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Abstract
Mycobacterium tuberculosis (Mtb) remains a leading infectious disease responsible 
for millions of deaths. RNA sequencing is a rapidly growing technique and a pow-
erful approach to understanding host and pathogen cross-talks via transcriptional 
responses. However, its application is limited due to the high costs involved.This 
study is a preliminary attempt to understand host–pathogen cross-talk during TB 
infection in different TB clinical cohorts using two biological fluids: Whole blood 
and serum exosomes (EXO). We conducted an RNA-sequencing machine-learn-
ing approach using 20 active TB (ATB), 11 latent TB (LTB), three healthy control 
(HC) whole blood datasets, and two ATB, LTB, and HC serum EXO datasets. Dur-
ing the study, host-derived differentially expressed genes (DEGs) were identified in 
both whole blood and EXOs, while EXOs were successful in identifying pathogen-
derived DEGs only in LTB. The majority of the DEGs in whole blood were up-
regulated between ATB and HC, and ATB and LTB, while down-regulated between 
LTB and HC, which was vice versa for the EXOs, indicating different mechanisms 
in response to different states of TB infection across the two different biologi-
cal samples. The pathway analysis revealed that whole blood gene signatures were 
mainly involved in host immune responses, whereas exosomal gene signatures were 
involved in manipulating the host’s cellular responses and supporting Mtb survival. 
Overall, identifying both host and pathogen-derived gene signatures in different bio-
logical samples for intracellular pathogens like Mtb is vital to decipher the complex 
interplay between the host and the pathogen, ultimately leading to more successful 
future interventions.
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Introduction

Tuberculosis (TB) remains one of the deadliest diseases caused by a single bacte-
rial pathogen, Mycobacterium tuberculosis (Mtb), leading to more than 1.5 mil-
lion deaths annually (World Health Organization 2022). With the recent under-
standing of TB infection and disease, researchers have demonstrated that TB 
exists in a continuous spectrum: Active TB (ATB), latent TB (LTB), incipient TB 
(with no evidence of active Mtb), and subclinical TB (with radiological abnor-
malities and microbiological evidence of active Mtb) (Migliori et al. 2021). After 
the TB bacteria enter the body, it can either be eliminated by activating the innate 
immune system or persists for decades in a dormant state in asymptomatic indi-
viduals with no clinical symptoms by triggering the adaptive immune response 
(Chandra et al. 2022). The latter has resulted in 2–3 billion latent TB individuals 
(23%), with a 5–10% lifetime risk of disease reactivation (World Health Organi-
zation 2022).

The existing TB diagnostic tests focus on detecting Mtb or specific host 
immune responses using relatively faster, simpler, and cost-effective methods, 
such as tuberculin skin test (TST), interferon-gamma release assays (IGRAs) 
(Loureiro et  al. 2019; Barker et  al. 2023) or nucleic acid amplification tests 
(NAATs), most commonly the polymerase chain reaction (PCR)-based tests (Chin 
et al. 2018; Nandlal et al. 2022). However, these routine diagnostic tests are not 
specific for predicting disease progression (Pai and Sotgiu 2016) or distinguish-
ing active disease from latent infection (Carranza et al. 2020). Therefore, ongo-
ing research to develop diagnostic tools for predicting TB disease progression is 
much demanded to address these challenges.

The choice of biological fluid for biomarker identification in the context of 
TB diagnosis is indeed crucial. Blood is frequently chosen as a biological fluid 
and recommended by the World Health Organization (WHO) for TB biomarker 
identification due to its systemic nature, ease of collection, and availability in a 
wide range of individuals, including pediatric and adult populations, and more 
over immunocompromised individuals (Wallis et al. 2010; Denkinger et al. 2015; 
Goletti et al. 2016). Even though blood is suitable for identifying host biomark-
ers associated with TB disease and infection, there may be better choices due to 
the low abundance of pathogen molecules in the blood, thus, requiring a larger 
volume of samples (Banada et al. 2013). Considering this, exosomes (EXO) have 
shown promise for pathogen and host biomarker identification in infectious dis-
eases, especially for intracellular pathogens like Mtb (Lv et  al. 2017; Alipoor 
et al. 2019; Lyu et al. 2019). Extracellular vesicles are an emerging area of inter-
est for diagnostic biomarker identification, therapeutics, and clinical applications 
(Sen et al. 2023).

