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A B S T R A C T   

The current study examined macro-environmental (climate and topography), micro-environmental (soil chem-
ical properties) drivers, and spatially derived parameters that are significantly associated with soil carbon pools 
(0–15 cm) across tropical paddy-growing areas in Sri Lanka using the data from 987 sampling sites across the 
country. Redundancy analysis was performed to identify the relationships between the explanatory variables and 
the variation in different soil carbon pools i.e., total carbon (TC), Microbial Biomass Carbon (MBC), Perman-
ganate Oxidizable Carbon (POXC), and Dissolved Organic Carbon (DOC). The spatial patterns in soil carbon pools 
were evaluated using Moran’s eigenvector maps. Results indicated that macro, micro-environmental drivers and 
spatial variables explained 47% of the inherent variation of the TC, MBC, POXC and DOC. Micro-environmental 
drivers had a larger unique fraction relative to macro-environmental drivers (4% and 1% of the total variation, 
respectively). Most of the variation explained by macro-environmental drivers was shared by micro- 
environmental drivers (11% out of 15%). Among macro-environmental drivers, rainfall and enhanced vegeta-
tion index were more strongly related to the soil carbon pools compared to the topography-related factors. In 
terms of micro-environmental drivers, total N, available K, Ca, and soil pH (H2O) were the best explanatory 
variables of soil carbon pools. Spatial patterns in soil carbon pools were largely induced by the environmental 
predictors that are spatially structured. Our findings provide insights into improving the reliability of spatial 
estimation of the soil carbon by incorporating important soil carbon preditors and quantifying the impacts of 
environmental changes on soil carbon pools.   

1. Introduction 

The planet is warming, and it is likely to be the most threatening and 
controversial environmental crisis of our century, which will cause 
devastating damage to the Earth’s habitats and human well-being 
(Malhi et al., 2020; Pecl et al., 2017). Soil carbon sequestration (SCS) 
serves as an effective strategy for converting atmospheric CO2 into a 
long-lived soil carbon pool and store in a form that is not easily ree-
mitted (Lal et al., 2018). This SCS strategy aids in the reduction of 
anthropogenic CO2 emissions while improving soil fertility and agri-
cultural productivity (Nair et al., 2015). For example, there are many 
theories on soil carbon sequestration capacity, it is commonly agreed 
that the soil’s ability to hold SOC is finite due to inherent soil properties, 

climate conditions, and land management practices (McNally et al., 
2017). Compared to the other terrestrial ecosystems, agricultural SOC 
contents can be easily increased by implementing proper management 
practices (Lal et al., 2011). 

Globally, rice is one of the leading food types consumed daily by >
50% of the world’s population (Nguyen et al., 2020). About 90% of the 
world’s rice is cultivated and consumed in the Asian continent 
(Muthayya et al., 2014), and approximately 80% of it is grown under 
submerged conditions (Bhattacharyya et al., 2014). Compared with 
carbon sequestration potential in upland soils, water-logged rice soils 
are much more efficient in preserving soil carbon (Chen et al., 2021). 

Global food production primarily relies on soil fertility, and soil 
carbon plays a significant role in maintaining fertility status (Balesdent 
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et al., 2018). In agricultural ecosystems, the carbon in-flows primarily 
depend on biomass decomposition, rhizodeposition, and the amount of 
carbon retained in soils (Zhang et al., 2021). At the same time, carbon 
losses are generally caused by oxidation or mineralisation and erosion 
and leaching processes (Zhang et al., 2021). Therefore, soil carbon 
vulnerability to destabilisation is an increasingly important topic in the 
context of global warming and SCS. As a result, studies on labile organic 
carbon are more beneficial for better-understanding soil carbon 
dynamics. 

The labile forms of the soil carbon report higher inter-annual vari-
ability of the fluxes but are equally crucial for plant nutrition (Xiao et al., 
2021). Further, compared to the sub-surface, a high proportion of car-
bon present in the soil surface exists as labile carbon pools (Marques 
et al., 2015). The turnover rates of these labile carbon pools could vary 
from days to a decade (Keskin et al., 2019). The labile pools of organic 
carbon and macroaggregates (>250 µm soil particles) may have 
considerable influence on soil quality, making them more sensitive in-
dicators of the effects of land-use changes or management changes than 
the total soil carbon pool (Yang et al., 2009). These labile SOC pools 
mineralised fast due to the lack of chemical and physical protection 
(Poeplau et al., 2013) and, thus, serve as energy sources for the soil 
microbes and influence nutrient cycling (Hendrix et al., 2018). The main 
labile soil carbon pools include soil microbial biomass carbon, water- 
soluble organic carbon, and water-soluble carbohydrates (Rajkishore 
et al., 2015; Vivek, 2008). 

