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A B S T R A C T

This study aimed to map and identify the spatial drivers of total carbon (TC) concentration in topsoil (0–15 cm)
across paddy-growing regions in tropical climates using Sri Lanka as a case study. For model calibration, a total
of 888 sampling locations were sampled using the conditioned Latin Hypercube sampling approach with a sam-
ple density of one sample per 11 km2. Additionally, 99 sampling sites were selected using a design-based (proba-
bilistic) stratified random strategy for independent evaluation of the developed models. Two distinct spatial ran-
dom forest (RF) models were developed using a variety of environmental covariates: Model 1: using all environ-
mental covariates without variable selection; Model 2: only incorporated covariates selected based on the for-
ward selection process. Evaluation of model quality using fully independent validation sites revealed that both
Model 1 and Model 2 performed similarly. Based on the spatial estimates of Model 1 across the paddy-growing
regions of Sri Lanka, the predicted TC concentration varied from 0.89% to 13.15%. The highest predicted TC con-
centration range was in the Wet zone (2.06% to 13.15%), followed by the Intermediate zone (1.18% to 7.23%),
and the lowest was reported in the Dry zone (0.86% to 4.30%). In the spatial estimates of Model 2, the predicted
values varied between 0.86% and 13.29% and were similar to Model 1. The highest predicted TC concentration
range was in the Wet zone (2.09% to 13.29%), followed by the Intermediate zone (1.08% to 6.99%), and the low-
est was reported in the Dry zone (0.86% to 4.30%) following the similar pattern to Model 1. In fact, this clearly
showed the importance of mean annual rainfall on the dynamics of TC in tropical rice production systems. Fur-
thermore, the variable importance plot of the RF models revealed that out of all considered environmental co-
variates, the mean annual rainfall was identified as being the most important variable in the developed spatial
prediction function. Moreover, we deployed an area of applicability (AOA) calculation to quantify and identify
regions where prediction is less reliable and quantified the prediction uncertainty using a bootstrapping ap-
proach. Additionally, we assessed the influence of increasing the number of calibration sites on model prediction
quality and reliability using user defined sequence of calibration sites. Independent evaluations of each model in-
dicated that model performance quality indices were improved up to n = 400 and thereafter stagnated. For AOA
results, an improvement in model reliability is observed for Wet and Intermediate zones when models are devel-
oped using 400 calibration sites. Derived estimates of TC can be used for regional-scale planning to enhance the
soil carbon and provide a baseline for designing a future land-based carbon accounting system for Sri Lanka.

1. Introduction

The Paris Climate Agreement was produced at the 21st Conference
of the United Nations Framework Convention on Climate Change (UN-
FCCC) as an attempt to avert the impacts of climate change. It is antici-

pated that soil carbon will play a vital role in keeping rise in global tem-
perature to below 2 °C (preferably to 1.5 °C) (Minasny et al., 2017). Soil
contains the largest terrestrial carbon pool (Scharlemann et al., 2014),
and there are two forms of soil carbon that are prevalent: soil organic
carbon (SOC) and soil inorganic carbon (SIC) (Sreenivas et al., 2016).
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Whether organic or inorganic, the global soil carbon pool is crucial in
maintaining soil ecosystem function and productivity (Raza et al.,
2020; Qadir et al., 2006).

Submerged paddy fields are recognised as an important agro-
ecosystem for global carbon cycling (Meetei et al., 2020). Rice is the
primary food source for more than half of the global population
(Rajkishore et al., 2015). With the rising demand for rice globally
(Haque et al., 2020), attention should be paid to increasing productivity
upon the limited land resources where it is grown. As pressure on the
limited cultivable lands increases, maintaining and improving soil qual-
ity is vital to sustaining agricultural productivity and environmental
quality in those areas. As a primary natural resource in paddy-growing
ecosystems, the soil should have sufficient physical, chemical, and bio-
logical qualities to increase rice production, along with other manage-
ment practices (Komatsuzaki and Ohta, 2007). Rahman and Parkinson
(2007) reported that a combination of bio-physical-chemical factors are
important in increasing soil fertility, that would lead to an increase in
rice production. Soil organic carbon, which relates to soil physical,
chemical, and biological fertility, and available soil N, P, and K, all of
which limit rice yields, were included in their analysis. Furthermore,
Girsang et al. (2019) demonstrated that the soil bulk density, saturated
hydraulic conductivity, soil water-filled space and N mineralisation sig-
nificantly affect the grain yield of rice. Soil management also deter-
mines the productivity of the land, with common practices including
conservation tillage (Ghimire et al., 2017; Wissing et al., 2013), manure
application, retaining crop residue (Gattinger et al., 2012; Zhang et al.,
2022) and crop rotation (Paranavithana et al., 2020; Ratnayake et al.,
2017) all improving soil carbon status by improving carbon inflows and
reduction of losses. Ratnayake et al. (2014) in the Northern region of Sri
Lanka showed that organic fertilisation that was maintained for
10 years and minimum tillage practices significantly increased SOC and
carbon stocks in different annual cropping systems.

In submerged paddy-growing soil systems, SOC accumulation rates
are significantly high owing to some inherent mechanisms such as sub-
jecting soils to periodic anaerobic conditions (Xu et al., 2020), produc-
tion of microbial activity inhibitors, incomplete decomposition and de-
creased humification of the organic matter (Ratnayake et al., 2017;
Sahrawat, 2004). Higher silt and clay concentrations in lowland paddy
soils also stabilise SOC because those particles act as chemical (Yan et
al., 2013) and physical (Huang et al., 2010) protectors against carbon
mineralisation. For example, Song et al. (2020), in their study in
Jiangxi Province, subtropical China, found that soil organic matter con-
centration in paddy soils was higher than the amount recorded in up-
land and forest soils in the same region.

The current study focuses on the quantification of the spatial drivers
and landscape-scale modelling of total carbon (TC) for tropical rice pro-
duction systems. In general, the spatial variability of TC has often been
reported as quite high across landscapes due to a combination of
edaphic environmental and climatic factors together with land manage-
ment practices (De Blecourt et al., 2017). Usually, under natural envi-
ronmental conditions, soil characteristics are strongly influenced by the
inter-relationships between soil parent material, climatic conditions
and landform characteristics and features (Liu and Liu, 2014). Along
with these, other environmental features, such as vegetation and re-
lated indices such as type, density, diversity, and patterning (both spa-
tially and temporally), have been adopted to develop soil carbon spatial
models at different scales (Shi-Hang et al., 2011).

Machine Learning (ML) techniques have been used in digital soil
mapping (DSM) by enabling the inference of relationships between soil
properties and environmental covariates (Khaledian and Miller, 2020;
Wadoux et al., 2020). Several ML techniques have emerged that could
potentially facilitate greater predictive power despite the complexity of
the variation in soil carbon. The ML approaches utilised in soil carbon
modelling encompass a diverse array of techniques and applications.
These include the use of support vector machines (Song et al., 2022;

Peng et al., 2014), artificial neural networks (Tiwari et al., 2015), re-
gression trees (Rentschler et al., 2019), random forests (RF) (Wang et
al., 2023; Zhang et al., 2017; Hengl et al., 2015), extreme gradient
boosting (Taghizadeh-Mehrjardi et al., 2020; Forkuor et al., 2017), and
neural networks (Aitkenhead and Coull, 2016) for advancing prediction
models of soil carbon. Out of all those different algorithms RF algorithm
is the most widely used ML algorithm for soil carbon modelling work
(Lamichhane et al., 2019). As a result, linear regression models can eas-
ily be replaced with ML algorithms to account for more complex soil-
environment relationships (Hengl et al., 2015).

