplication of H3H
and HipS a few million years later [33]. These findings open up new avenues for future
research, particularly in understanding the genetic mechanisms and evolutionary origins
of bioluminescence in fungi.

3.2. Mechanisms

As previously mentioned, bioluminescent fungi, including mushrooms, have been
discovered worldwide in a wide range of terrestrial environments; nevertheless, fungal bio-
luminescence mechanisms remain the least studied [86]. In general, bioluminescence occurs
through the chemical oxidation of luciferin, catalyzed by the luciferase enzyme in the pres-
ence of oxygen [87,88]. The molecular oxygen reacts with luciferin, forming a high-energy
intermediary whose decomposition emits sufficient energy to generate the emitter ‘oxylu-
ciferin’ in the singlet, which is electronically excited. This excited metabolite’s fluorescence
property results in the emission of visible light used in nature for illumination [2,35,89].

First, it is interesting to understand how this bioluminescence mechanism has been re-
vealed throughout history. In an early study, Dubois [90] used an in vitro luciferin/luciferase
system with a mixture of heated substrate and cold enzyme–water extracts to demonstrate
the first light emission experiment. In his experiment, he utilized extracts (cold and hot)
from the light-emitting organs of the beetle Pyrophorus noctilucus. In this experimental
setup, the cold extract process contained a heat-labile enzyme called luciferase that was
needed to emit light. The hot extract was the thermo-stable fraction that was named lu-
ciferin. Further, it was determined that the luminescence of the mixture formed with two
extracts resulted from the substrate/enzyme reaction [78].
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In a study that supported Dubois [90], Airth and McElroy [91] used an in vitro setup
made up of cold and hot extracts from bioluminescent fungi to confirm the role and nature of
the enzymatic reaction. Later experiments by Airth and Foerster [92] explained that adding
DPNH (the obsolete name for NADH) or NADPH to the cold and hot extracts activates the
light emission. Furthermore, the proteinaceous cold extracts could be separated into two
fractions, a pellet (insoluble) and a supernatant (soluble), by ultracentrifugation, which is
necessary for the light emission in luminous fungi. Thus, the essential enzymes in each
fraction for light generation postulated a two-step mechanism of enzymatic reaction [92].
Note that basidiomycetous fungi emit a green light with a maximum intensity in the
520–530 nm range [42]. Returning to Airth and Foerster’s study [92], they proposed the
following two-step mechanism for fungal bioluminescence:

Luciferin + NAD(P)H + H+ Reductase→ Reduced luciferin + NAD(P)+ (1)

Reduced luciferin + O2
Luciferase→ Oxyluciferin + H2O + Hv (light) (2)

In the first step, luciferin, a molecule that acts as an electron acceptor, is involved in
the process. Here, reductase, an enzyme that catalyzes the reduction of other substances, is
present in the liquid part of the mixture (supernatant). In contrast, luciferase, an enzyme
that catalyzes the oxidation of luciferin, is found in the solid part (pellet). During the
first step, a dark chemical reaction that does not produce a visible change occurs between
NAD(P)H, a coenzyme involved in cellular respiration, luciferin, and the soluble enzyme
in the supernatant. In the second step, the reduced form of luciferin reacts with molecular
oxygen, catalyzed by the enzyme (luciferase) in the re-suspended pellet, producing visible
light [92].

These initial findings led to understanding the chemistry behind this scenario; how-
ever, along with the development of technologies, more questions were raised, such as
the in-depth aspects of the specific roles of the enzymes in bioluminescence [31,42,93].
Oliveira and Stevani [31] attempted to find the answer using an enzyme-mediated reac-
tion by mixing a hot extract containing heat-stable substrate/luciferin with a cold extract
containing the enzyme luciferase. Later, it was demonstrated that the substrates combined
with the enzymes extracted from the mycelia of different bioluminescent species (Armil-
laria mellea, Gerronema viridilucens, Mycena luxperpetua, and Neonothopanus gardneri), and
these results strongly suggest that all known bioluminescent fungi share similar types
of luciferins/luciferases in bioluminescent systems [21]. Purtov et al. [94] identified the
structure of fungal luciferin and its precursor as 3-hydroxyhispidin and hispidin in extracts
from four diverse genera of bioluminescent fungi, namely, Armillaria borealis, Mycena citri-
color, Neonothopanus nambi, and Panellus stipticus. Kaskova et al. [32] conducted an in-depth
study of the mechanisms of fungal bioluminescence and color modulation and reported
the structure of fungal oxyluciferin to investigate the mechanism of fungal biolumines-
cence. Hispidin is produced through the enzymatic activity of HispS. Subsequently, the
resulting hispidin undergoes hydroxylation mediated by H3H, leading to the formation of
3-hydroxyhispidin, also known as fungal luciferin. Then, it is oxidized by O2, generating
a high-energy intermediary that decomposes in CO2 and the excited oxyluciferin. Light
emission produces the ground-state oxyluciferin and hydrolyzes enzymatically into caffeic
acid [32].