The variation of soil carbon across space and time is modelled using 
two broad approaches: (a) using process-based models and (b) using 
empirical data-driven models. Generally, process-based models such as 
RothC and CENTURY and earth system models are used to quantify the 
variation of the soil carbon and different pools across space and time 
domains. Process-based models utilise conceptual pools of SOC, and 
mass fluxes between these pools are governed by the soil properties (e.g. 
clay content), climate and land management activities (Dangal et al., 
2022). On the other hand, earth systems models go beyond local con-
ditions, incorporating climatic interactions between land, atmosphere, 
ocean, ice and biosphere. While process-based models such as RothC 
(Coleman & Jenkinson, 1996) and CENTURY (Parton et al., 1988) are 
widely applied globally, there is an emerging interest in using earth 
system models. For example, Guatum et al. (2022) used a novel frame-
work where higher resolution SOC stock was derived using a machine 
learning environment and then fused the outputs with earth system 
models to predict the decadal changes of SOC under projected climate 
scenarios. Under natural environmental conditions, soil functions are 
strongly influenced by biological organisms living in the soil, soil 
chemical composition, terrain attributes, and climatic conditions (Liu 
and Liu, 2014). There is a complex interaction of these drivers at various 
spatial and temporal scales (Wiesmeier et al., 2019). Therefore, ana-
lysing the relationships of different soil carbon pools with macro- 
environmental conditions and inheriting soil physicochemical factors 
is helpful in developing a predictive understanding of soil carbon dy-
namics. This approach is the foundation for other empirical data-driven 
models. The climatic, topographic variables and land use data are 
mainly incorporated into soil carbon prediction function using the sco-
pan approach outlined by McBratney et al. (2003). These modelling 
frameworks are focused on univariate estimation/prediction of the 
considered SOC pool. For example, Gautam et al. (2022) and Mishra 
et al. (2022), have utilised the proxies for the major soil forming factors 
(climate, vegetation, topography, and parent material) on spatial pre-
diction of soil carbon through empirical modelling approaches. Simi-
larly, in the Sri Lankan context, Vitharana et al. (2019) and Ratnayake 
et al. (2016) used empirical modelling framework to estimate the soil 
carbon across the country and northern paddy regions, respectively. At 
the regional scale, Ratnayake et al. (2016) in the Northern paddy- 
growing region reported the vegetation index data as a proxy for car-
bon inputs while, at the national scale, Vitharana et al. (2019) reported 
the importance of elevation, precipitation and the slope angle as the key 

drivers of the SOC distribution across different vegetation types. 
Unique soil carbon controllers and their interactions should be in-

tegrated into carbon models to decrease uncertainty in predictions (Luo 
et al., 2020). Besides macro-environmental predictors, it is vital to 
identify the influence of site-specific parameters on defined soil carbon 
pools. This study has used a large soil carbon dataset across Sri Lanka to 
examine the complex interrelationships prevailing among TC (total 
carbon) and different soil carbon pools, namely; Microbial Biomass 
Carbon (MBC), Permanganate Oxidizable Carbon (POXC), Dissolved 
Organic Carbon (DOC), and macro and micro-environmental drivers in 
tropical paddy-growing soils of Sri Lanka by using constrained ordina-
tion methods. The constrained ordination methods are frequently used 
in ecological studies to evaluate relationships among two variable 
groups i.e., multivariate relationships (Cleary et al., 2022; Dray et al., 
2012). Odeh et al. (1991) successfully demonstrated that such methods 
can be used to elucidate the complex relationships among different soil 
and environmental attributes. Dorji et al. (2015) applied a similar 
multivariate ordination approach to identify the response of different 
soil carbon pools to a variety of environmental predictors. The present 
study is aimed at simultaneously evaluating the relative roles of local 
climatic conditions, topographic features, vegetation index data, and 
site-specific soil chemical properties in influencing the spatial variation 
in a matrix of soil carbon pools that are often interrelated to each other. 
Furthermore, we applied a variation partition approach to quantify the 
relative importance of different predictor variable groups (macro, micro 
and spatial) in stabilising below-ground soil carbon pools. The proposed 
approach works across multivariate space, simultaneously looking into 
drivers of different carbon pools compared to the aforementioned uni-
variate empirical modelling approaches. 

We hypothesise that different macro- and micro-environmental 
predictors structured within the space influence spatial variation in 
soil carbon. The results of the current research could provide necessary 
information on important soil carbon determinants. Our findings pro-
vide insights into sustainable utilisation of resources to enhance 
ecosystem services through climate change mitigation and soil fertility 
enhancement. 

2. Materials and methods 

2.1. Study area 

The study area, Sri Lanka, is located in the Indian Ocean, a tropical 
island specifically at the geographical coordinates of 5◦ 54′ and 9◦ 52′

from the North and 79◦ 39′ and 81◦ 53′ from the East. The area extent is 

Table 1 
Major paddy-growing soil groups covered by the study (sources: De Alwis and 
Panabokke, 1972; Mapa, 2020).  