In the development of a spatial prediction function for soil carbon,
key elements in model development include not only a set of environ-
mental covariates that are used as model drivers but also the distribu-
tion of model calibration sites across the landscape and the number of
sites required to develop an optimum model with higher model quality.
Due to the associated cost of field data collection and the need to cap-
ture the inherent variation of environmental covariates through sam-
pling sites, algorithms such as conditioned Latin hypercube sampling
(cLHS) (Minasny and McBratney, 2006) are commonly deployed.
Somarathna et al. (2017) stated that the uncertainty of model predic-
tions decreases with increasing calibration sample size. Furthermore,
prediction uncertainty in soil carbon modelling can be significantly in-
fluenced by various factors, including the spatial heterogeneity of soil
carbon, the choice of modelling algorithm (Somarathna et al., 2017),
and environmental and landscape characteristics (Sun et al., 2022). Ad-
ditionally, Mishra et al. (2022) and Saurette et al. (2022) emphasized
the importance of the selection and inclusion of environmental covari-
ates, which also could control the uncertainty of soil carbon prediction.
Therefore, it is imperative for soil carbon modelling studies to carefully
consider and address these factors to improve the robustness and relia-
bility of predictions.

The current study aims to understand the drivers of total carbon
concentration in tropical paddy-growing soils. Annually Sri Lanka culti-
vates approximately 708,000 ha of paddy soils across the country (two
primary seasons), accounting for 34% of the country's total agricultural
land extent. Currently, there is no consistent baseline dataset on TC
concentrations across the major paddy cultivation regions in Sri Lanka.
One exception is the regional-scale study conducted by Ratnayake et al.
(2016), one of the first spatially explicit studies carried out to estimate
SOC concentration in the Northern paddy-growing region of Sri Lanka.
Furthermore, a national-scale study conducted by Vitharana et al.
(2019) focused on the spatial distribution of SOC stocks throughout the
country with a limited number of ground truth data locations scattered
across a large land extent (n = 122, area = 64,610 km2). Therefore,
the current study aims to:

1. Undertake a detailed field sampling campaign to collate ground
truth datasets covering paddy-growing soils in Sri Lanka

2. Develop spatially explicit machine learning model/s to identify
drivers of TC in tropical rice production systems and assess the
quality of the model using a fully independent dataset

3. Evaluate the reliability of the generated models across the
landscape using Area of Applicability (AOA), as outlined by Meyer
and Pebesma (2021). The AOA provides guidance on the
applicability of model extension across entire mapping extent.

4. Assess the relative impact of sample site number on model
evaluation perfromance.

2. Materials and methods

2.1. Description of the study area

Sri Lanka is located between 5.9° and 9.87° North and 79.65° and
81.88° East. There are three major climatic zones in the country, which
are essentially defined on the basis of annual rainfall; Dry zone
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(<1750 mm); Intermediate zone (1750–2500 mm); and Wet zone (>
2500 mm) (Mapa, 2020). The Wet zone experiences relatively high
mean annual rainfall without any pronounced dry periods, whereas the
Dry zone experiences relatively lower mean annual rainfall, with a dis-
tinct dry season from May to September. Compared to the Dry zone,
there is a short and less prominent dry season in the Intermediate zone
(Punyawardena, 2020). A large proportion of paddy-growing lands are
located in the country's Dry zone, which contains two-thirds of the
country's entire paddy-growing area. Compared to other paddy-
growing countries, Sri Lanka cultivates paddy under various hydrogeo-
logical regimes, climatic conditions, terrain conditions (e.g., under sig-
nificant variations in altitude/elevation and slope) and soil types that
differ throughout the country. The maximum annual rainfall in the Wet
zone of the country has been recorded as 6000 mm, while values as low
as 600 mm have been reported for the dry and arid regions. The alti-
tude of the country ranges from mean sea level (MSL) to 2575 m above
MSL, and the average temperature values vary within a range of 15-
30 °C across the elevation gradient. Paddy is cultivated across all agro-
ecological regions except the high massif areas above 1200 m
(Dhanapala, 2007). Two different cultivation seasons prevail within the
country, depending on the monsoon's rainfall patterns. The two main
seasons are known as ‘Maha kannaya’ (falling during the second inter-
monsoon and northeast monsoon season from September to February)
and ‘Yala kannaya’ (falling during the first inter-monsoon and south-
west monsoon season between March and August (Sathischandra et al.,
2014). This study covers current paddy-growing areas in all 25 adminis-
trative districts of Sri Lanka.

2.2. Designing soil sampling schemes for model calibration and validation

Two distinct sampling strategies were used to collate soil samples
for model calibration and validation. The cLHS strategy was used to de-
termine the model calibration sites. The cLHS algorithm selects sample
sites from a Latin hypercube in the feature space (Minasny and
McBratney, 2006). For example, for k continuous variables, each X
component is divided into n (sample sites) equally probable strata
based on their distributions, and x is a sub-sample of X. The cLHS algo-
rithm is based on heuristic rules with an annealing schedule (Minasny
and McBratney, 2006). The cLHS sampling design is an effective sam-
pling technique for identifying sampling locations that represent the
variation of different environmental covariates. In this study, a variety
of environmental covariates were used to capture the inherent variabil-
ity of the landscape that affects the carbon inflows and out-flows (Table
1). Hence, the considered environmental covariates directly or indi-
rectly affect the TC concentrations in the study region. Additionally, a
fully independent validation dataset using design-based sampling prin-
ciples was collated to assess the model prediction quality (Brus et al.,
2011). As a design-based sampling scheme, the stratified random sam-
pling (SRS) approach was adopted. For stratification, the same environ-
mental covariates listed in Table 1 were clustered (using the k-means
clustering algorithm). In each stratum, simple random sampling was
performed, with each stratum being considered as a sampling zone.

In total, 1000 sampling sites were selected as model calibration and
validation sites. Among them, 800 sampling locations were allocated
across the landscape using the cLHS algorithm. In addition to those 800
calibration sampling sites, another 100 soil samples were taken at an
approximate distance of 100–150 m away from the main sampling
sites, similar to the approach described by Karunaratne et al. (2014).
The additional calibration sampling sites were used to capture the in-
herent short-range soil variability. For the independent validation of
the model, 100 sampling sites were randomly assigned across strata
generated using the SRS strategy. In the SRS approach, a set of environ-
mental covariates (Table 1) is stratified into 25 strata, and four samples
are allocated for each stratum. Despite the sampling locations being
predetermined, reaching the exact sampling location was quite chal-

Table 1
Summary of the environmental covariates used for the study.
Scorpan
factor

Environmental variable Units Reference/ data source

Climate
(c)

Mean annual rainfall mm Wordclim
http://www.worldclim.org/

Temperature (annual
average mean, annual
average maximum, annual
average minimum)

°C Wordclim
http://www.worldclim.org/

Vapour Pressure Deficient
(VPD)

K pa Wordclim
http://www.worldclim.org/

Relief (r) Elevation m NASA SRTM data
http://www.cgiar-csi.org/
data/srtm-90m-digital-elevation-
databasev4-1

SAGA Wetness Index (WI) Unit
less

Derived from NASA STRM
(secondary terrain attribute)

Slope Degrees Derived from NASA STRM
(primary terrain attribute)

Organism
(o)

MODIS Enhanced
Vegetation Index (EVI)

Unit
less

NASA
https://modis.gsfc.nasa.gov/
data/dataprod/mod13.php.
Derived from taking mean
annual EVI data from 2005 to
2014.

lenging during the sampling stage due to practical issues such as site ac-
cessibility. Therefore, 888 calibration samples out of 900 sites and 99
validation samples out of 100 sites were sampled. Fig. 1 depicts the spa-
tial distribution of sampling locations and paddy-growing areas within
the country across the major climatic zones, namely Wet, Intermediate
and Dry zones. The soil samples were collected at a soil depth of
0–15 cm soil depth level using a soil augur with a diameter of 5 cm. At
each sampling site, soil samples were collected from three points in a
triangular path with a distance of approximately 10 m between sam-
pling points and composited to form a representative sample. The GPS
locations of all the sampling sites were recorded using a Garmin eTrex
30 handheld GPS receiver.