Kotlobay et al. [33] identified the fungal Luz and three other key enzymes, HispS, H3H,
and CPH, in Neonothopanus nambi that jointly form the biosynthetic cycle of the fungal
luciferin from caffeic acid. Fungal luciferin can be biosynthesized and recycled within this
proposed mechanism. Caffeic acid is transformed to hispidin owing to HispS activity and
is hydroxylated by H3H, producing 3-hydroxyhispidin fungal luciferin. The luciferase
adds molecular oxygen, producing an endoperoxide (a high-energy intermediate) through
decomposition that produces oxyluciferin (caffeoyl pyruvate) and light. Oxyluciferin can
be recycled to caffeic acid by CPH [33].



Diversity 2024, 16, 539 13 of 20

In a study, Wang and Liu [95] revealed cross-reactions among four lineages of lumi-
nescent fungi, indicating that they shared a common bioluminescence mechanism, and
described the bioluminescence process at the molecular level and electronic state by using
multireference and density functional theory calculations. The findings revealed that fungal
bioluminescence began with the cycloaddition of O2 to luciferin and that formed a high-
energy intermediate called α-pyrone endoperoxide. This oxygenation can be explained by
a charge transfer followed by a spin inversion mechanism. The high-energy intermediate
thermolysis produces S1-Oxyluciferin (S1-singlet excited state) via a zwitterion intermedi-
ate. De-excitation of S1-Oxyluciferin can be a light emitter [94]. Nevertheless, according to
Ke et al. [83], the complete cluster of genes involved in the bioluminescence process is still
unknown to science.

In fungi, the genes that code for the enzymes that produce secondary metabolites are
frequently grouped in the fungus genome [96]. In most bioluminescent fungi (e.g., Armil-
laria fuscipes, A. mellea, A. ostoyae, A. gallica, Mycena citricolor, M. chlorophos, Neonothopanus
nambi, N. gardneri, Omphalotus olearius, and Panellus stipticus), it has been demonstrated
that the aforesaid genes are generally found to be located adjacent to each other forming
a cluster [33]. Rokas et al. [97] also revealed that genes in the primary and secondary
metabolic pathways of fungi are often physically connected on fungal chromosomes, cre-
ating metabolic gene clusters, thus hypothesizing that this might be the reason for the
formation of enzymes in the bioluminescent cascade, as this is thought to be conserved
among bioluminescent fungi. In addition to the four key genes (Luz, H3H, HispH, and CPH)
coding for four enzymes, CYP450 is inside the cluster in all bioluminescent Armillaria and
Mycena genomes [83]. Thus, there is controversy about the involvement of other enzymes
or regulators in the bioluminescence process. On the other hand, few studies have reported
the possible involvement of other genes in fungus bioluminescence [98]. In another study,
Oliveira et al. [99] investigated the circadian rhythm in Neonothopanus gardneri. They found
that the bioluminescence of the mycelium is controlled by a temperature-compensated
circadian clock and the result of cycles in content/activity between the luciferase, reduc-
tase, and luciferin that comprise the bioluminescence system. Ke et al. [83] determined
the regulation of bioluminescence in Mycena kentingensis during its development. They
identified 57 gene-bearing expressions correlated to Luz, H3H, and HispS, agreeing with
the bioluminescence mechanism discussed by Kotlobay et al. [33].

4. Importance of Bioluminescent Fungi in Ecology

The ecological importance and the underlying phenomenon of bioluminescent fungi
continue to be a subject of intense debate and exploration among researchers. There are
several proposed hypotheses, including dispersed spores by attracting phototactic insects,
deterring negative phototrophic fungivores, and potentially aposematic signals [4,100],
which are a testament to the complexity of these organisms. Initially, Sivinski [101] proposed
that bioluminescence in fungi serves as a warning signal to repel nocturnal fungivores or
as an attractant for fungivore predators. However, Sivinski’s theories challenge hypotheses
suggesting that animals are primarily attracted to the aroma or odor of fungal fruiting
bodies rather than their bioluminescent properties. Electroretinography is suggested to
clarify whether invertebrates are attracted explicitly to bioluminescent fungi due to emitted
light, although such studies are still on the bench [64].