Sri Lankan great soil group WRB (FAO) legend USDA Soil 
Taxonomy 
Order 

Alluvials Fluvisols Entisols 
Latosols Arenosols Oxisols 
Noncalcic Brown soils & Low Humic 

Gley 
Cambisols & Gleysols Alfisols 

Noncalcic Brown soils & soils on old 
alluvium 

Cambisols & Arenosols Alfisols & Entisols 

Reddish Brown Earths & Low Humic 
Gley 

Luvisols & Gleysols Alfisols 

Reddish Brown Earths & Solodized 
Solonetz 

Luvisols & Solonchaks Alfisols 

Reddish Brown Earths & Non Calcic 
Brown 

Luvisols & Cambisols Alfisols 

Solodized Solonetz Solonchaks Alfisols 
Bog and Half-Bog Histosols & Histic 

Fluvisols 
Histosols 

Reddish Brown Latosolic Alisols Ultisols 
Red-Yellow Podzolic Acrisols Ultisols  
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nearly 64, 610 km2, which experiences diverse climatic and topo-
graphical conditions. The annual mean temperature range is 
15 ◦C–30 ◦C, and the total annual precipitation varies from 600 mm (in 
dry, arid regions) to 6000 mm (in wet regions). The elevation gradient 
directed mean sea level (MSL) to nearly 2575 m height in high massif 
areas. Compared to other paddy-growing countries, Sri Lanka cultivates 
paddy under various hydrogeological regimes. The hydromorphic 
combinations of all its great soil groups in Sri Lanka are utilised for 
paddy cultivation (Panabokke, 1996). According to the soil map of Sri 
Lanka, published by De Alwis and Panabokke (1972), the Great soil 
groups of Sri Lanka covered by the study and their World Reference Base 
(WRB) legend and United States Department of Agriculture (USDA) 
taxonomical order are shown in Table 1. 

Rice is the principal food type of the country, grown as a wetland 
crop that represents a large portion of cultivated lands (34%) (Rat-
nayake et al., 2016). Therefore, there is excellent potential in storing and 
maintaining carbon in the paddy fields of Sri Lanka. The paddy-growing 
regions are located in every administrative unit of the country, and 
relatively flat terrain areas are utilised for its cultivation. Presently, 
about 708,000 ha of land are devoted to rice cultivation (Dammalage 
et al., 2018). 

2.2. Soil sampling 

2.2.1. Sampling design 
Nine hundred and eighty seven soil samples were collected and 

quantified across the three major climatic regions (wet, intermediate, 
and dry) in the paddy-growing soils of Sri Lanka. The sampling ap-
proaches aided for the current study were mainly designed to capture 
the spatial variability of soil carbon across the landscape using model-
ling and mapping techniques. Therefore, soil sampling was purposely 
conducted using Conditional Latin Hypercubic Sampling design (cLHS) 
and Stratified Random Sampling (SRS). The cLHS was adapted to 
determine calibration sampling locations, whereas the SRS was used to 
determine the fully independent validation sampling locations. While 
two sampling designs were adopted to collect the samples to satisfy the 
broader objectives of the project, for this particular analysis merged 
dataset was used. A brief description of the cLHS and SRS are provided 
below. 

The cLHS algorithm provides an efficient way of sampling from the 
multivariate distribution of the environmental covariates. It identifies a 
set of values from several covariates that satisfy the Latin hypercube 
requirement of only one sample in each row and column in n dimensions 
(Minasny and McBratney, 2006). Further, in the SRS design, the same 
environmental covariates used to develop cLHS were aided in creating 
the strata using the K-means clustering algorithm before randomly 
allocating sample locations. The environmental covariates used to 
develop the two sampling schemes are described below. 

2.2.1.1. Climate, topographic and vegetation index data. The climate data 
(mean annual rainfall, temperature (annual average mean, annual 
average maximum, annual average minimum), and vapour pressure 
deficient (VPD)) were obtained through the wordclim database (Word-
climhttp://https://www.worldclim.org/). The elevation data was ac-
quired through NASA SRTM data (https://www.cgiar-csi.org/data/srt 
m-90m-digital-elevation-databasev4-1). The SAGA Wetness Index (WI) 
(secondary terrain attribute) and slope (primary terrain attribute) were 
also derived through NASA SRTM data. Finally, the MODIS Enhanced 
Vegetation Index (EVI) data was derived from taking mean annual EVI 
data from 2005 to 2014 (NASAhttps://modis.gsfc.nasa.gov/data/data 
prod/mod13.php.). All environmental covariates were standardised to 
100 m spatial resolution prior to use in the analysis. A detailed 
description on the preparation of the climate and topographic datasets is 
provided in Rajapaksha et al. (2020). 

2.2.2. Soil sampling 
To find the precise sampling location of GPS locations generated 

using cLHS and SRS sampling strategies; sample locations were inserted 
into a GPS receiver (Garmin eTrex 30x) and navigated to the location in 
the field. A soil augur of 5 cm width was used for the sampling. In each 
site, three soil samples were taken and then pooled to form composite 
samples at a depth between 0 and 15 cm. The distribution of paddy- 
growing regions and the sampling locations within the country are 
shown in Fig. 1. 

2.3. Soil sample preparation and chemical analyses 

Initially, all visible organic debris, plant roots, and stones were 
removed by handpicking. Then the soil samples were air-dried at room 
temperature and sieved through a 2 mm mesh sieve. The chloroform 
fumigation and extraction method was used to determine MBC content 
(Anderson and Ingram, 1993). Further, the fresh soil samples were 
analysed for soil pH (1:2.5 soil: water suspension) and Electric con-
ductivity (EC) (1:5 soil: water suspension) (Anderson and Ingram, 
1993). Available Phosphorous (Bicarbonate Extractable Phosphate 
(PO4

3-)) content was determined using Molybdenum Blue Method 
(Watanabe and Olsen, 1965). Available nitrate (N:NO3

–) (Cataldo et al., 
1975) and ammonium (N:NH4

+) (Lenore et al., 1989) contents of the soil 
were also detected colorimetrically by using the UV spectrophotometer. 