2.3. Soil sample analysis

All visible organic debris, plant roots, and stones were removed by
handpicking prior to the analysis of the composited soil samples. The
moist soil samples from the field were analysed for soil pH (1:2.5 soil:
water suspension) (Anderson and Ingram, 1993). The remaining soil
samples were air-dried and sieved using a sieve with a 2 mm mesh. Soil
samples were then ground to size of <0.15 mm to obtain a uniform
particle size. Before determination of the soil carbon concentration, an-
other portion of powder with a size <0.15 mm was again ground and
sieved through a 42-μm mesh sieve. Then, soil carbon concentration
(%) was analysed using an automated dry combustion method via a
2400 Series II CHN Elemental Analyser (Fadeeva et al., 2008; Skeen,
1994). The measured TC concentrations are reported as oven-dry equiv-
alent (ODE) using the following equations (Eqs. (1) and (2)).

ODE correction factor ( ) is given by:

(1)

where Mw = mass of water in the air-dried sample and Ms. = the
total mass of the oven-dried soil.

(2)

where TCOD total carbon concentration in g C/kg oven-dried (OD)
soil; and TCAD total carbon concentration in g C/kg air-dried (AD) soil.
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Fig. 1. The paddy-growing areas of Sri Lanka (green shaded areas) and sampling sites with overlapping major climatic zones: calibration sample sites are indicated
in black colour, while validation sample sites are indicated in red colour (coordinate system: Kandawala Sri Lanka Grid).

2.4. Preparation of environmental covariates for spatial modelling of total
carbon

The development of the spatial model was performed based on the
scopan digital soil mapping framework (Eq. (3)), as outlined by
McBratney et al. (2003). The scopan model describes the quantitative
relationships prevailing among TC and environmental covariates by de-
veloping a spatial soil prediction function. A variety of environmental
covariates are considered in the current study including slope, the
SAGA wetness index (WI)) (Bohner and Selige, 2006), and other terrain
attributes such as hydrologically corrected elevation data derived from
NASA Shuttle Radar topographic mission, MODIS Enhanced Vegetation
Index (EVI), Vapour Pressure Deficit (VPD), annual average mean tem-
perature, annual average maximum temperature, annual average mini-
mum temperature and mean annual rainfall. All environmental covari-
ates were standardised (resampled) to a spatial resolution of 100 m
prior to spatial analysis. A summary of the environmental covariates

used in this study is presented in Table 1, the details of which were pre-
sented in Rajapaksha et al. (2020).

(3)

where, S represents TC concentration, soil (s), climate(c), organisms
(o), relief (r), parent materials (p), age (a), and spatial position (n); and
where e is the error. A random forest modelling framework represents
the f in the current study.

2.5. Geospatial modelling

The RF model can be used either as a classifier or for regression. For
the current modelling work, a regression RF model was adapted in
which the importance of each predictor variable was determined by a
regression loss function on the basis of mean square error (MSE) (Dewi
and Chen, 2019). The RF algorithm is capable of handling both linear
and nonlinear complex relationships and multicollinearity among the
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considered parameters (Karunaratne et al., 2020). At each binary split,
a random subset of covariates is selected to provide the best split. The
number of variables available for splitting at each tree node is referred
to as the mtry parameter. Heung et al. (2014) reported that the mtry para-
meter in the RF model is the main tuning parameter that requiring opti-
misation. In the current study, the RF model's mtry parameter was opti-
mised using repeated 10-fold cross-validation. The best model parame-
ter for the mtry was determined using the return value with the lowest
RMSE value obtained via 10-fold cross-validation. The cross-validation
was based on the calibration dataset.

Two different forms of RF model were tested in the current study.
The only difference between Model 1 and Model 2 is that the latter used
forward selection of the variables, as described by Meyer et al. (2019).
In summary, Model 2 is trained with all possible pairs of predictor vari-
ables and keeps the best pair as the initial model. Then, each of the re-
maining predictor variables is iteratively added and tested for improve-
ment with the best model. The process stops if none of the remaining
variables increases the model performance when added to the current
best model (Meyer et al., 2018). The purpose of utilising forward selec-
tion for Model 2 is to overcome model overfitting issues by removing
highly correlated variables (Meyer et al., 2019). A summary of the two
RF models tested in the current study is provided in Table 2.

Table 2
Summary of the specific techniques employed in model development.
Model name RF model optimisation Cross-validation Variable selection

Model 1 mtry parameter 10-fold CV NA
Model 2 mtry parameter 10-fold CV Forward selection

2.5.1. Evaluation of model quality
The model performances were evaluated using the Nash-Sutcliffe

model efficiency coefficient (NSE) (Eq. (4)), Root- Mean Square Error
(RMSE) (Eq. (5)) and Lin's Concordance Correlation Coefficient (LCCC)
(Eq. (6)). The NSE measures the improvement made by the model based
on the magnitude of the residual variance compared to the measured
data variance. The RMSE provides an indicator for the accuracy of the
model, while the LCCC indicates how well the measured and predicted
values deviate from a 1:1 line (i.e., a 45-degree line). The best models
are those with the lowest RMSE values and comparatively higher LCCC
and NSE values. Models with LCCC and NSE values close to 1 are con-
sidered to be those with the best performance. The models were vali-
dated using independent datasets collated using a design-based sam-
pling strategy, as explained in Section 2.2. A schematic diagram of the
TC measurement and data modelling pipeline is presented in Fig. 2.

(4)

where p is the difference between predicted(p) and observed(o) val-
ues, o-ō is the difference between the observed (o) value and the mean
of the observed (ō) values and n refers to the number of observations.

(5)

where p, o refer to predicted and observed values, and n refers to the
number of observations.

Fig. 2. A schematic diagram for the measurement and modelling of the soil total carbon adopted in the current study.
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(6)

where is the estimated LCCC, and are the means for the
measured and predicted parameters, and and are the corre-
sponding variances of the measured and predicted parameters. is the
Pearson's correlation coefficient between the measured and predicted
values.

2.5.2. Spatial estimates of total carbon
The area of applicability (AOA) of the two models was calculated, as

explained by Meyer and Pebesma (2021). The AOA provides a quantita-
tive assessment of the reliability of current prediction quality using the
existing measurement datasets, and the function can be found in the
CAST R package (Meyer et al., 2020). The AOA approach identifies the
areas in which the model is likely to be problematic as a result of the
dataset used in the modelling not capturing the environmental and spa-
tial features of the area in which the model is being applied. The AOA is
determined on the basis of the dissimilarity index (DI), which is a unit-
less measurement for detecting the deviation of new data cases (a pre-
diction location) from the training data. The DI is calculated by consid-
ering the cross-validation folds and using a threshold, which is by de-
fault is the 95% quantile of the DI of all training data, and then returns
the AOA statistics. The patterns in the DI are in general agreement with
the true prediction error, i.e., very high DI values indicate areas that are
not covered by the training data. For prediction areas in which the DI
values are over the threshold, the predictions are assumed to be unreli-
able. They should be excluded from further analysis, as the values of the
predictors at the locations of the training data do not represent the val-
ues of the predictors where the prediction is being made (Meyer and
Pebesma, 2021).

