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Abstract

Scarab beetles (Scarabaeidae) are a diverse and ecologically important group of

angiosperm-associated insects. As conventionally understood, scarab beetles comprise

two major lineages: dung beetles and the phytophagous Pleurosticti. However, previous

phylogenetic analyses have not been able to convincingly answer the question whether

or not the two lineages form a monophyletic group. Here, we report our results from

phylogenetic analyses of more than 4000 genes mined from transcriptomes of more than

50 species of Scarabaeidae and other Scarabaeoidea. Our results provide convincing support

for the monophyly of Scarabaeidae, confirming the debated sister group relationship of dung

beetles and phytophagous pleurostict scarabs. Supermatrix-based maximum likelihood and

multispecies coalescent phylogenetic analyses strongly imply the subfamily Melolonthinae

as currently understood being paraphyletic. We consequently suggest various changes in

the systematics of Melolonthinae: Sericinae Kirby, 1837 stat. rest. and sensu n. to include the

tribes Ablaberini, Diphucephalini and Sericini, and Sericoidinae Erichson, 1847 stat. rest. and

sensu n. to include the tribes Automoliini, Heteronychini, Liparetrini, Maechidiini, Phylloto-

cini, Scitalini, and Sericoidini. Both subfamilies appear to consistently form a monophyletic

sister group to all remaining subfamilies so far included within pleurostict scarabs except

Orphninae. Our results represent a major step towards understanding the diversification

history of one of the largest angiosperm-associated radiations of beetles.

K E YWORD S

phylogeny, reclassification, Scarabaeidae

INTRODUCTION

The evolution of large parts of extant terrestrial biodiversity has been

driven by the evolutionary success of angiosperm plants; these

radiations have been linked to increased productivity and growth rates

of angiosperm vegetation (de Boer et al., 2012), the rise of ectomycor-

rhiza enhancing chemical weathering of soils (Taylor et al., 2011, 2012),

and the promotion of soil nutrient release by angiosperm litter that is

easily decomposed (Berendse & Scheffer, 2009). While the diversifica-

tion of many insects, and especially that of beetles, was directly orLars Dietz and Dirk Ahrens contributed equally to this study.
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indirectly fostered by that of angiosperms (Ahrens et al., 2014; Hunt

et al., 2007; McKenna et al. 2019), the evolutionary mechanisms and

timescales of angiosperm-dependent radiations have remained poorly

understood, as the phylogenetic relationships of many lineages

remained insufficiently known. This is especially true for scarab beetles

(Scarabaeidae), which represent a diverse lineage of beetles feeding

predominantly on either angiosperm plants or mammal dung containing

about 14 subfamilies and 27,000 species (Scholtz & Grebennikov,

2005). Although traditionally grouped into a single family (Scholtz &

Grebennikov, 2005), it is divided into two major lineages: (1) the plant-

feeding lineage Pleurosticti, which include, for example, rose chafers,

rhinoceros beetles, and Christmas beetles, and (2) a clade of taxa mainly

feeding on mammal dung (Aphodiinae + Scarabaeinae).

Molecular phylogenetic analyses of the Scarabaeidae have been

controversial, with only 9 out of 21 recently published studies reporting

Scarabaeidae being monophyletic (Table 1). Scarabaeidae are part of a

wider clade (Scarabaeoidea) which also includes Lucanidae (stag bee-

tles), Geotrupidae (earth-boring dung beetles) and several other families

(Scholtz & Grebennikov, 2005), and the monophyly of this superfamily

has been confirmed by all major molecular studies (e.g., McKenna et al.

2019; Zhang et al., 2018). The current classification of Scarabaeoidea

(Scholtz & Grebennikov, 2005) is founded on morphological evidence

(Lawrence & Newton, 1995). Yet, despite extensive research on the

morphology of Scarabaeoidea by Browne and Scholtz (1998, 1999),

the monophyly of Scarabaeidae has yet to be adequately tested.

The analysis of Browne and Scholtz (1998) included only lineages of

‘Scarabaeidae’, which were rooted with a single outgroup, whereas the

analysis of Browne and Scholtz (1999) coded ‘Scarabaeidae’ as a single

terminal taxon. A recent cladistic analysis based on morphology in a

wider systematic framework (Lawrence et al., 2011) did not recover

Scarabaeidae as a monophyletic group.