A subset of soil samples was ground to a less than 0.15 mm powder 
for the dry soil analyses. The Permanganate Oxidizable Carbon (POXC) 
pool was estimated by the Modified KMnO4 oxidizable carbon method 
(Weil et al., 2003), and the Dissolved Organic Carbon (DOC) pool was 
determined using the titration method using acidified ferrous 

Fig. 1. Map of Sri Lanka showing the distribution of paddy-growing areas and 
soil sampling locations with overlapped climatic zones: (Coordinate system: 
KandawalaSri Lanka Grid). 
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ammonium sulphate (Anderson and Ingram, 1993). The available 
nutrient cations (Ca2+, Mg2+ and K+) were determined using Atomic 
Absorption Spectrophotometer (GBC 933 AA), and the cations were 
extracted using the Morgan extraction method (McIntosh, 1969). 
Another portion of < 0.15 mm powder was again ground and sieved 
through a 42-µm mesh sieve followed by TC and total nitrogen (TN) 
contents were analysed by automated combustion using a 2400 Series II 
CHN Elemental Analyser (Fadeeva et al., 2008; Skeen, 1994). 

2.4. Statistical analyses 

The soil analytical values were analysed using descriptive statistics. 
Multivariate analyses, including detrended correspondence analysis 
(DCA) and redundancy analysis (RDA), were conducted to investigate 
the effects of macro-environments and micro-soil parameters on soil 
carbon pools using the vegan R package (Oksanen et al., 2015). Statis-
tical analyses were conducted using R software version 4.1.1 (R Core 
Team, 2021). 

In the first step, DCA was used to analyse the soil carbon data and 
assess the gradient lengths of the ordination axes. In cases where the 
gradient length of the first axis is less than 3 SDs (standard deviation 
units), a linear model with RDA is the best option, while a unimodal 
model with CCA is recommended over 4 SDs. Both models can be 
beneficial for intermediate lengths (Ter Braak and Prentice, 2004). In 
the current study, the gradient lengths of the axes were found as less 
than 3 SD. Thus, we selected the linear model with RDA as the appro-
priate ordination method for direct gradient analysis over CCA. 

By using the RDA, the correlations between different soil carbon 
pools and the macro-environmental drivers (climate, vegetation, and 
topographic variables) and micro-environmental drivers (soil chemical 
properties) were analysed. Nine macro-environmental drivers were 
included in this analysis: mean annual rainfall (RF), annual average 
maximum temperature (MXT), annual average minimum temperature 
(MIT), annual average mean temperature(MT), Vapour Pressure Defi-
cient (VPD), Enhanced Vegetation Index (EVI), Elevation, Wetness Index 
(WI), slope angle (SL). Moreover, nine micro-environmental drivers 
were included i.e., soil pH, EC, TN, PO4

3-, N:NH4
+, N:NO3

–, K+, Ca2+, and 
Mg2+. The four different soil carbon pools included were TC, MBC, 
POXC, and DOC. The RDA is allowed to explain the influence of each 
macro-environmental variable and micro-environmental variable on 
soil carbon variations and examine the association between response 
data and explanatory variables (Wang et al., 2016). Prior to the RDA 
analysis, the correlations among explanatory variables were checked to 
avoid severe multicollinearity issues. Additionally, a forward selection 
was also carried out to choose the variables that significantly influence 
soil carbon pool variations. The Forward selection step in RDA analysis 
with a double-stopping criterion is helpful to fit the most parsimonious 
model. 

Further, the collinearity between explanatory variables of the fitted 

model was measured using the variance inflation factor (VIF). The sig-
nificance level of the fitted model, model parameters, and axis signifi-
cance were evaluated at the 0.05 probability level. Finally, the adjusted 
R2 value of the final model was calculated to assess the model 
performance. 

An eigenvector-based spatial modelling approach was used to iden-
tify spatial patterns in different soil carbon pools (Griffith and Peres- 
Neto, 2006; Peres-Neto and Legendre, 2010). Briefly, this method ex-
tracts eigenvectors of a connectivity matrix among sampling units (i.e., 
graph-based Moran’s eigenvector maps; gb-MEM) describing all possible 
mutually orthogonal map patterns of the study area, which are then used 
as additional predictors of the response variables (Griffith and Peres- 
Neto 2006). For a detailed procedure for extracting and selecting an 
optimum subset of gb-MEM variables, we referred to Bauman et al. 
(2018). The R packages adespatial (Dray et al., 2018) and spdep (Bivand 
et al., 2015) were used for gb-MEM variable generation and for subset 
selection of the parameters. 

The variation partitioning was performed on RDA to estimate the 
proportions of variation in different soil carbon pools explained by 
macro, micro, and spatially structured variable groups, jointly and 
independently. The results were expressed in terms of adjusted R2 value 
as it is an unbiased estimate of explained variation, accounting for a 
number of explanatory variables and sample size (Peres-Neto et al., 
2006). The relative importance of each explanatory variable group was 
determined based on its unique proportional contribution (i.e., variation 
not shared with other explanatory variable groups (Peres-Neto et al., 
2006; Peres-Neto and Legendre, 2010). 