Furthermore, if distances were calculated based on the standardised
covariates, all variables would be treated as being equally important.
However, distances are not equally relevant within the predictor space;
some variables are more important than others (as indicated by the
variable importance in machine learning algorithms). Therefore, scaled
variables are multiplied by the weighting estimate derived from the
variable importance of the RF model for each variable before distance
calculation. The training data set is created for our 888 sampling loca-
tions on the basis of the environmental covariate dataset (Appendix,
Fig. A1). In addition to AOA analysis as a measure of the reliability of
current prediction quality, 100 bootstrapped models, resulting from
100 possible mapped outputs, were used to generate the lower (5%)
and upper (95%) predictions (Gray et al., 2019). The thus-obtained pre-
diction intervals were used to calculate the 90% prediction interval
(Appendix, Fig. A2).

2.6. Impact of number of calibration sites used for model training: model
performance and reliability

Considering the advantage of having a large number of calibration
sites (n = 888), we evaluated the impact of model prediction quality
and reliability with increased calibration sites in a sequence. To assess
the effect of the number of calibration sites, sequentially increasing
numbers of data cases were used for model calibration, starting at
n = 200 and then increasing by 100 each time up to 800. Samples for
each configuration were selected using the cLHS algorithm and select-
ing from the 888 sampling locations available for model development.
For each of these chosen sequences, Section 2.5 was repeated, and each
of these models was independently evaluated. The individual model
quality was performed using the validation sites (n = 99), as noted
above, enabling an unbiased comparison of the model prediction qual-
ity. Finally, the percentage of AOA was calculated for each model to
identify the model reliability.

3. Results and discussion

3.1. Descriptive analysis of the total carbon concentrations in paddy-
growing soils

The descriptive statistics for TC% in paddy-growing soils of Sri
Lanka are presented in Table 3. The summary of the statistics reveals
that the mean TC% of the paddy soil was 2.44 ± 1.73%. The reported
skewness value was 3.53, which is indicative of the positively skewed,
unimodal distribution of the measured TC concentrations. This implies
that high concentrations of TC are stored in a few locations, whereas
only a relatively small amount of carbon is stored in most of the other
locations on the landscape (Delgado-Baquerizo et al., 2018). Further
analysis considering the different climatic zones reported mean TC%
values of 5.21 ± 2.78, 2.24 ± 0.75, and 1.89 ± 0.79 for the Wet, In-
termediate, and Dry zones, respectively. In contrast to the other two
zones in the country, TC% values for the Wet zone are significantly
higher, and the associated soil pH values are significantly lower, as
shown in the box plots (Fig. 3). At higher soil pH, the bonds between or-
ganic constituents and clay particles in the soil can be easily broken
(Neina, 2019), leading to an increase in soil carbon mineralisation,
whereas the decarboxylation of organic acid anions during the organic
matter decomposition could lead to an increase in soil pH, as explained
by Ding et al. (2019).

3.2. Relationships between total soil carbon concentration and
environmental covariates

The analysis of the Pearson's correlation coefficient is summarised
in Fig. 4. The Pearson's correlation coefficient was calculated in agree-
ment with the linear relationships between TC concentrations and envi-
ronmental covariates. A strong positive correlation was observed be-
tween TC concentration and mean annual rainfall (r = 0.64). Further-
more, positive correlations were observed between TC concentration
and MODIS EVI (r = 0.34) and TC concentration and the slope of the
landscape position (r = 0.09). Negative correlations were observed be-
tween TC concentration and annual average maximum temperature
(r = −0.36), annual average mean temperature (r = −0.22) and an-
nual average minimum temperature (r = −0.07).

Climate variables are among the key drivers of TC concentration in
paddy-growing soils. In general, higher rainfall and lower temperature
provide the conditions necessary for increasing soil carbon levels
(Fantappie et al., 2011). However, water availability during the rainy
season affects both carbon accumulation through primary production
and carbon loss through decomposition, which ultimately balances the
long-term storage of soil carbon, which also depends on the rate of car-
bon inflows into the system. Furthermore, MODIS EVI data showed a
positive correlation with the soil TC concentrations. In fact, MODIS EVI

Table 3
Descriptive statistics for total carbon in paddy soils across the country and in
major climatic zones of Sri Lanka.
Variable n Mean SD Median Min Max Skewness SE Q1 Q3

Whole country
TC% 987 2.44 1.73 2.04 0.30 17.85 3.53 0.06 1.47 2.69

Wet Zone
TC% 145 5.21 2.78 4.63 1.36 17.85 1.93 0.23 3.19 6.45

Intermediate Zone
TC% 176 2.24 0.75 2.21 0.78 5.04 0.81 0.06 1.76 2.65

Dry Zone
TC% 666 1.89 0.79 1.77 0.30 5.33 1.15 0.03 1.34 2.31

Note: n: number of samples; SD: Standard Deviation; Min: minimum; Max: max-
imum; SE: Standard Error; Q1: first quartile; Q3: third quartile.
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Fig. 3. Distribution of the measured total carbon concentration (Fig. 3a) and pH
(Fig. 3b) values with respect to major climatic zones, abbreviated as D: Dry
zone; I: Intermediate zone; and W: Wet zone.
Note: The solid horizontal line in the boxplots indicates estimated median TC
concentrations. The ends of the boxes indicate the inter-quartile range, while
the whiskers represent the maximum and minimum values, excluding any out-
liers, and outliers are depicted as ‘dots’, the red-coloured triangles indicate the
category means.

acts as a proxy for land productivity (biomass production), and the
quantitative connection between the amounts of carbon added to soils.

3.3. Identification of the drivers of soil total carbon concentration across
paddy-growing soils

The environmental covariates that explain the TC concentration
across the landscape are divided into three main categories: climatic
(rainfall, temperature, VDP), relief (elevation, WI, slope degree), and
organism (MODIS EVI). The variable importance plot (VIP) obtained
using the RF model was used to identify the key model drivers (Fig. 5).
A summary of the fitted RF model with all covariates (Model 1) is pre-
sented in Fig. 5a, while a summary of the forward-selected variables
employed in Model 2 is presented in Fig. 5b. Rainfall was the key envi-
ronmental driver affecting the spatial distribution of TC concentrations,
as observed by the VIP plots for both models (Fig. 5). The slope angle
was the least important variable in both Model 1 and Model 2 when
predicting TC concentrations. This may be due to the lower prevalence
of land variability in the flat terrain areas used in rice production. Em-
phasising the smaller degree of variability in the relatively flat land-
scapes of paddy-growing paddocks, >90% of the paddy-growing areas

Fig. 3. (continued)

were scattered within the narrow range of 00 to 2.50. However, in
Model 2, which used forward selection of the variables, as explained by
Meyer et al. (2019), MODIS EVI, elevation and WI were not selected in
the final model.

Among the most important model drivers used for spatial predic-
tion, rainfall, temperature, and evapotranspiration are considered as
the primary climatic covariates involved in SOC storage fluctuations
(Delgado-Baquerizo et al., 2018). Both the rainfall and temperature un-
deniably regulate the soil TC dynamics of ecosystems. The VPD is
closely related to the evapotranspiration rate in the area of interest
(Zheng et al., 2014). Accordingly, the increased temperature levels lead
to enhanced evapotranspiration rates resulting in a nonlinear rise in
VPD. Furthermore, the higher VPD increases soil evapotranspiration,
affecting plant growth and soil productivity (Breshears et al., 2013). El-
evation plays a crucial role among topographic variables in determin-
ing soil carbon distribution by altering the micro- and macro-
environmental conditions (Martin et al., 2014; Tsui et al., 2013). The
MODIS EVI (MODIS–Terra sensor) is an important time series vegeta-
tion index capable of monitoring substantial changes in the ecosystem,
providing new insight into the mechanisms of the carbon cycle (inflows
of carbon into the soil system). The MODIS EVI data are directly related
to plant productivity and act as a proxy for the carbon inflows into the
soils.