Biomarker identification for TB diagnosis through RNA sequencing (RNA-
seq) is a promising approach that can provide valuable insights into host and 
pathogen transcriptomic profiling to decipher the molecular mechanisms underly-
ing this complex host–pathogen interaction (Lv et al. 2017; Sambarey et al. 2017; 
Leong et al. 2018; Singhania et al. 2018; Estévez et al. 2020; Madamarandawala 



Biochemical Genetics	

et  al. 2023). These studies have shown that transcriptomic profiling in different 
stages of TB disease and infection can vary significantly. Therefore, identifying 
specific gene expression patterns associated with different TB disease and infec-
tion stages can aid in developing better diagnostic tools, biomarkers for treatment 
response, and novel therapeutic strategies for TB.

However, the complexity and cost of the technique currently limit the clinical 
application of RNA-seq for TB diagnosis (Martínez-Pérez et  al. 2022). Neverthe-
less, RNA-seq-based machine-learning approaches offer promising solutions to 
address these challenges and make TB diagnosis more efficient, accurate, and glob-
ally accessible (Singhania et al. 2018). Therefore, this study aims to assess the suit-
ability of both whole blood and, serum-derived EXOs to identify the pathogen and 
host-derived biomarkers in different clinical groups of TB and healthy controls using 
publicly available RNA-seq datasets, especially the first study to include locally 
obtained active TB RNA-seq dataset from Sri Lanka for a combined machine-learn-
ing approach. The outcomes will contribute to choosing between whole blood, and 
serum-derived EXOs for host and pathogen-specific biomarker identification, and 
potential pathway analysis involved in each stage of TB disease, thereby aiding the 
development of new diagnostic tools and therapeutics.

Materials and Methods

Data Acquisition

All the selected transcriptomic datasets represent the pre-COVID period. The 
whole blood RNA-sequencing datasets of three different cohorts, Spain/Mozam-
bique, India, and Sri Lanka, were retrieved from public repositories of EMBL-EBI 
Accession number: E-MTAB-7830, 10 ATB, and 11 LTB from Spain/Mozambique 
(https://​www.​ebi.​ac.​uk/​biost​udies/​array​expre​ss/​studi​es/E-​MTAB-​7830, accessed 
on 01 November 2022); Gene Expression Omnibus (GEO) Accession number: 
GSE122485, four subjects of ATB, and three HC from India (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE12​2485, accessed on 07 November 2022), 
and NCBI Bio project Accession number: PRJNA720487, 10 ATB from Sri Lanka 
(https://​www.​ncbi.​nlm.​nih.​gov/​biopr​oject/?​term=​PRJNA​720487, accessed on 01 
November 2022). Serum-derived EXOs: The only serum-derived exosomal RNA-
sequencing dataset was retrieved from the GEO Accession number: GSE94907, two 
ATB, LTB, and HCs from China (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​
acc=​GSE94​907, accessed on 01 November 2022) (Table 1).

Inclusion and Exclusion Criteria

Overall, the ATB datasets consisted of newly diagnosed pulmonary TB patients who 
had not initiated anti-TB treatment or were within the first 5 days of treatment. The 
LTB patients were healthy individuals who had been exposed to microbiologically 
confirm pulmonary TB cases and had a positive result on either the tuberculin skin 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-7830
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122485
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122485
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA720487
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94907
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94907
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test (TST) and/or the interferon-gamma release assay (IGRA), and normal chest 
X-ray or computed tomography (CT) scan.