A transcriptome-based phylogeny of Coleoptera based on

4818 genes by McKenna et al. (2019) supported the monophyly of

Scarabaeidae with high support, although taxon sampling was lim-

ited to eight taxa. However, in phylogenies based on some subsets

of data such as the first and second nucleotide position, mono-

phyly of Scarabaeidae was not recovered, as scavenger scarab

beetles (Hybosoridae) were sister to scarab dung beetles. Another

analysis by Zhang et al. (2018), based on a lower number of

genes (95) but a somewhat higher number of taxa (12) also found

monophyly of Scarabaeidae but with poor support. A re-analysis

of a 68-gene subset of that dataset using different methods

T AB L E 1 Overview of results on monophyly of Scarabaeidae retrieved in different previous phylogenetic analyses.

Reference
Scarab dung
beetles + Pleurosticti Data/tree building method

Grebennikov and Scholtz (2004) No Larval morphology/Parsimony

Caterino et al. (2005) No 18S/ML, Parsimony

Smith et al. (2006) No 18S, 28S/Parsimony

Hunt et al. (2007) No 28S, 16S, COI/BI

Lawrence et al. (2011) No Morphology/Parsimony

Ahrens et al. (2014) No 18S, 28S, 16S, COI/BI

Bocak et al. (2014) No 18S, 28S, 16S, COI/ML

Timmermans et al. (2016) Yes mt genomes/BI

McKenna et al. (2014) Yes CAD + 28S/BI

McKenna et al. (2015) No 8 nuclear genes/BI

Gunter et al. (2016) Yes 28S, 16S, COI/BI

Toussaint et al. (2017) No 8 nuclear genes/BI

Song and Zhang (2018) Yes mt genomes/ML

Zhang et al. (2018) Yes 95 PCG; AA/ML (RAxML)

Yes 95 PCG; Nucleotides/ ML (RAxML)

Yes AA/ML (IQ-TREE)

No 95 PCG; Nucleotides/ ML (IQ-TREE)

No 95 PCG; AA/BI

Yes Nucleotides/BI

McKenna et al. (2019) Yes AA of Transcriptomes (4818 nuclear genes)/ ML

Ayivi et al. (2021) Yes mt genomes/BI, ML

Cai et al. (2022) No 68 single-copy nuclear protein-coding genes/BI (PhyloBayes), ML (IQ-TREE)

Guo et al. (2022) Yes mt genomes/BI, ML

Abbreviations: 16S, 16S ribosomal DNA; 18S, 18S ribosomal DNA; 28S, 28S ribosomal DNA; AA, amino acid; BI, Bayesian inference; CAD, carbamoylphosphate

synthetase domain of the rudimentary gene; COI, cytochrome oxidase c subunit I; ML, maximum likelihood; PCG, protein coding genes.

2 DIETZ ET AL.
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(Cai et al., 2022) did not find the family to be monophyletic, as

Hybosoridae were sister to pleurosticts.

The uncertainty surrounding the monophyly of Scarabaeidae

prompted discussions about the classification of the family

(Kohlmann & Mor�on, 2003). Apart from many unresolved issues of

classification within the group, the question arose whether to split

scarab dung beetles and pleurostict scarabs (Erichson, 1848) in two or

more families (Cherman & Mor�on, 2014; Mor�on, 1997). Prior to the

era of molecular phylogenies, there has been an impressive array

of classification schemes on Scarabaeidae and related families

(Balthasar, 1963; Browne & Scholtz, 1995; Crowson, 1955;

Endrödi, 1966; Howden, 1982; Iablokoff-Khnzorian, 1977; Janssens,

1949; Kohlmann & Mor�on, 2003; Lawrence & Newton, 1982, 1995;

Medvedev, 1976; Mor�on, 1984, 1997, 2003; Nikolajev, 1995; Paulian

& Baraud, 1982; Ratcliffe & Jameson, 2004; Scholtz, 1990; Scholtz &

Grebennikov, 2005; Smith, 2006; Smith et al., 2006). As robust and

convincing evidence is lacking for most of these classification schemes,

many systematic and taxonomic studies arbitrarily followed one of

these classifications according to the author’s opinion or geographic

provenience (e.g., Cherman & Mor�on, 2014).

Here, we readdress the question about the controversial sister

group relationship of scarab dung beetles and pleurostict scarabs

(Ahrens et al., 2014), which is fundamental to gain a more complete

understanding of the evolutionary impact of angiosperms on the

diversification of Scarabaeidae.

If the monophyly of Scarabaeidae is confirmed, then it raises the

question of why angiosperms and their related follow-up radiations

(e.g., that of large herbivore mammals; see Ahrens et al., 2014) seem-

ingly had a more significant impact on the radiation of this lineage

than on any other scarabaeoid beetle lineage. To this end, we expand

the phylogenomic data set compiled by McKenna et al. (2019) within

additional taxa of Scarabaeoidea. The expanded taxonomic sampling

is used to assess which aspects of the data could result in the infer-

ence of incompatible topologies (e.g., Cai et al., 2022; Zhang

et al., 2018).