Several previous studies conducted in tropical climatic regions have
reported similar results corroborating with the current research. For ex-
ample, Hinge et al. (2018) predicted SOC stocks using an RF model with
climatic and remotely sensed datasets in India covering different land
use types, including croplands and forest areas. They found that, al-
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Fig. 4. Pearson's correlation coefficient matrix of soil total carbon concentra-
tion and climatic, terrain, and imaging attributes of paddy-soils in Sri Lanka.
Abbreviations: TC: total carbon concentration; Rainfal_N: mean annual rainfall;
Temp_Min_N: annual average minimum temperature; DEM_N: elevation; VD-
P_N: vapour pressure deficient; Temp_N: annual average mean temperature;
Temp_Max_N: annual average maximum temperature; Modis_N: MODIS EVI;
Slope_d_N: slope; SAGA_WI_N: SAGA wetness index.

though the topographic parameters, slope, and multi-resolution index
of valley bottom flatness were relevant to surface SOC distribution, the
most important factors were elevation and land use. Furthermore,
Hinge et al. (2018) reported that the decrease in temperature with ris-
ing elevation, as well as changes in rainfall distribution, might affect
the decomposition rate of soil organic matter. Therefore, the combined
contribution of elevation, rainfall and temperature towards the regula-
tion of plant productivity and organic matter decomposition is empha-
sized. Dharumarajan et al. (2017), in their study, performed spatial pre-
diction of SOC in the semi-arid tropics of India, incorporating five ma-
jor land use types (single crop, double-crop, fallow land, scrub and for-
est), and showed that EVI and normalised different vegetation index
(NDVI) were the most critical determiners of SOC distribution. In addi-
tion to productivity, the contribution of vegetation in controlling high-
temperature levels through evapotranspiration may be the underlying
reason for the preservation of high levels of carbon in soil.

3.4. Independent model evaluation

A summary of the fully independent model validation is presented
in Table 4. The NSE values of models 1 and 2 were 0.29 and 0.27, re-
spectively. The RMSE (%) and LCCC values of the two distinct predic-
tive models reported identical values of 1.35 (%) (Table 4). The high
LCCC value of 0.75 for the two fitted models indicated considerable
agreement between measured and predicted TC concentrations. In sum-
mary, it can be concluded that the NSE, RMSE, and LCCC values related
to the performance of the two models were more-or-less similar. Scatter
plots for the observed TC vs. predicted TC concentrations are predicted
in Fig. 6. On the basis of results of the independent validation, Model 1
and Model 2 can be concluded to exhibit the same model quality. How-
ever, Model 2 incorporates a smaller number of environment covariates

Fig. 5. Relative importance of variables of each soil carbon model on the basis
of the random forest algorithm: (a) Variable Importance Plot of Model 1, (b)
Variable Importance Plot of Model 2 Abbreviations: Rainfall_N: mean annual
rainfall; Temp_Min_N: annual average minimum temperature; DEM_N: eleva-
tion; VDP_N: Vapour pressure Deficient; Temp_N: annual average mean temper-
ature; Temp_Max_N: annual average maximum temperature; Modis_N: MODIS
EVI; slope_d_N: slope; SAGA_WI_N: SAGA Wetness Index. Variable groups: red
colour: climatic; green colour: organism; blue colour: relief.

Table 4
Performance of predicted soil carbon models according to fully independent
validation.
Model NSE RMSE (%) LCCC

Model 1 0.29 1.35 0.75
Model 2 0.27 1.35 0.75

relative to Model 1 (Fig. 5), thus having lower computational require-
ments when performing predictions across the landscape.

Hengl et al. (2015) used the RF modelling approach to model and
map a variety of soil properties, including soil carbon across the
African continent, at a spatial resolution of 250 m. Random Forest was
proved to be a more accurate prediction approach than comparatively
simpler multiple linear regression models, with an average improve-
ment of mapping accuracy of 20% when performing predictions across
a range of climatic conditions from tropical wet climates to hyper-arid
climates (Hengl et al., 2015). Similarly, Taghizadeh-Mehrjardi et al.
(2016) identified the efficacy of the RF Model for the prediction of the
SOC topsoil (0–15 cm) in semi-arid regions in Iran with an LCCC value
of 0.66. Dharumarajan et al. (2017), in the semi-arid tropics of India,
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Fig. 6. Scatter plots of observed TC values vs. predicted TC values: Model 1 (a);
and Model 2 (b). Observed TC values are related to the independent validation
dataset.

reported an LCCC value for SOC prediction of 0.38, for a model devel-
oped for use within a depth range of 0–30 cm. In comparison, in the
current study, both models tested for TC reported much higher LCCC
values than those in the studies carried out by Taghizadeh-Mehrjardi
et al. (2016) and Dharumarajan et al. (2017).

The sampling density used in the current study for calibration was
one site per 11 km2 (n = 888), and the sampling density for validation
was one site per 96 km2 (n = 99), where the paddy extent was around
9516 km2. The sample densities calculated for calibration and valida-
tion in different climatic zones in Sri Lanka are depicted in Table 6.
Keskin et al. (2019) reported a calibration sampling density of one site
per 211 km2 (n = 710), and a validation sampling density of one site
per 493 km2 (n = 304) in a study performed across an area of
150,000 km2 in Florida, United States. Martin et al. (2011) reported a
sampling density of one site per 247 km2 (n = 2200) in a study per-
formed across an area of 543,965 km2 in France. Moreover, Bui et al.
(2009), in their study across Australian agricultural zones
(2,765,000 km2), reported a sampling density of one site per 250 km2.
Therefore, the sample density employed in the current study is consid-
erably better than those used in previous studies.

3.5. Mapping the total soil carbon concentrations across the paddy-growing
regions in Sri Lanka

The distribution of the predicted TC concentrations is depicted in
Fig. 7, overlaid across the major climate zones (Wet, Intermediate, and
Dry), as derived from both Model 1 and Model 2. A high TC concentra-
tion was recorded for paddy fields of the southwestern part that belong
to the Wet zone (Table 5). Theoretically, the equilibrium between car-
bon inputs and decomposition basically governs the sequestration or
degradation of organic substances in the soil systems. The high organic-
matter soils or Histosols found in general across the paddy-growing
soils in the Wet zone form as permanently waterlogged soils. Sahrawat
(2004) reported that the loss rate of organic matter in Histosols is
slower than its accumulation. Ultisols are the dominant soil type in the
Wet zone of Sri Lanka, both in the lowlands and in the central high-
lands. Ultisols are also found in the Intermediate zone of the country
(Moorman and Panabokke, 1961). Despite this, the depressions com-
mon to this soil group have been naturally displaced by hydromorphic
soil types or Histosols, which create a more suitable environment for
paddy cultivation. Furthermore, the Wet zone placed on the windward
side of the country receives a high amount of rainfall during the south-
east monsoon. Relatively low temperatures prevail throughout the
year, and a long period of anoxic conditions resulting in low pH values
and associated low decomposition rates may also contribute to the ac-
cumulation of high TC concentration in this region, as previously re-
ported by Delgado-Baquerizo et al. (2018). High plant productivity and
litter decomposition rates are also seen in areas with high mean annual
rainfall, eventually contributing to high atmospheric carbon-fixation
rates and SOC accumulation (García-Palacios et al., 2013).