To account for false positivity due to exposure to environmental mycobacteria 
and BCG vaccination, individuals were selected based on two-step TST/IGRA strat-
egy: Negative results on both the TST and the QuantiFERON TB-Gold In-Tube 
enzyme-linked immunosorbent assay (ELISA) or IGRA, as well as the absence of 
chest radiograph abnormalities or pulmonary symptoms (applied to the Indian and 
Chinese study cohorts). The healthy, uninfected individuals had negative TST or 
IGRA tests, regular chest CT, and no clinical evidence of any diseases. The exclu-
sion criteria for ATB patients included prior anti-TB treatment or any immuno-
compromising conditions. For LTB individuals, exclusion criteria included clinical 
symptoms or evidence of ATB and other non-tuberculosis respiratory infections. A 
detailed overview of inclusion and exclusion criteria based on each study is summa-
rized in Supplementary Material 1.

Computing Resource and Software Operating Environment for RNA‑Seq Analysis

All analyses were performed on a computer equipped with 24 GB of random access 
memory (RAM) and a 7 core processor. For programs requiring an Ubuntu operat-
ing system, Ubuntu 22.04 LTS was installed on the machine (Pertea et al. 2016).

Data Processing and Statistical Analysis

The downloaded sequences were mapped against the human reference genome 
(GRCh38) and the Mtb reference genome (NC00962) using HISAT2 software (ver-
sion 2.2.1). The transcript assembly and quantification were performed using String-
Tie (version 1.2.2). The output files (.gtf files) were then used to generate two CSV 
files containing count matrices for genes and transcripts using a Python script for 
differential expression analysis using DESEQ2. These CSV files were imported into 
R (version 4.1.3) and analyzed for differential expression analysis using DESEQ2 
(version 2.0.1). Each output file was then sorted based on the q-value < 0.05 or 
p-value < 0.01 and a Log2FoldChange (> ± 0) for further analysis using PyCharm 
(version 2023.2.1).

For host-specific pathway enrichment analysis, the list of genes with a 
p-value < 0.01 from each comparison group was analyzed using the online Reac-
tome pathway database (https://​react​ome.​org). The output files were used to con-
struct the bar charts for the top-20 pathways using PyCharm (version 2023.2.1). 
Pathogen-specific Gene ontology (GO) enrichment analysis was performed using 
the PANTHER overrepresentation test (Gene and Consortium 2000) with the 
list of Mtb genes identified between LTB and HC (q-value < 0.05 and Log2Fold-
Change >  ± 0). P-values were calculated using Fisher’s exact test adjusted for false 
discovery rate. The GO analysis categorized gene functions into biological process 
(BP), molecular function (MF), cellular component (CC), and PANTHER pathways. 
Only significantly enriched gene functions (p-value < 0·05) were reported. STRING 
(https://​string-​db.​org/) was used to predict protein–protein interactions and visualize 

https://reactome.org
https://string-db.org/
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network connectivity (Szklarczyk et al. 2019). The network was based on evidence 
from experiments, curated databases, or prediction of co-expression and gene 
fusions with medium confidence score (≥ 0·4).

Results

Host‑Specific Differential Expression Analysis

Host-specific differential expression analysis was conducted using RNA-seq data-
sets obtained from whole blood and serum-derived EXOs of ATB, LTB, and HC 
individuals. Pairwise comparisons were performed between all clinical groups to 
identify host-specific biomarkers using whole blood and serum-derived EXO data-
sets, separately. In the analysis, none of the clinical groups showed differentially 
expressed genes (DEGs) with a q-value < 0.05 for the EXO data, p-value < 0.01, 
Log2FoldChange >  ± 0 was chosen. For whole blood, the pairwise comparison was 
made between q-value < 0.05 and p-value < 0.01, Log2FoldChange >  ± 0 (Table 2). 
According to the results, the number of identified DEGs in EXOs was higher com-
pared to the whole blood. However, whole blood showed more statistically sig-
nificant host-specific DEGs, particularly in the comparison between LTB and HC, 
where 3044 genes were identified (p-value < 0.01). In contrast, the comparison 
between ATB and HC in whole blood recorded the fewest statistically significant 
DEGs, with 222 genes identified (p-value < 0.01) (Table 2).

When comparing the proportions of up-regulated and down-regulated DEGs 
across clinical groups, whole blood accounted for a higher proportion overall. Nota-
bly, the comparison between LTB and HC in whole blood revealed a substantial pro-
portion of down-regulated DEGs (28.6%) (Table 3).