3. Results and discussion 

3.1. Descriptive analysis 

Different soil carbon pools showed varying distribution patterns 
(Table 2). Significant differences between the minimum and maximum 
values were detected for soil carbon pools across the landscape. The 
coefficient of variation (CV) for the response variables of MBC, DOC 
(>100%), and TC (71%) indicated higher variability of those parame-
ters. At the same time, POXC exhibited a low CV (33%) compared to the 
other soil carbon pools. The CV results suggested that the concentrations 
of soil carbon data vary strongly, and this may be due to the influence of 
macro-environmental factors, site-specific characteristics of the soil, or 
any other long-term effect of agricultural management practices. 

The soil pH conditions varied from strongly acidic to basic conditions 
within the range of 3.67 to 9.3. The mean pH value was recorded as 6.45 
± 1.04, which was within the optimum range for plant nutrient avail-
ability. Electric conductivity (EC) measures salt content in the soil, 
and higher salinity makes it more difficult for plants to absorb moisture. 
The EC values ranged from 0.01 dS m− 1 (non-saline) to 9.67 dS 
m− 1(saline). A soil having a salt concentration exceeding an EC value of 

Table 2 
Descriptive statistical analysis of soil parameters (n = 987).  

Parameter Minimum Maximum Mean Median SD CV % Skewness Kurtosis 

Total C % 0.30 17.9 2.44 2.04 1.73 71 3.52 20 
MBC % 0.001 0.40 0.03 0.02 0.03 100 3.81 25 
POXC % 0.001 0.09 0.06 0.06 0.02 33 − 1.27 1 
DOC % 0.001 0.88 0.03 0.01 0.04 133 11.5 221 
pH 3.67 9.30 6.45 6.51 1.04 16 − 0.08 − 0.6 
EC (dS m− 1) 0.01 9.67 0.32 0.06 0.09 28 5.85 43 
Total N (%) 0.01 1.83 0.26 0.21 0.22 84 2.25 8 
PO4

3- (mg kg− 1) 0.02 242 17.8 10.6 23.4 131 4.26 27 
N:NH4

+ (mg kg− 1) 0.02 39.8 6.01 4.27 5.65 94 2.01 5 
N:NO3

– (mg kg− 1) 0.02 71.8 3.65 2.14 5.33 146 6.72 66 
Available K+ (mg kg− 1) 0.64 596 85.7 57.0 86.7 101 2.39 7 
Available Ca2+ (mg kg− 1) 16.0 16181 1238 973 1206 97 5.32 52 
Available Mg2+ (mg kg− 1) 6.40 2072 260 195 225 86 2.27 9 

Note: SD- Standard Deviation, CV- Coefficient of Variation. 
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4 dS m− 1 is classified as saline in agriculture (De Costa et al., 2012). 
Therefore, some places in the country have exceeded the desired level of 
EC, creating soil salinity problems. 

3.2. Response variables – Different soil carbon pools 

3.2.1. Correlations among response variables 
Pearson correlation matrix indicated that response variables were 

not strongly correlated to each other (Fig. 2). TC content and POXC (r =

0.39, p < 0.05) showed moderately strong positive linear relationships, 
while other carbon pools showed weaker correlations. 

3.3. Macro- environmental drivers 

3.3.1. Correlations among macro-environmental drivers 
Mean temperature, minimum temperature, maximum temperature, 

and VPD and elevation are highly correlated (r ≥ 0.8, p < 0.05). 
Therefore, mean temperature, minimum temperature, maximum tem-
perature, and VPD parameters were removed, and elevation was 
retained for further analyses (Fig. 3). 

3.3.2. Forward selection of macro-environmental variables and fitting the 
most parsimonious model 

According to forward selection results, rainfall, EVI, elevation, and 
WI were significant at 0.05 significance level (p < 0.05), and the slope 
angle was dropped because of its less influence. The VIF of the selected 
macro-environmental parameters varied between 1.09 and 1.47. As a 
rule of thumb, VIF < 10 indicates the absence of strong collinearity 
problems (Miles, 2014). Therefore, no multicollinearity was observed 
among the variables, and all the parameters were included in the model. 

The RDA results indicated that several macro-environmental factors 
could influence the fluxes of soil carbon pools in paddy-growing soils of 
Sri Lanka (Fig. 2). All macro-environmental parameters together 
explained 13.34% of the soil carbon variation. The first two axes were 
significant at the 0.05 significance level. In the fitted model for macro- 
environmental variables, the first and the second constrained axes 
(RDA 1, RDA 2) explain 12.2% and 1% of the variation, respectively. 
Accordingly, the importance of the rainfall and vegetation index data on 
soil carbon fluctuations was higher than those of the topographic factors 
of elevation and WI (related to soil moisture). Several studies have been 
concluded similar results. For example, Liu et al. (2015) indicated that 
the distribution of soil carbon was significantly affected by climatic 
variables, vegetation biomass, and soil moisture. The work carried out 
by Zhou et al. (2020) in north-western China identified precipitation, 
elevation, and temperature as the most critical environmental covariates 
explaining SOC variation. 