MATERIALS AND METHODS

Taxon sampling and new transcriptome data

We analysed 57 transcriptomes that covered almost all major fami-

lies of Scarabaeoidea, including 9 of the 14 subfamilies of Scara-

baeidae according to Scholtz and Grebennikov (2005), and two

outgroup taxa (Table S1). The outgroups were chosen as members

of the closest relatives to Scarabaeoidea, and for their relatively

short branches in the phylogeny of McKenna et al. (2019). Fifteen

of these transcriptomes had been published by McKenna et al.

(2019). Two transcriptomes were sequenced in context of the

1KITE project but had not been analysed and published before. For

details relating to the extraction of total mRNA and fragmentation,

construction of complementary deoxyribonucleic acid (cDNA)

libraries, and tagging of these two datasets see Peters et al. (2017).

Forty additional transcriptomes were specifically generated in con-

text of this study (Table S1).

Extraction of RNA, cDNA library construction, library normalisa-

tion, and Illumina sequencing were carried out by a commercial

sequencing company (Starseq, Mainz, Germany). In brief, tissues pre-

served in RNAlater (Qiagen, Hilden, Germany) were lysed and homo-

genised with a Precellys Evolution tissue lyser and a corresponding

Lysis Kit, CKmix (Bertin Technologies SAS, Montigny-le-Bretonneux,

France), in 2 mL volumes, containing a mix of 1.4 and 2.8 mm ceramic

beads. RNA isolation was done with the Quick RNA miniprep kit

(Zymo Research, Irvine, California). Library preparation was done with

NEBNext Ultra II Directional RNA library preparation kit (NEB, Ips-

wich, Massachusetts). All mRNA libraries were sequenced with Illu-

mina HiSeq 2000 sequencers (Illumina, San Diego, California), using

paired-end 150-bp read length.

All raw nucleotide sequences are deposited at the National Cen-

ter for Biotechnology Information (NCBI), Sequence Read Archive

(see Table S1 for accession numbers).

The raw data of previously published transcriptomes of 17 Scara-

baeoidea (see above) and of two outgroup taxa (Ocypus brunnipes

(Fabricius) [Staphylinidae] and Helophorus nanus (Sturm) [Helophori-

dae]; McKenna et al. 2019) were downloaded from NCBI. All raw

nucleotide reads from both newly sequenced and published transcrip-

tomes were trimmed with TrimGalore 0.6.6 (Krueger et al., 2021) and

assembled with Trinity 2.11.0 (Grabherr et al., 2011) using the soft-

ware’s default settings. Transcriptome assemblies (see Table S1 for

accession numbers) are deposited at the Transcriptome Shotgun

Assembly Database, NCBI Bioproject ID PRJNA906571 for newly

sequenced transcriptomes or PRJNA936991 for re-assemblies of pub-

lished transcriptomes (http://www.ncbi.nlm.nih.gov/bioproject). The

assemblies were filtered with a custom Perl script (trinity_longest_d.pl,

see File S1) to retain only the longest isoform (as identified by Trinity)

per locus, as loci with multiple isoforms could otherwise be falsely dis-

carded as paralogs in the gene orthology assessment step.

For quality assessment, we searched these filtered assemblies with

BUSCO 4.0.6 (Manni et al., 2021) for Endopterygota single-copy ortholo-

gues from the endopterygota_odb10 dataset using transcriptome mode.

Data extraction and alignment

Tab-delimited files were downloaded from the OrthoDB10 database

(v10.orthodb.org, last accessed 22 April 2023; Kriventseva et al., 2019)

for all groups of orthologous genes (= orthologue groups) at the hierar-

chical level Coleoptera that were present in at least eight of the nine

coleopteran genomes in the database and single copy in all of them. This

included a total of 4296 genes. This is similar to the principle of univer-

sal single-copy orthologues (USCOs) as used by the programme BUSCO

(Simão et al., 2015). However, USCOs have to be present and single

copy in at least 90% of all known genomes of a taxonomic group. In this

case, this would mean that the genes would have to be present in all

nine annotated coleopteran genomes available at the time. To avoid

excluding genes that may be absent simply due to the incompleteness
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of one of the nine genome assemblies, we decided to include genes pre-

sent in only eight of the nine coleopteran genomes.