Moreover, the gene expression analysis for each clinical group is displayed using 
the volcano plots, as shown in Fig. 1. The top 10 differentially expressed up-regu-
lated and down-regulated genes are presented in Table 4. According to the results, 
both whole blood and EXOs have distinct set of up-regulated and down-regulated 
DEGs for each comparison group.

Table 2   Total number of differentially expressed host genes and statistically significant DEGs of whole 
blood and EXOs

Biological sample Combinations Total number of 
DEGs identified

Number of host-specific genes

q-value < 0.05 p-value < 0.01

Serum-derived EXOs ATB_HC 11139 None 406
LTB_HC 14084 None 381
ATB_LTB 17288 None 209

Whole blood ATB_HC 9330 16 222
LTB_HC 9046 2422 3044
ATB_LTB 9232 1 454
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Host‑Specific GO Enrichment Analysis

To study the different enrichment pathways involved with the significantly up-
regulated or down-regulated host gene sets of all three categories in whole blood 
and EXOs, a host-specific pathway enrichment analysis was performed (Fig. 2). 
In here, between ATB and HC, the key up-regulated pathways in whole blood, 
involving with more than 100 genes, include “immune system, gene expression, 
metabolism of RNA, cytokine signaling in immune system, cellular responses 
to stress and stimuli, viral infection pathways and, adaptive immune system.” 
The top-5 pathways involved in the down-regulated genes of EXOs are “tran-
scriptional regulation by MECP2, GLI proteins bind promoters of hedgehog 

Table 3   Statistically significant up-regulated and down-regulated DEGs and proportions compared to the 
total identified host DEGs of each pairwise comparison (p-value < 0.01)

Clinical group combinations Up-regulated: Down-regulated 
DEGs

Proportions compared to 
the total identified DEGs

ATB_HC (Whole blood) 190:32 0.020:0.003
ATB_HC (EXOs) 137:269 0.012:0.024
LTB_HC (Whole blood) 458:2586 0.051:0.286
LTB_HC (EXOs) 237:144 0.017:0.010
ATB_LTB (Whole blood) 142:312 0.015:0.034
ATB_LTB (EXOs) 130:79 0.007:0.004

Fig. 1   Volcano plots showing the top 10 differentially up- and down-regulated host genes between A 
ATB and HC (Whole blood), B LTB and HC (Whole blood), C ATB and LTB (Whole blood), D ATB 
and HC (EXOs), E LTB and HC (EXOs), and F ATB and LTB (EXOs) (p-value < 0.01)
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(Hh) responsive genes to promote transcription, RUNX3 regulation mediated by 
YAP1 transcription, MECP2 regulates transcription factor and proline catabo-
lism” (Fig. 2A). Conversely, between LTB and HC, majority of the whole blood 
signatures which are up-regulated during the active disease are down-regulated 
in the latent stage (Fig.  2B). Between ATB and LTB, up-regulation of two 
important pathways is highlighted in EXOs, “activation of HOX genes during 
differentiation,” and “defective intrinsic pathway for apoptosis due to p14ARF 
loss of function.” Between ATB vs LTB, the main pathways involving interferon 
(IFN) gamma signaling, IFN signaling, cytokine signaling, neutrophil degranu-
lation, cell differentiation, adaptive and innate immune system, WNT signaling, 
and RUNX1 transcriptional regulation are down-regulated in ATB compared to 
LTB (Fig. 2C).