In the Dry zone, high maximum temperatures would contribute to-
wards the storage of less TC compared to in the Wet and Intermediate
zones of the country (Fig. 7, Table 5). In addition, in the Dry zone expe-
riencing high evapotranspiration or high VPD often results in a de-
crease in plant productivity, thereby restricting carbon inflows into the
soil system, resulting in low soil carbon storage (Delgado-Baquerizo et
al., 2013). Reddish-brown earths are the dominant great soil group in
the Dry zone climatic region (USDA Taxonomy: Alfisols; WRB legend:
Luvisols). These soils experiences free drainage, and in the geographical
depressions or valley areas, this great soil group is substituted by hydro-
morphic soils such as alluvial soils (USDA Taxonomy: Entisols; WRB
legend Fluvisols) and Low-Humic Gley soils (USDA Taxonomy: Alfisols;
WRB legend: Gleysols) (Moorman and Panabokke, 1961). To facilitate
rice production, low-lying paddy-growing areas in the Dry zone mostly
consist of Alfisols and hydromorphic associations, inheriting poorly
drained soil characteristics. Eastern Sri Lanka (i.e., the Ampara and Bat-
ticaloa administrative units) exhibits lower TC distributions than other
paddy-growing areas. According to Moorman and Panabokke (1961),
the Low-Humic Gley soils associated with the Non-Calcic Brown soils
(USDA Taxonomy: Alfisols; WRB legend: Cambisols and Gleysols) in the
eastern province have a coarser texture, which can commonly be recog-
nised as being a sandy loam to loamy sand texture and exhibits moder-
ately well-drained characteristics. Those soil characteristics reduce car-
bon retention ability (mineral-associated carbon) compared to the
other soil types in the Dry zone. The predicted values were higher in the
North, Northeast, East, and Northwest coastal regions compared to the
other areas in the Dry zone. The soils of these areas are formed from re-
cent and older marine sand, lagoons, and shallow seabed deposits. Fur-
thermore, these coastal areas, which are vulnerable to high tide sub-
mergence from previous events, are rich in marine clay with the previ-
ous decomposition materials of calcareous contents (Dassanayake et al.,
2020).
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Fig. 7. Spatial distribution of predicted TC concentrations (%) in paddy-growing soils across Sri Lanka with the major climatic zone boundaries. The areas remaining
as white colour patches are non-paddy areas, (a) spatial distribution of TC according to Model 1, and (b) spatial distribution of TC according to Model 2.

3.6. How reliable are the spatial estimates of the soil total carbon
concentrations?

The AOA analysis aided in determining the reliability of current TC
predictions (Fig. 8). The AOA function demarcates and shows us the
area/land extent to which the predicted model can successfully be ap-
plied (Meyer and Pebesma, 2021). The percentages of AOA in each pri-
mary climatic zone of Sri Lanka, considering both models, are depicted
in Table 6. It can be observed that the Model 1 predictions were reliable
for 89.56% of paddy-growing areas across Sri Lanka and unreliable for
only 10.44%. Furthermore, the Model 2 predictions were reliable for
89.62% of the area and unreliable for 10.38%. Similar reliability was
reported across all paddy-growing regions for both tested models. The
spatial predictions of soil TC concentration in the Dry zone can be con-
sidered more reliable, followed by the Intermediate and Wet zones, re-
spectively (Table 6). However, Model 1 achieved slightly higher relia-
bility for the Wet zone than Model 2. The Wet zone of Sri Lanka pos-

sesses a unique topography and higher temperature variation due to the
elevation gradient and annual cumulative rainfall. The report of a less
reliable area is most likely due to the current sampling scheme not be-
ing able to capture this inherent variability of the environmental co-
variates that govern the variation of the soil TC concentration in the
Wet zone. The AOA results show higher unreliable TC estimates across
the Wet zone, which is further supported by the higher model uncer-
tainty values for the same region as depicted by the calculated 90% pre-
diction interval (Appendix, Fig. A2, Table A1). The highest uncertainty
of the prediction was recorded in the Wet zone of the country while the
lowest was recorded in the Dry zone.

In previous studies on paddy soils in the tropical and subtropical re-
gions of the world, Xu et al. (2020) used different multivariate tech-
niques to compare their ability to estimate SOC across soil profiles. As
per the superior model prediction, shale contained the highest SOC con-
centration ranging from 29.42 to 1.73 g kg−1 from top to bottom, and
quaternary red clay exhibited the lowest, from 22.45 to 0.27 g kg−1.
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Fig. 7. (continued)

Table 5
Summary of predicted total carbon % values in paddy soils across the country and in major climatic zones of Sri Lanka.

Model 1 Model 2

Variable Mean Min Max SD Q1 Q3 Mean Min Max SD Q1 Q3

Whole country 2.44 0.89 13.15 1.35 1.74 2.46 2.43 0.86 13.29 1.38 1.71 2.44
Wet 5.27 2.06 13.15 1.84 3.97 6.55 5.32 2.09 13.29 1.91 3.95 6.48
Intermediate 2.43 1.18 7.23 0.71 2.01 2.65 2.37 1.08 6.99 0.71 1.96 2.55
Dry 1.91 0.86 4.30 0.40 1.63 2.14 1.91 0.86 4.30 0.40 1.63 2.14

Note: Min: minimum; Max: maximum; SD: standard deviation; Q1: first quartile; Q3: third quartile.

Song et al., 2020 stated that SOC stock at soil depths of 0–20 cm was
27.6 g kg−1 in Jiangxi Province, China. Furthermore, several other
studies in subtropical and tropical climatic regions studying different
soil carbon pools of paddy-growing soils are summarised below, and
their results compared with those of current study (Table 7). Relatively
lower values of TC concentration were reported in paddy soils in the
southeastern part of China recorded relatively lower values of 0.5–1.5%

for the depths of 0–15 cm. The mean TC concentration in the Wet zone
of Sri Lanka was relatively higher than the soil carbon values reported
in other countries, except for Selangor Malaysia, at the same depth level
(Aishah et al., 2010). The range of SOC values reported for Lombok Is-
land, Indonesia was quite similar to the values reported for both the Dry
and Intermediate zones of Sri Lanka. The TC pool of paddy soil in Mada-
gascar was recorded to be 2.18 ± 1.16% (Kawamura et al., 2017), and

11



CO
RR

EC
TE

D
PR

OO
F

T.M. Paranavithana et al. Geoderma Regional xxx (xxxx) e00745

Fig. 8. Area of applicability (AOA) of the soil carbon prediction for the paddy-growing areas across Sri Lanka estimated using Model 1 and Model 2.

this value is greater than the Dry zone mean value in Sri Lanka and less
than the mean soil TC concentration in the Wet zone. Furthermore, the
recorded SOC% in the Bara district, Nepal, is indicated to be 2.13%
(±1.5) (Panday et al., 2018); this value is in accordance with the paddy
soils in the Intermediate zone of Sri Lanka.

3.7. Model performances due to number of data cases used for model
calibration

The summary of the model performance quality using NSE, RMSE
and LCCC for the sequence of calibration models tested with varying
calibration sites and the full calibration sites is demonstrated in Fig. 9.
As denoted by the model performance quality (Fig. 9), there is an in-
crease in the NSE and LCCC values, and a reduction of RMSE value can
be observed for n = 400. Beyond this point, the model performance
quality indices are stagnated. The NSE values for Model 1 exhibited a
slight improvement from 0.30 to 0.40, and for Model 2, the respective
values increased from 0.35 to 0.42 as the calibration sample size in-
creased from 400 to 800. Simultaneously, the LCCC values for Model 1
showed enhancement from 0.75 to 0.79, whereas for Model 2, the value
remained unchanged at 0.76. The RMSE values ranged from 1.36 to

1.31 in Model 1 and from 1.36 to 1.39 in Model 2 when the calibration
sample size increased from 400 to 800, as presented in Fig. 9.