RDA also illustrated the relationships among the different soil carbon 

Fig. 2. Pearson correlation coefficient matrix of response variables. Abbrevia-
tions: DOC: Dissolved Organic Carbon, MBC: Microbial Biomass Carbon, POXC: 
Permanganate Oxidizable Carbon, TC: Total Carbon: Statistically insignificant 
(p > 0.05) coefficients are marked by a cross sign (X). 

Fig. 3. Pearson correlation coefficient matrix of macro-environmental drivers. 
Abbreviations: WI: SAGA Wetness Index, MIT: annual average minimum tem-
perature, VDP: Vapour pressure Deficient, MT: annual average mean temper-
ature, MXT: annual average maximum temperature, rainfall: mean annual 
rainfall, EVI: MODIS Enhanced Vegetation Index: all the coefficients are sta-
tistically significant (p < 0.05). 

Fig. 4. Redundancy analysis (RDA) biplots of macro-environmental drivers 
versus soil carbon pools of Sri Lanka. Abbreviations: red-dashed lines represent 
the soil C pools, and blue arrows represent the macro-environmental drivers. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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pools and environmental drivers (Fig. 4). Accordingly, the rainfall and 
EVI were positively correlated with TC content and DOC, MBC, and 
POXC contents. It is clearly highlighted the prevailing solid correlation 
between the annual rainfall and TC pool rather than other soil carbon 
pools. Further, the conspicuous affinity between POXC and MBC with 
the vegetation index data (related to productivity and soil fertility) was 
depicted. The WI and elevation showed positive correlations with MBC 
and POXC while negatively affecting DOC content. The elevation con-
trols the micro-environmental conditions (mainly temperature and hy-
drological characteristics of land) that possibly influence on microbial 
activity, thereby affecting the breakdown and transformation of 
different soil carbon pools (Martin et al., 2014; Tsui et al., 2013). 
Meanwhile, WI derived from Digital Elevation Model (DEM) as a sec-
ondary terrain attribute is crucial for soil carbon dynamics. In areas of 
high WI and potentially high- water content, the decaying rate of re-
sidual plant materials decreases, and the plant growth increases, which 
ultimately enhances SOC input and accretion (Li and McCarty, 2019). As 
a result, the simultaneous increment of MBC and POXC pools could be 
expected. 

3.4. Micro-environnemental drivers 

3.4.1. Corrélations between micro-environnemental drivers 
The soil pH showed moderately strong positive relationships with 

available Mg2+, Ca2+, and K+ contents (0.3 < r < 0.5, p < 0.05; Fig. 5). 
Also, soil pH depicted a moderately strong negative relationship with 
the total soil N content (r = -0.3, p < 0.05). Further, the K+, Ca2+, and 
Mg2+ ions also showed positive affinities with each other (0.42 < r <
0.63, p < 0.05). And the correlations that prevail among other param-
eters were relatively weak. Therefore, all the variables were kept for the 
model execution purpose. 

3.4.2. Forward selection of micro-environmental parameters and fitting the 
most parsimonious model 

As a result of forward selection, soil NO3
–, PO4

3-, and Mg2+ contents 
were removed due to their less influence on considered soil carbon 
pools, and other parameters (TN, K+, pH, Ca2+, EC and NH4

+) were 
retained for the model execution purpose. The VIF of the selected micro- 
environmental parameters varied between 1.02 and 1.43, and the 

collinearity problem was not observed among the variables. Further, the 
fitted model for the micro-environmental variables was significant at a 
0.05 significance level. 

The micro-environmental parameters explained 21.46% of the soil 
carbon variation. The first three axes are significant at the 0.05 signifi-
cance level. Accordingly, the first, second, and third constrained axes 
(RDA 1, RDA 2, and RDA 3) explain 18.6%, 1.88%, and 0.61% of the 
variation, respectively. The total N, available K+, Ca2+, and soil pH were 
the best explanatory variables for soil carbon pools, followed by soil EC 
and NH4

+ content. Interestingly, the factors that are related to MBC were 
more or less similar to that of POXC, indicating similar driving forces for 
both pools. Usually, the MBC and the POXC carbon contents are inter-
dependent as microbes utilise the oxidizable carbon as a readily avail-
able energy source (Lucas and Weil, 2012). 

The prevailing relationships among soil carbon pools and other 
micro-environmental variables were illustrated in Fig. 6. Significant 

Fig. 5. Pearson correlation coefficient matrix of micro-environmental drivers. 
Abbreviations: EC: Electric Conductivity: Statistically insignificant (p > 0.05) 
coefficients are marked by a cross sign (X). 