Pathogen‑Specific Differential Expression Analysis

According to the differential expression analysis for pathogen-specific biomarker 
identification, a total of 1377 statistically significant DEGs (q-value < 0.05) were 
identified in the EXO RNA-seq datasets between LTB and HC. Among them, 97 
Mtb genes are up-regulated and 1280 down-regulated. Figure 3 shows the top 10 up-
regulated and down-regulated Mtb genes. The top three up-regulated genes are fmt 
(tRNAfMet-formyl transferase), PPE8 (PE family protein), and PPE56 (PE family 
protein). The top three down-regulated genes are rrs (16S ribosomal RNA), dnaA 
(Chromosomal replication initiator protein), and gyrB (DNA gyrase subunit B) 
(Table 5). In addition, rrs, rrl, and pks genes were identified in comparisons between 

Fig. 2   Reactome pathway enrichment analysis of up-regulated and down-regulated host-specific genes 
differentiating whole blood and EXOs of A ATB vs HC, B LTB vs HC, and C ATB vs LTB
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ATB and HC individuals; however, these results were not statistically significant 
(Supplementary material 2). Notably, no statistically significant pathogen-specific 
DEGs were observed in whole blood for any of the clinical groups.

Pathogen‑Specific Gene Ontology (GO) Enrichment Analysis

The pathogen-specific GO enrichment analysis between LTB and HC showed six 
enrichment terms for biological processes. The top three enrichment terms were 
cellular process, biological process, and cellular metabolic process (false discovery 
rate [FDR] < 0.004). For molecular function (MF), 11 terms were identified, with 
the most enriched being ion binding, molecular function, carbohydrate derivative 

Fig. 3   Volcano plot showing top 10 differentially up-regulated and down-regulated pathogen-specific 
genes of serum-derived EXOs in the pairwise comparison between latent TB (LTB) and healthy indi-
viduals (HC) (q-value < 0.05)

Table 5   The top 10 differentially up- and down-regulated Mtb genes between LTB and HC 
(q-value < 0.05)

Up-regulated genes Log2FoldChange Down-regulated 
genes

Log2FoldChange

fmt 4.574438 rrs − 19.0916090
PPE8 8.765720 dnaA − 0.9833287
PPE56 9.119854 gyrB − 0.9460011
ctpG 9.902101 ileT − 1.0596897
gmhA 8.304650 ppiA − 0.8084603
atsB 11.158690 trpG − 0.7947428
pks10 11.140646 pknA − 0.8765491
echA7 10.654208 rodA − 0.8280315
cyp51 11.127032 pstP − 0.7069693
modC 11.794122 bioF2 − 0.7192605
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Fig. 4   Pathogen-specific GO enrichment analysis between latent TB (LTB) and healthy individuals (HC) 
serum-derived EXOs for biological process (BP), molecular function (MF), cellular component (CC) 
(p-value < 0.05)
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binding, binding, and catalytic activity (FDR < 0.007). For cellular component (CC), 
only a single term was obtained: Cellular anatomical entity (FDR < 0.01) (Fig. 4). 
Moreover, PANTHER pathway analysis revealed a single pathway correlated 
with the respective proteins: Mycobacterial arginine biosynthesis (p-value < 0.05) 
(Table 6).

Protein–Protein Interaction (PPI) Network Analysis

The PPI network of up-regulated Mtb genes obtained for LTB vs HC using the 
STRING database revealed that the extracted interactome consisted of 97 nodes and 
148 edges. The average node degree and average local clustering coefficient of the 
network were 3.05 and 0.394, respectively. The BP, MF, and CC GO enrichment 
analysis showed similar results to the PANTHER GO enrichment analysis (Fig. 5, 
Left). For the down-regulated Mtb genes, the network comprised 42 nodes and 25 
edges, with an average node degree of 1.19 and an average local clustering coeffi-
cient of 0.352. None of the identified Mtb proteins were categorized under BP, MF, 
or CC GO enrichment terms. However, functional enrichment was observed for 9 
genes classified as “secreted (KW-0964)” based on UniProt annotation. These genes 
ompA, PPE57, esxW, VapC39, lipU, pstS1, PE13, VapC38, and VapC44 were cat-
egorized under CC enrichment within the term extracellular region (GO:0005576) 
(Fig. 5, Right, and Supplementary Material 2).

Discussion

This study primarily aims to compare the suitability of two biological samples, 
whole blood and serum-derived EXOs, for identifying host and pathogen-derived 
biomarkers across clinical groups (ATB vs HC, LTB vs HC, and ATB vs LTB). This 
also explores distinct mechanisms functioning in these two biological fluids in rela-
tion to host–pathogen interactions. Additionally, the study provides valuable insights 
into the advantages and limitations of each sample type for future TB biomarker 
identification.