As demonstrated by Lagacherie et al. (2020) and Somarathna et al.
(2017), the increasing sample size leads to a rise in prediction accuracy
at a decreasing rate, irrespective of the specific model employed for the
analyses. Morgan et al. (2003) utilised a decision tree-based data min-
ing tool to investigate the impact of sample size on modelling accuracy,
revealing that the rate of improvement in model accuracy reaches a
plateau after a certain point. Moreover, Saurette et al. (2022) compared
Cubist and RF models to ordinary Kriging, and their findings indicated
that all three models showed a similar pattern of improvement with in-
creasing sample size aligning with the findings of Morgan et al. (2003).
Therefore, the results of the current study are consistent with those of
previous studies. However, as Sun et al. (2022) and Long et al. (2020)
suggested, the improvement of model performances with increasing
sampling sites could also be specific to the landform characteristics of
the region.

When developed models are applied across the landscapes, the relia-
bility of models also varies with the number of sites chosen to develop
calibration models using cLHS strategy. Technically, selected sites for
each calibration model using the cLHS strategy should represent the
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Fig. 8. (continued)

Table 6
Summary of sampling densities and percentage area of applicability.
Climatic zone Area of

paddy/km2
No. of calibration
sampling locations

No. of validation
sampling locations

Calibration density of
sampling/one site per
xkm2

Validation density of
sampling/ one site per x
km2

AOA% (Model 1) AOA% (Model 2)

Reliable Unreliable Reliable Unreliable

Wet 1201.94 128 17 9 71 60.74 39.26 53.75 46.25
Intermediate 1760.77 158 18 11 98 76.47 23.53 76.74 23.26
Dry 6562.25 602 64 11 102 98.65 1.35 99.60 0.40

marginal distribution of global calibration datasets (n = 888). Never-
theless, the increasing number of sites within calibration sites has influ-
enced capturing the complex variation across the landscape features. At
the country scale comparison, whether the variable selection is per-
formed (Model 2) or not (Model 1) resulted in similar reliability but
model 2 was more stable. Notably, the Dry zone of Sri Lanka, which has
undulating terrain with less variability with landscape and climatic
variation, resulted in almost no change in the estimates' reliability with
an increase of the calibration sites for the two tested models (Fig. 10).
The model reliability decreases for the Intermediate and Wet zones
with the increasing number of model calibration sites after n > 400
sites. This coincides with the calibration model quality evaluated using

the fully independent dataset also revealed the model prediction qual-
ity stagnated after n > 400 calibration sites (Fig. 9).

As the study area expands to a larger spatial scale, the soil carbon
distribution may become more heterogeneous, making capturing all
variations challenging. The relationship between sample size and mod-
elling performance can be influenced by various factors, such as the
spatial scale of the study and the heterogeneity of the soil carbon distri-
bution (Stevens et al., 2013). Therefore, the relationship between sam-
ple size and modelling performance may not always be linear. In some
cases, the improvement in modelling performance reaches a point be-
yond which further increases in sample size do not significantly en-
hance the model performances (Wartini et al., 2020). This saturation
may occur when the existing sample size adequately captures the domi-
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Table 7
Summary of relevant studies on the modelling and mapping of soil carbon.
Region Land use Soil depth(cm) No: of samples Model Soil carbon

predictor
Soil
carbon
pool

Mean soil carbon
stocks/concentration
in paddy soil

References

Yujiang County,
Jiangxi Province,
China

Paddy 100 ± 5 (vertical
distribution from
top to bottom)

306
(calibration = 214,
validation = 92)

PLSR, ANN, Cubist,
GPR, and SVMR
with the CARS

SOC In different parent
materials:

• Red sandstone:
24.76–
0.51 g kg−1

• Shale: 29.42–
1.73 g kg−1

• River alluvium:
26.61–
0.65 g kg−1

• Quaternary red
clay: 22.45–
0.27 g kg−1

(Xu et al.,
2020)

Jiangxi Province,
China

Paddy,
Upland soil,
Forest

0–20
20–40

256 MLR, RK Land use, Elevation,
Parent material

SOC 0–20: 27.6 g kg−1

20–40: 12.11 g kg−1
(Song et al.,
2020)

Jinjing catchment,
China

woodlands,
paddy fields
and tea fields

0–20 1033 GWR, OK, IDW,
LMR, LMM,

Elevation, Slope,
TWI, Land use

SOC 3.50 kg−2 (Liu et al.,
2017)

South eastern part
of China

Paddy 0–15 212 MLR, OK, SK, RK NDVI, Elevation,
Elevation above
nearest drainage
path, TWI

TC 0.5–1.5% (Sumfleth and
Duttmann,
2008)

Selangor, Malaysia Paddy 0–20 138, 30 extra points
for validation

K – SOC 3–5% (Aishah et al.,
2010)

Lombok Island,
Indonesia

Paddy 0–10 150 PLSR – SOC 0.90–2.98% (Kusumo et
al., 2018)

Central highland of
Madagascar,
Sothern Africa

Paddy 0–10 (mainly) 59 Vis-NIR diffuse
reflectance
spectroscopy, PLS

– TC 2.18% (±1.16) (Kawamura et
al., 2017)

Bara district, Nepal Paddy 0–15 109 OK – SOC 2.13% (±1.5) (Panday et al.,
2018)

Sri Lanka, Northern
Province

Paddy 0–15
15–30

83 LMM DEM, WI, ARF, MT,
NDVI

SOC 0–15: 1.78% (±0.78)
15–30:1.03% (±0.47)

(Ratnayake et
al., 2016)

Current study
(whole Sri
Lanka)

Paddy 0–15 987 RF Rainfall,
temperature, VPD.
MODIS EVI, slope,
TWI

TC Wet zone: 5.36%
(±2.07)
Intermediate zone:
2.40% (±0.0.74)
Dry zone: 1.89%
(±0.41)

Current study

Note: Soil carbon pool abbreviations: Soil organic carbon (SOC), total carbon (TC); Model name abbreviations: Partial Least Square Regression (PLSR), Artificial Neural
Network (ANN), Gaussian process regression (GPR), Support Vector Machine Regression (SVMR), Competitive Adaptive Reweighted Sampling (CARS), Multiple Lin-
ear Regression (MLR), Regression Kriging (RK), kriging (K), Ordinary Kriging (OK), Simple Kriging (SK), Geographically Weighted Regression (GWR), Inverse Dis-
tance Weighted (IDW), visible and near-infrared (Vis-NIR), Linear Mixed-effects Model (LMM), Random Forest (RF); SOC predictor abbreviations: laboratory-based hy-
per-spectral imaging (HSI), topographic wetness index (TWI), normalised difference vegetation Index (NDVI), digital elevation model (DEM), wetness index (WI), an-
nual rainfall (ARF), mean temperature (MT), vapour pressure deficient (VPD), enhanced vegetation index (EVI).

nant predictors used for the soil carbon modelling and additional sam-
ples do not provide substantial new information. Therefore, these re-
sults indicate that the locations selected in n = 400 adequately repre-
sent the study area's soil-environment relationships under the current
modelling framework. The variable importance plot of Model 2 for
n = 400 showed that almost all the variables used in Model 1 were
utilised in developing Model 2, except for the slope angle (Fig. S2). It
was also revealed that despite changing calibration sites, top three key
variables that were identified includes mean annual rainfall, annual av-
erage maximum temperature and annual average mean temperature.
Furthermore, relatively lesser significance of the slope angle and the
SAGA wetness index is evident.

The supplementary material includes the spatial distribution of the
calibration sites sequence used for further comparison with the full cali-
bration sites (Fig. S1), the site distribution with major climatic zones
(Table S1), key drivers identified using variable importance plot for
Model 1 and Model 2 (Fig. S2), and fully independent validation plots
(Fig. S3).