Bioluminescent fungi have also been studied for their ability to attract insects at night
for spore dispersal. Research on Neonothopanus gardneri has shown that the biolumines-
cence mechanism is regulated by circadian rhythms, involving cycles in luciferase, reduc-
tase, and luciferin activity [4,99]. This conclusion is further strengthened as researchers
found that beetles bathe with the fruiting bodies of N. gardneri [100]. In a recent study,
Karunarathna et al. [22] explained that the members of Roridomyces inhabiting humid envi-
ronments co-evolved with some insects aiding spore dispersal. Bechara [102] demonstrated
that insects such as ants, beetles, flies, wasps, and bugs are attracted to the green light
emitted by bioluminescent fungi, facilitating nocturnal spore transfer in forests with min-
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imal wind and high humidity. However, this hypothesis is challenged in species where
bioluminescence emanates only from the stipe or mycelium [69,84]. Furthermore, some
bioluminescent fungi may utilize their light as a warning signal to deter potential predators,
signaling the presence of toxins or unpalatability [69,102].

Conversely, some view bioluminescence in fungi as a mere metabolic by-product
devoid of ecological benefits [103,104]. Weinstein et al. [103] indicated that bioluminescence
in fungi, exemplified by Omphalotus nidiformis, is a metabolic by-product without evident
selective advantage. They suggest that the role of bioluminescence may vary among
fungal lineages and environmental conditions affecting spore dispersal dynamics, such as
wind patterns and insect abundance. However, the potential evolutionary advantages of
bioluminescence in fungi continue to intrigue researchers, driving them to seek answers to
why fungi exhibit bioluminescence. They also explore its multifaceted roles and ecological
significance in different fungal lineages and environmental contexts [14,103].

5. Application of Fungal Bioluminescence

Fungal bioluminescence carries both historical significance and contemporary scien-
tific potential. As aforementioned, folk stories and historical reports show that different
tribes or local people, particularly in India and Indonesia, use glowing mushrooms to find
their way through the dense forests [100,105,106]. In contrast, Aboriginal people in Aus-
tralia consider glowing mushrooms related to the spirit [107]. In modern scientific contexts,
bioluminescence has revolutionized plant biology and inspired experiments and research in
biochemistry, cell biology, evolution, and photochemistry. Bioluminescence is also applied
in scientific research, including several aspects such as biological sensors in environmental
monitoring, effectors, hygiene control, preservation of artworks, gene assays, the detection
of protein-protein interactions, bioluminescence-based imaging and photodynamic therapy,
neuron treatments, and high-throughput screening in drug discovery [6,108,109].

Intriguingly, scientists are now looking for ways to switch to green light instead of light
generated through electricity [100]. Recent achievements include the genetic engineering of
tobacco plants (Nicotiana tabacum and N. benthamiana, see [35]) to autonomously emit light
through the conversion of caffeic acid into luciferin, enabling applications in environmental
assessments and potentially auto-luminescent plants [89]. The successful expression of
fungal bioluminescence has also been reported in Arabidopsis thaliana, Catharanthus roseus,
Dahlia pinnata, Petunia hybrida, Rosa rubiginosa, and Solanum lycopersicum [89,110,111].

Environmental bioassays can be performed using fungi’s natural bioluminescent en-
zyme reaction [78]. Eukaryotic bioluminescent fungi are a more suitable research organism
for soil toxicology than luminescent bacteria. However, the mechanism of toxicity and
its specific impact on the fungal bioluminescence response is not yet fully understood.
The uncoupling of oxidative phosphorylation and the depolarization of mitochondrial
membranes by toxic compounds can be possible pathways; they would possibly indi-
rectly affect the NADH availability that is involved in the bioluminescent reaction [78].
Additionally, it is still feasible to use organisms in a terrestrial setting, including biolu-
minescent fungi, without further engineering marker labeling [2], even if known uses
include marker-labeled bacteria and marine bioluminescent Vibrio species [112,113]. Since
2002, toxicity tests have been developed using bioluminescent fungi, particularly with
Armillaria mellea and Mycena citricolor. These studies were based on globular mycelia grown
on liquid media with varying concentrations of heavy metals (copper and zinc) or chemical
compounds (chlorophenol). Several bioassays with bioluminescent basidiomycetes have
been developed using Pannellus stipticus and Omphalotus olearius [78]. More recently, the
toxicity of the other bioluminescent lineages of Gerronema viridilucens and N. gardneri was
assessed [114,115]. Bioluminescence technology plays a pivotal role in in vivo bioimaging,
broadly applied in the study of diseases and assessing therapeutic interventions in animal
models. Researchers can monitor and analyze dynamic biological processes like tumor pro-
gression and inflammatory responses in real-time by employing bioluminescent markers
such as the luciferase system. This capability facilitates the evaluation of treatment efficacy
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and safety profiles. The noninvasive nature, high spatiotemporal resolution, and ability to
quantify drug distribution and metabolism make bioluminescence imaging indispensable
for personalized medicine and innovative drug discovery [116–118]. Beyond advancing
the frontiers of biomedical research, bioluminescence imaging accelerates the refinement
and development of therapeutic strategies.