A comparison of the DEGs revealed clear variation in gene up-regulation and 
down-regulation depending on TB disease stages and the biological fluids analyzed. 
Between ATB and HC, most host DEGs were up-regulated in whole blood but 
down-regulated in EXOs. These differences in gene expression patterns likely reflect 
the complex host–pathogen interactions during TB infection. Consistent with previ-
ous studies, the majority of up-regulated genes in whole blood were mainly involved 
in immune response and cellular regulation pathways, including “metabolism of 
RNA, cellular responses to stress, signaling by interleukins, adaptive immune sys-
tem and cytokine signaling in immune system.”

Interestingly, transcriptional regulation by methyl-CpG-binding protein 2 
(MeCP2) and proline catabolism pathways were down-regulated in EXOs during the 
active stage. MeCP2 is a crucial protein that regulates gene expression through its 
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interaction with methylated DNA (Zalosnik et al. 2021). Given its role immune cells 
and cytokine production (Zalosnik et  al. 2021), alterations in MeCP2 could influ-
ence immune function during TB infection. Previous studies have reported that Mtb 
infection can induce rapid alterations in DNA methylation, especially in leukocyte 
subsets, thereby compromising the host immune system’s ability to respond effec-
tively to mycobacteria (Chen et al. 2014; Frantz et al. 2019; DiNardo et al. 2020; 
Qin et  al. 2021). Thus, MeCP2-linked DNA methylation may significantly impact 
the host’s immune responsiveness to Mtb. However, further studies are required 
to elucidate the specific pathways and genes regulated by MeCP2 in immune acti-
vation. Another down-regulated pathway in EXOs was proline dehydrogenase 2 
(PRODH2), also known as hydroxyproline dehydrogenase, which is specifically 
involved in hydroxyproline catabolism. Hydroxyproline is associated with hypoxia-
inducible factor 1 alpha (HIF-1α), a critical transcription factor that regulates the 
body’s response to low oxygen levels. Under hypoxic conditions, HIF-1α activation 
promotes cellular adaptation and survival by inducing the expression of genes that 
facilitate adaptation to low oxygen. However, down-regulation of this gene during 
the active stage under normoxic condition may enhance the bacterial killing during 
the early stage of TB infection (Phang 2023).

Our results show that, between LTB and HC, the majority of whole blood signa-
tures that are up-regulated during the active disease are down-regulated in the latent 
stage. In contrast, EXOs show significant up-regulation of biological pathways asso-
ciated with latency. The persistence of Mtb within the host for extended periods dur-
ing dormancy, without triggering a robust immune response and resuscitation from 
multiple body sites, remains unclear. Previous studies revealed that both pluripo-
tent hematopoietic stem cells (HpSCs) and mesenchymal stem cells (MSCs) provide 

Fig. 5   PPI network obtained and visualized by STRING v12.0 for 97 up-regulated (left) and 42 down-
regulated (right) Mtb genes in serum-derived EXOs between LTB and HC individuals
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a niche for Mtb, allowing the bacterium to remain dormant for prolonged periods 
(Tornack et al. 2017; Mayito et al. 2019). Supporting the notion, our study observed 
the up-regulation of the POU5F1 gene in EXOs during the latent stage, which reg-
ulates the transcriptional regulation of pluripotent stem cells pathway. These find-
ings suggest that pluripotent stem cells may contribute to the long-term persistence 
of Mtb during dormancy and facilitates its dissemination through their migratory 
and differentiation capabilities. MSCs are also implicated in granuloma formation 
during latency by creating a favorable microenvironment for dormant Mtb bacilli 
and inhibiting the T-cell function, thereby supporting bacterial survival (Devi et al. 
2023). The erythropoietin-producing hepatocellular carcinoma (Eph) receptors and 
their corresponding ephrin ligands play critical roles in cell signaling, migration, 
and tissue development (Darling and Lamb 2019). Our findings align with prior 
research demonstrating that Mtb can manipulate host pathways such as Eph sign-
aling to support granuloma formation, enhancing its survival mechanism (Khoun-
lothm et al. 2009).