Fig. 6. Redundancy analysis (RDA) biplots of micro-environmental drivers 
versus soil carbon pools of Sri Lanka: (a) RDA biplot of axis 1 vs axis 2 (b) RDA 
biplot of axis 1 vs axis 3. Abbreviations: red dashed-lines represent the soil 
carbon pools, and blue arrows represent the micro-environmental drivers. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

T.M. Paranavithana et al.                                                                                                                                                                                                                     



Catena 231 (2023) 107278

7

negative trends were observed between TC and other pools with the soil 
pH. Different organic acids are liberated during the organic matter 
decomposition and decrease soil pH, thereby accelerating the intensity 
of soil reduction (Dhaliwal et al., 2019). At low pH, the inhibitory effect 
of organic acids such as formic, acetic, and propionic acid can decline 
organic matter degradation in wetland soils (Stevenson, 1967), which 
mimics made wetland-like ecosystem in the majority of paddy produc-
tion systems in Sri Lanka. At a higher soil pH, the bonds between organic 
constituents and clay particles in the soil could be easily broken (Neina, 
2019), leading to an increase in mineralisable pools of C and N. In 
addition, Andersson et al. (2000) have demonstrated the effect of basic 
soil pH conditions on removing DOC from the system. Additionally, one 
of the main factors influencing soluble and plant-accessible metal con-
centrations in the soil is pH. Positive trends were observed between K+, 
Ca2+, and Mg2+ with the soil pH (Fig. 5). Therefore, to some extent, soil 
acidification may negatively affect soil fertility because it depletes 
Mg2+, Ca2+, and K+ base cations. Mainly, the leaching of basic cations 
could be observed in areas experiencing low pH values (White, 2013). 

Further, a highly positive linear relationship was found between TC 
and TN concentrations. A collective effect of fresh organic carbon input 
and low soil N availability leads to a higher SOC mineralisation rate and 
a lower soil carbon storage potential (Fang et al., 2018). Hence, carbon 
storage capacity enhances at high N concentrations. Also, significant 
positive trends were observed between TN content and POXC, MBC, and 
DOC pools. Zhang et al. (2020) highlighted that N substantially affects 
the labile organic carbon pools of the soil, likely because N can promote 
the growth of both above and below-ground crop biomass while has-
tening crop litter decomposition. Furthermore, increased root biomass 
could have also resulted in the greater release of labile root exudates 
(Zhang et al., 2020). Soil N is essential to maintain better carbon inflows 
to the soil ecosystem. 

The available K+ and Ca2+ nutrient cations showed positive trends 
with TC, DOC, MBC, and POXC pools. During the degradation of plant- 
derived material, microbial-derived inputs closely interact with mineral 
particles to form an organo-mineral complex structure which is a pri-
mary cause of soil carbon stabilisation (Plaza et al., 2013). Even though 
available Ca2+ ions in the soil tend to improve microbial growth, the 
ability of Ca2+ to attach to negatively charged organic surfaces is more 
likely responsible for Ca-mediated SOC stabilisation (Rowley et al., 
2018). The oxidizable C pool consists of simple organic compounds, 
including amino acids and other simple carbohydrates (Zhong et al., 
2015). The Ca2+ can readily exchange its hydration shell and create 
inner and outer-sphere complexes with organic functional groups such 
as carboxyl and phenols (Rowley et al., 2018). Hence, oxidizable carbon 
stabilises within the soil by bonding with Ca2+ ions. Minick et al. (2017) 
revealed that high Ca2+ availability reduces the mineralisation of 13C- 
depleted SOC and stabilises oxidizable SOC that exists in relatively fresh 
substrates. Further, monovalent K+ ions in the soil form organic ionic 
bonds in the interlayers of certain phyllosilicates, which also could lead 
to reduced SOC degradation (Solly et al., 2020). More importantly, 
Masek et al. (2019) demonstrated that K-enriched biochar amendments 
could significantly improve soil carbon sequestration potential partly 
because of the additive effect of K ions on biochar to enhance stable 
carbon pool. 

3.5. Evaluation of spatial parameters by using spatially derived Morgan 
vector maps (MEMs) 

The RDA model for the selected spatial variables was fitted by using 
significant MEMs at a 0.05 significance level. Some of the plot connec-
tivity spatial matrices used to generate MEMs are depicted in Appendix 
A (e.g., Distance-based, Relative, and Gabriel). All of the spatial MEMs 
together explained nearly 42% of the soil carbon variation. 

3.6. Variance partitioning based on selected macro, micro, and spatial 
drivers 

The macro-environmental, micro-environment and spatial parame-
ters together explained 47% of the variation in soil carbon pools (Fig. 7). 
Variance partitioning showed that unique fractions of all three variable 
groups were statistically significant (p < 0.05), indicating that their 
contributions are important for explaining variation in soil carbon pools. 
Micro-environmental factors had a larger unique fraction relative to 
macro-environmental variable groups (4% and 1% of the total variation, 
respectively). Usually, soil carbon flows and stabilisation mechanisms 
are directly controlled by microbial functions in the soil. Meanwhile, 
Zech et al. (1997) reported that the micro-environmental variables that 
modulate microbial habitat and activities, such as soil nutrients, pH, and 
water content, are closely associated with soil carbon dynamics. 
Compared to that, the influence of large-scale variations of macro- 
environmental variables on microbial functions is relatively less, 
which will, in turn, impact soil carbon dynamics. Thus, site-specific 

Fig. 7. Area-proportional Euler-Venn diagram, Explanatory drivers: X1: Macro- 
environmental drivers (Rainfall, EVI, Elevation, WI), X2: Micro-environmental 
drivers (pH, TN, K+, Ca2+, EC, NH4

+), X3: Spatial parameters (significant Mor-
gan eigen vector maps), the overlap represents shared variation among 
explanatory drivers. 
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micro-environmental variables are more important in explaining vari-
ation in different soil carbon pools than macro-environmental variables 
considered in the study as they are more representative of natural 
landscapes (Mishra and Riley, 2015). 