3.8. Model prediction uncertainty

The prediction uncertainty associated with spatial output layers
generated using ML algorithms can be assessed through variety of ap-
proaches. Commonly used methods for analysing prediction uncer-
tainty in ML algorithms include: (a) model-embedded quantile regres-
sion, such as the quantile random forest estimator (Wadoux et al.,
2023), enabling the quantification of prediction interval coverage
(Wadoux, 2019); (b) ensemble model development using bootstrapping
(Rossel et al., 2014); and more recently (c) utilising the AOA concept
(Meyer and Pebesma, 2021). In the current study, two different ap-
proaches were employed to quantify prediction uncertainties, namely
bootstrapping and the AOA concept. Both tested methods resulted in
similar overall patterns of uncertainty estimation across the landscape
(Figs. 8 and A2). The AOA concept, as presented in Meyer and Pebesma
(2021), provides a systematic approach to assess the applicability and
uncertainty of spatial prediction models. The AOA function delineates
regions where spatial prediction models offer reliable and accurate esti-
mations, enhancing our understanding of the model's prediction limita-
tions and associated uncertainties.
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Fig. 9. Comparison of the model quality with the full calibration dataset with sequence of increase of the calibration dataset for Model 1 and Model 2, (a) Nash-
Sutcliffe model efficiency coefficient (NSE), (b) Lin's Concordance Correlation Coefficient (LCCC), (c) Root-Mean Square Error (RMSE%).

3.9. The practical implication of the derived outputs

The derived spatial estimates across all rice production regions in
Sri Lanka provide the first-ever detailed country-scale assessment of TC
concentration. These spatial estimates can be used to formulate an inte-
grated management strategy to enhance rice productivity by increasing
the TC concentration, mainly through SOC. In designing such strate-
gies, the best-performing lands within a given region (based on the dri-
vers of the TC concentrations) should be considered as determining the
practically attainable TC concentrations. Hence, management strategies
should be developed using the thus-defined attainable TC concentra-
tions by considering both strategic tillage and improved stubble man-
agement. This strategy will lead to the development of other land
parcels with low levels of TC compared to existing land parcels in the
same geographic region in order to move closer towards the attainable
TC limit. This approach is important, as the values of TC concentration

are clearly distinct across the major climatic zones, being predomi-
nantly affected by annual rainfall.

Furthermore, spatial TC concentration estimates provide a carbon
baseline for future carbon trading, which relies on greenhouse gas emis-
sions and subsequent storage capacity. Hence, the project can help
identify and prioritise potential locations for soil-based carbon seques-
tration projects. In fact, the generated baseline datasets will be im-
mensely useful for Sri Lanka to develop IPCC Tier 3 carbon accounting
model for the land sector in the near future. The estimated spatial soil
TC concentration values within the areas that were identified as being
less reliable through AOA should be interpreted with caution, due to
the associated uncertainty of the estimates. Furthermore, those regions
can be used to define future targeted field sampling campaigns to im-
prove the reliability of the spatial estimates of the soil TC concentra-
tions.
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Fig. 10. Comparison of the model percentage area of reliability using area of applicability (AOA%) concept considering broad climate zones and whole country using
two different model fitting processes.

3.10. Limitations of the current study

Even though the best possible environmental covariates at 100 m
resolution were used for the current predictions, there are practical lim-
itations to how much improvement can be achieved through their com-
bination. Integrating target variable data and environmental covariates
is crucial for accurately understanding and predicting the spatial distri-
bution of soil carbon. However, the combination of these data reaches a
saturation point in terms of model improvement. Beyond this point, in-
troducing more data can even have a counterproductive effect, poten-
tially leading to a decrease in model reliability. When additional data
points are introduced, they can create complex or diverse relationships
that the existing model structure might not be capable of capturing. The
intricacies of these new relationships may be difficult to align with the
patterns identified by the initial covariate dataset, which can lead to an
unexpected outcome in the overall performance of the model. There-
fore, some limitations associated with selected environmental covari-
ates and their combined effect could reduce the model's performance
and reliability. In such cases, introducing alternative or new sets of co-
variates could be a potential strategy to address this limitation. How-
ever, the success of this approach is cannot be guaranteed. The efficacy
of these alternative covariates depends on whether the new relation-
ships they introduce align with the underlying dynamics of the soil car-
bon in the region.

4. Conclusions

Both RF models fitted in the current study exhibited similar model
quality, while Model 2 incorporates a smaller number of environmental
covariates compared to Model 1. A series of calibration models with
varying sample sizes were evaluated, and their performances improved
until n = 400, after which they stagnated. In the country-scale compar-
ison, both Model 1 and Model 2 yielded similar reliability, while Model
2 was more stable. In the Dry zone, both models exhibited comparable
reliability with an increasing number of calibration sites. However, in
the Wet and Intermediate zones, model reliability decreased after,
n > 400. The results suggested that the locations selected in n = 400
adequately reflect the study area's soil-environment relationships under
the current modelling framework. The derived AOA maps be used to
target additional samples first to improve model quality, followed by
spatial estimates. In this case, recognizing the potential challenges and
intricacies of incorporating additional samples or environmental pre-
dictors is pivotal in maintaining realistic outcomes regarding model
performance. In this study, the first-ever detailed baseline spatial esti-
mates of TC concentration across the paddy-growing regions in Sri
Lanka were derived. The derived maps will be pivotal for allocating re-
sources to enhance the TC, mainly through SOC management with the
aim of enhancing soil health and rice productivity. The regional differ-
ences in soil carbon distribution could be helpful in Sri Lanka for plan-
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ning site-specific fertilizer recommendations for rice cultivation. Well-
demarcated AOA maps are vital to avoiding possible deception when
utilising such predictive maps to assist decision making. Furthermore,
enhancing the TC concentration will act as an offset strategy for the
mitigation of climate change.
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Appendix A

Fig. A1. Spatial distribution of environmental covariates (A) Mean annual Rainfall (Rainfall) (B) Annual average minimum Temperature (Min T) (C) Elevation
(D) Vapour Pressure Deficient (VPD) (E) Annual average maximum Temperature (Max T) (F) MODIS Enhanced Vegetation Index (Modis EVI) (G) Slope angle (H)
Annual average mean Temperature (MIT) (I) SAGA Wetness Index (WI).
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Fig. A2. Uncertainty of TC prediction (%) in paddy-growing soils across Sri Lanka with the major climatic zone boundaries derived through a calculated 90% pre-
diction interval. The areas remaining as white colour patches are non-paddy areas, (a) Uncertainty of prediction according to Model 1, and (b) Uncertainty of predic-
tion according to Model 2.

Table A1
Descriptive statistics for the uncertainty of total carbon prediction (%) in paddy soils across the country and in major climatic zones of Sri Lanka.

Model 1 Model 2

Variable Mean Min Max SD Q1 Q3 Mean Min Max SD Q1 Q3

Whole country 0.65 0.15 9.36 0.58 0.37 0.67 0.67 0.12 8.65 0.52 0.40 0.72
Wet 1.62 0.26 9.36 1.06 0.99 1.84 1.56 0.30 8.65 0.91 1.02 1.81
Intermediate 0.57 0.16 3.78 0.33 0.36 0.66 0.60 0.13 3.79 0.32 0.39 0.70
Dry 0.49 0.15 3.10 0.20 0.36 0.55 0.52 0.12 3.17 0.21 0.39 0.61

Note: Min: Minimum, Max: Maximum, SD: Standard Deviation, Q1: first quartile, Q3: third quartile.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.geodrs.2023.e00745.
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