Our pathway analysis revealed up-regulation of the TFAP2 transcription factor in 
EXOs. Members of the TFAP2 family modulate the expression of lipid droplet pro-
teins and promote lipid droplet (LD) accumulation within cells (Scott et al. 2018). 
In agreement with that, Guirado et  al. (2015) reported that greater LD accumula-
tion in LTB granulomas compared to healthy individuals. Host fatty-acid pathway 
up-regulation in our study suggests that macrophages store neutral lipids as LDs, 
which can serve as an energy source for Mtb while simultaneously functioning as 
a host-defense mechanism against intracellular pathogens like Mtb (Guirado et al. 
2015; Knight et al. 2018). LD accumulation may also enhance eicosanoid produc-
tion-bioactive lipid mediators involved in the balance between pro- and anti-inflam-
matory immune response (Knight et al. 2018). This duality allows Mtb to manipu-
late eicosanoid biosynthesis for its survival and spread (Todorova et al. 2023). Thus, 
LDs represent a complex evolutionary interface between host defense and pathogen 
exploitation.

The up-regulation of the Mtb gene fmt (tRNAfMet-formyl transferase) in LTB 
patients is noteworthy due to fmt’s essential role in initiating protein synthesis, a 
critical process for bacterial growth and replication. While fmt is not universally 
essential across bacterial species, its deletion in Mtb has been linked to slower 
growth rates, which may still allow intracellular survival and disease progression 
(Vanunu et al. 2017). Our study supports this notion by showing fmt up-regulation 
in LTB patients, indicating that the mycobacteria are active, replicating, and sur-
viving intracellularly. This up-regulation in LTB patients suggests that the bacteria 
are in a state that necessitates active protein synthesis, supporting their intracellu-
lar persistence and pathogenicity. Here, we identify, PPE8 and PPE56, two PE/PPE 
family proteins up-regulated in LTB individuals. PE/PPE family proteins of Mtb are 
known to be involved in host immune modulation and immune evasion in favor of 
its survival within the host (D’Souza et al. 2023). Previous studies have also shown 
that PPE8 and PPE56 are involved with drug resistance of Mtb (Murcia et al. 2010; 
Gómez-González et al. 2023), therefore, worth studying the contribution to immune 
evasion and drug resistance in latently infected individuals.
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Blood transcriptional profiling revealed that cytokine signaling, WNT signaling, 
and cell differentiation were down-regulated in ATB compared to LTB (Estévez 
et al. 2020). In contrast to Estevez et al., our study identified down-regulation of IFN 
gamma signaling and IFN signaling pathways in ATB. Typically, IFN-related gene 
signatures are elevated in incipient LTB cases with more viable bacteria (Burel et al. 
2021). However, down-regulation of the WNT pathway in severe PTB cases may 
impair T-cell proliferation and activation, subsequently suppressing IFN pathways 
(Fan et  al. 2015, 2017). These findings underscore the importance of considering 
disease stage when identifying biomarkers.

Our PPI network analysis for LTB vs HC indicates that, although Mtb remains 
dormant, it is metabolically active, performing low levels of cellular functions such 
as ion, nucleotide, and small molecule binding, ATP binding, and catalytic activ-
ity. The down-regulation of extracellular secretion of certain Mtb-derived molecules 
suggests that Mtb manipulates intracellular survival mechanisms during latency 
(López-Agudelo et al. 2022; Bo et al. 2023).

A limitation of our study is the relatively small sample size of exosomal RNA-
sequencing datasets compared to whole blood. Future studies should prioritize 
EXO-related tuberculosis biomarker identification to enhance the validity of these 
findings. Despite this limitation, our results highlight the utility of whole blood and 
EXOs in TB biomarker identification, particularly for molecular diagnostics in chal-
lenging populations such as children and immunocompromised individuals. Our 
findings suggest that EXOs may be more effective in detecting viable mycobacte-
ria in latently infected individuals, making them a promising tool for TB biomarker 
identification and triage in these cases.
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