Notably, most of the variation explained by macro-environmental 
factors was shared by micro-environmental factors (11% out of 15%). 
In the context of Sri Lanka, the major climatic zones (wet, intermediate, 
and dry) across the country have been predominantly defined by the 
variation in annual rainfall. The subsequent temperature changes and 
associated evapotranspiration rates also differ among these primary 
climatic zones. Hence, the nature of major soil types i.e., mineral 
composition and texture, vary among those climatic zones as they are 
highly influenced by the primary climatic conditions of the area 
(Indraratne, 2020), whereas the availability of predominant nutrients 
that affect soil carbon dynamics (total N, Ca2+ and K+) (Fig. 6) usually 
rely on the soil conditions. For instance, the particle size distribution and 
chemical composition of clay minerals impact the K content in the soil 
(Raheb and Heidari, 2011). The Ca concentrations in various soil types 
greatly vary, mainly due to parent material and the degree of weathering 
and leaching processes (Mengel and Kirkby, 2012). Further, N fixed on 
clays can significantly contribute to subsurface soil N storage (Steven-
son, 1986). Therefore, macro-environmental factors can indirectly in-
fluence soil carbon pools through effects on micro-environmental factors 
(Luo et al., 2017). 

Nearly half of the variation explained by spatial factors (~20% of 
total variation) was shared by other variable groups, indicating that 
spatially-structured macro and micro-environmental factors may have 
induced similar spatial patterns in soil carbon pools across the country. 
In general, the distribution of soil carbon pools is affected by changes in 
environmental factors, such as climatic variables, land productivity- 
related vegetation index data, topographic characteristics (Fig. 4), and 
soil types that are structured in space which in turn generate spatially 
associated structures with soil carbon pools across the landscape. 

Additionally, the unique fraction explained by spatial factors (22% of 
total variation) may be attributed to variation in soil carbon pools 
related to potential predictors that were not considered in the study (e. 
g., soil texture information and different clay minerals). For instance, 
Dan-Dan et al. (2010) showed that city- or country-scale soil texture is 
more important than climatic variables in explaining soil carbon dis-
tribution. Besides, several studies have reported the usefulness of soil 
clay content as a proxy for assessing both labile (Kölbl and Kögel- 
Knabner, 2004) and total soil carbon (Gómez-Guerrero and Doane, 
2018) pools. 

4. Caveats 

In this study, TC content was analysed by automated combustion, 
and the soils were not treated with acid to remove inorganic carbon 
prior to the instrumental analysis. Therefore, small quantities of inor-
ganic carbon could have been remained in some soil samples leading to 
some uncertainties in the estimates. However, it is reported that the 
quantity of carbonates in agricultural soils is significantly low compared 
to the organic carbon fraction (Tao et al., 2022; Raza et al., 2021), and 
therefore, such effect is likely negligible. In addition, unexplained 
variation in soil carbon pools could be related to the site-specific in-
formation that was not incorporated in the present study, such as soil 

physical characteristics (e.g. texture data) and the clay mineralogical 
composition that influence the stabilisation of some SOC pools. 

5. Conclusions 

The findings of the current study provide firsthand information that 
is vital to the soil carbon management of under-studied tropical paddy- 
growing soils to enhance ecosystem services that mainly associate with 
climate change mitigation and soil fertility enhancement. For this pur-
pose, a combination of direct gradient analysis (RDA), Moran’s Eigen-
vector Maps (MEMs), and variation partitioning analysis were used to 
quantify the influence of macro and micro-environmental factors on the 
spatial variation in soil carbon pools. It was found that nearly half of the 
soil carbon variation (47%) was significantly explained by a combina-
tion of macro, micro, and spatial factors, while micro-environmental 
conditions were more important than macro-environmental factors. 
Most of the soil carbon pools were highly spatially structured, as the 
controlling environmental predictors are spatially structured. Our 
findings provide insights into improving the reliability of future spatial 
soil carbon predictions by incorporating important soil carbon 
predictors. 

Further, agricultural soil carbon management is an approved 
Greenhouse Gas compensation strategy. Even though improving th-
e SOC status of the tropical ecosystems, including Sri Lanka, is not easy 
compared to the temperate region, as the climatic conditions of the 
tropics are favourable for the rapid decomposition of SOC. Therefore, 
the direct changes in soil carbon pools due to the influence by macro- 
environmental conditions are beyond our control. The study showed 
that soil carbon could be manipulated by micro-environment controllers 
such as TN, K+, Ca2+, and pH. Hence, micro-environmental controllers 
that significantly influence soil carbon pools can be considered when 
designing site-specific land management strategies in agricultural soils, 
which in turn are useful for paddy growth and productivity. Having a 
solid understanding of the stabilisation mechanisms of soil carbon and 
the influencing factors will assist in implementing effective management 
strategies leading to precise fertilisation, environmental protection and 
food security. 
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