On the one hand, the reconstruction of the fungal bioluminescence pathway in an
organism, making it autonomous luminescence, is beneficial for detecting the status of
its various growth stages. It could also facilitate the development of the next generation
of organic architecture, modified light-emitting plants in buildings, and urban infrastruc-
ture [33]. On the other hand, fungal bioluminescence can be indicated in agriculture when
crops need water or nutrients. Due to this autonomous bioluminescence, plants can warn
early about illnesses and pest attacks that could harm harvests. Furthermore, biolumines-
cence paves the path for eco-friendly house/street lighting, health applications, and food
industries [100,105,106]. The alterations of these technologies will drive massive growth in
bioluminescence in the coming future [75]. Bioluminescent mushrooms offer significant
potential in both horticulture and tourism. In horticultural landscape design, they create a
unique nighttime ambiance, enhancing the visual appeal of gardens through their natural
glow in flowerbeds, pathways, and lawns. These mushrooms also provide educational
opportunities by providing practical examples of bioluminescence in horticultural insti-
tutions. In tourism, they serve as distinctive attractions, potentially forming mushroom
gardens or designated viewing areas and contributing to local economies. Incorporating
bioluminescent mushrooms into eco-tourism activities, such as nocturnal ecological tours,
offers visitors novel nature interactions while promoting an understanding of biodiversity
and ecosystems. Overall, bioluminescent mushrooms enrich aesthetic and educational
aspects and present promising opportunities for tourism development. Bioluminescent
mushrooms hold tremendous promise for both horticulture and tourism. In horticultural
design, these mushrooms create a magical nighttime atmosphere, adding a natural glow
that enhances the beauty of gardens, whether nestled in flowerbeds, lining pathways, or
dotting lawns. Beyond their aesthetic value, they also serve as practical tools in educational
settings, vividly illustrating the wonders of bioluminescence in horticulture. In the realm
of tourism, bioluminescent mushrooms become unique attractions, capable of forming
enchanting mushroom gardens or designated viewing spots that captivate visitors and
potentially bolster local economies. Integrating these mushrooms into eco-tourism initia-
tives, such as nocturnal ecological tours, offers guests an extraordinary opportunity to
engage with nature in new and profound ways while fostering a deeper appreciation for
biodiversity and ecosystems. Ultimately, bioluminescent mushrooms enrich the visual and
educational dimensions and open exciting avenues for developing tourism experiences.

6. Conclusions and Future Directions

According to our understanding, 122 species of bioluminescent fungi have been re-
ported. These fungi are primarily categorized within the Basidiomycota, distributed across
four established phylogenetic lineages (Armillaria, Lucentipes, Mycenoid, and Omphalotus),
with the recent addition of a novel fifth lineage, Eoscyphella. Despite phylogenetic diversity,
all bioluminescent fungi share conserved bioluminescent mechanisms rooted in luciferin
oxidation catalyzed by luciferase, which involves two enzymatic steps. However, detailed
studies elucidating the genetic regulation of this process remain a critical area for future
investigation. Recent advancements highlight the possible diverse applications of fungal
bioluminescence. Bioluminescent fungi hold immense promise across a wide spectrum
of disciplines, including ecology, agriculture, art, medicine, and education. They offer
potential as bioindicators for environmental monitoring and innovative strategies for crop
health management through genetic modification. Furthermore, their aesthetic allure has
inspired creative designs such as luminous gardens and interactive art installations. In
medicine, these fungi offer exciting avenues for developing new therapeutic agents and
diagnostic tools. In summary, realizing the full potential of bioluminescent fungi necessi-
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tates ongoing interdisciplinary collaboration. However, it is crucial to stress that continued
research efforts are needed to expand the understanding of fungal biodiversity, ecological
roles, and practical applications in various fields as the field constantly evolves.
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