Furthermore, we downloaded the official gene sets (OGS) for all

nine available coleopteran genomes from OrthoDB10. Tab-delimited

files were modified for use in Orthograph 0.7.1 (Petersen et al., 2017)

and used together with the OGS, to create a SQLite database of the

genetic information with that programme. Hidden Markov models

(HMMs) were created with Orthograph from the available amino acid

(AA) sequences of each orthologue group. HMMs were used then to

extract the target genes from the filtered Trinity contigs of each speci-

men with Orthograph, using the software’s default settings.

USCO nucleotide and corresponding AA sequences that were

identified and inferred with Orthograph were aligned in two different

ways. We first aligned the inferred AA sequences against the HMMs

from Orthograph with hmmalign (part of the HMMER 3.3 package;

Eddy, 2011; http://eddylab.org/software/hmmer/hmmer.org). The AA

alignment was then used as a blueprint to align the corresponding

nucleotide sequences with pal2nal 14.1 (Suyama et al., 2006). Align-

ment regions not covered by the HMMs were removed with a custom

Perl script (hmmalign_cut2_d.pl; File S2). We additionally aligned the

AA sequences with MAFFT 7.305b (Katoh & Standley, 2013) using

the L-INS-i algorithm. The corresponding nucleotide sequence align-

ments were inferred using again the software pal2nal. Poorly aligned

regions in the AA sequence alignments were identified with ALI-

SCORE 2.0 (Kück et al., 2010; Misof & Misof, 2009) and removed

from the AA sequence alignments and corresponding nucleotide

sequence alignments with the software ALICUT 2.31 (available from:

https://github.com/PatrickKueck/AliCUT). Outlier sequences were

identified and removed with the software OliInSeq 0.9.3 (https://

github.com/cmayer/OliInSeq) using the software’s default parameters.

As the third codon position is typically hyper-variable and often

exhibits inhomogeneous nucleotide frequencies, we also used a cus-

tom Perl script (extract_codpos_d.pl; File S3) to generate nucleotide

sequence alignments in which the third codon position was removed.

To test the monophyly of Scarabaeidae with data from another

dataset, we downloaded the OrthoDB10 Endopterygota data from

BUSCO 4.0.6 (Manni et al., 2021; Simão et al., 2015), including HMMs

and information files, from the BUSCO website (busco.ezlab.org). This

set comprises 2124 genes that are present in single copy in at least

90% of all known genomes of Endopterygota (hereafter referred to as

Endopterygota USCOs). Searching for the orthologues of Onthopha-

gus taurus (Schreber) in this and the Coleoptera-specific set showed

that 1496 genes are shared by both datasets. The OGS for all 56 spe-

cies in that dataset were downloaded from OrthoDB and used to cre-

ate an SQLite database with Orthograph. Together with the HMMs

from BUSCO, the information was used to extract the Endopterygota

USCO genes of each specimen with Orthograph as described above.

Phylogenetic tree inference

We inferred phylogenetic trees from the Coleoptera and Endoptery-

gota data sets, analysing the AA sequence alignments generated with

hmmalign and MAFFT and the corresponding nucleotide sequence

alignments (NT) inferred with pal2nal. We then considered two sets

of nucleotide sequence alignments: those that included all three

codon positions (NT123) and those that include only first and second

codon positions (NT12). The multiple sequence alignments were

analysed using coalescent-based and concatenation-based tree

inference methods. For conducting the concatenation-based phy-

logenetic analyses, the multiple sequence alignments of a given

type (i.e., AA, nucleotide) of all genes were concatenated with a

custom Perl script (concat_eogs_part_d.pl; File S4). The resulting

super-alignments were then analysed under maximum likelihood

(ML) with IQ-TREE 2.1.2 (Minh et al. 2020). The datasets were par-

titioned by gene. The best-fitting model and partitioning scheme

were inferred with ModelFinder, using the IQ-TREE option -m

MFP + MERGE (Chernomor et al. 2016; Kalyaanamoorthy et al.,

2017). Branch support was assessed with approximate likelihood ratio

tests and via ultrafast bootstrapping (Hoang et al., 2018) applying 1000

replicates and nearest neighbour interchange as tree rearrangement

method. For conducting coalescent-based phylogenetic analyses, we first

calculated phylogenetic trees of each gene with IQ-TREE, determining

the best-fitting model with ModelFinder. The resulting gene trees were

used for analyses with ASTRAL 5.6.1 (Zhang et al., 2018) with default

parameters that we used to conduct the coalescent-based phylogenetic

analysis. All trees were rooted with Helophorus Fabricius (Helophoridae)

and Ocypus Leach (Staphylinidae) as outgroups.

To test the effect of missing data, we generated reduced versions

of all nucleotide and amino acid datasets in which positions with a

taxon coverage of <70% were removed with a custom Perl script

(removegaps_d.pl; File S5). The previously described phylogenetic

analyses were repeated using these reduced datasets.

Furthermore, we examined the effect of varying substitution

rates between different genes. For this test, we divided datasets

containing at least 70% complete positions into sets of fast and of

slowly evolving genes. Using a custom script (pairwise_id2.pl;

File S6), we calculated the pairwise sequence identity within

each gene alignment according to Sharma et al. (2014). We then

ordered both the hmmalign- and MAFFT-inferred multiple

sequence alignments of individual genes by pairwise identity and

divided them into two sets with high (slow evolving) and with

low (fast evolving) pairwise sequence identity, each including 50%

of the genes. We then conducted concatenation-based and

coalescent-based analyses on these sets using the same methods

as described above.

Alignments of individual and concatenated loci including resulting

trees (Supplementary Files S7–S12) are deposited in Dryad (doi:

10.5061/dryad.d51c5b07h).

Topology tests

To assess support for the monophyly of Scarabaeidae in our datasets,

we conducted a number of topology tests on the six different datasets

(i.e., NT12, NT123, and AA, inferred using hmmalign or MAFFT).

4 DIETZ ET AL.
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First, we computed the likelihood scores of ML trees constrained to sup-

port different topologies for each dataset with IQ-TREE. The constrained

trees covered all possible phylogenetic relationships of the following

four taxa: Glaphyridae, Hybosoridae, Scarabaeinae + Aphodiinae,

Pleurosticti. We compared the likelihood of the constraint trees using a

variety of resampling tests in IQ-TREE using RELL approximation

F I GU R E 1 Phylogenetic tree from the concatenated MAFFT alignment of the nucleotide data (Coleoptera single copy orthologues, full
dataset) containing only the first and second base pair (nt12). Branch support (approximate likelihood ratio tests/ultrafast bootstrap for maximum
likelihood trees, local posterior probability for ASTRAL trees) and recovery of clades with other alignments and tree reconstruction approaches as
well as the current systematic assignment of lineages are mapped onto the branches.

PHYLOGENOMICS OF SCARABS 5
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(Kishino et al., 1990) with 10,000 iterations, including bootstrap pro-

portion (BP), Kishino–Hasegawa (KH) test (Kishino & Hasegawa, 1989),

Shimodaira–Hasegawa (SH) test (Shimodaira & Hasegawa, 1999),

expected likelihood weights (ELW; Strimmer & Rambaut, 2002), and the

approximately unbiased (AU) test (Shimodaira, 2002).

We used the same strategy to assess support for all possible

phylogenetic relationships between Dynastinae and the genera

Anomala Samouelle and Adoretus Laporte (both part of the poten-

tially paraphyletic Rutelinae) as well as between Melolonthinae

s. str., Hopliini, and Cetoniinae + Rutelinae + Dynastinae (hereafter

referred to as CRD).

We further tested the monophyly of Scarabaeidae using four-

cluster likelihood mapping (Strimmer & von Haeseler, 1997) in IQ-

TREE. For this purpose, we divided the taxon set into Hybosoridae,

Scarabaeinae + Aphodiinae, Pleurosticti, and all others. All 4410

unique quartets containing one taxon of each quartet were tested for

their support for the three possible four-taxon trees.

RESULTS

Data completeness

The percentage of single-copy genes with full sequences found by

BUSCO ranged between 60.8% and 87.1% (mean 77.5%), except for

the Camenta innocua (Boheman) transcriptome from McKenna et al.

(2019) for which it was only 38.9% (Table S1).

Nucleotide sequences from all but one of 4296 Coleoptera-

specific genes and from all 2120 Endopterygota USCO genes were

successfully recovered. In total, the dataset of the Coleoptera-specific

genes aligned with hmmalign comprised 6,960,192 nucleotide posi-

tions, of which 3,670,744 were parsimony informative. The overall

alignment completeness was 62.7%. The corresponding MAFFT-

aligned dataset comprised 3,929,520 nucleotides, of which 2,186,562

were parsimony informative. The alignment completeness was 79.6%.

The dataset of Endopterygota USCO genes comprised 2,337,876

F I GU R E 2 Contrasting tree topologies based on the Coleoptera single copy orthologues obtained with coalescent-based tree search with
ASTRAL (amino acid sequences; left side) and with maximum-likelihood analysis of concatenated data using all nucleotides (right side); major
lineages are highlighted; single taxa changing phylogenetic position are marked in bold.
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nucleotides aligned with hmmalign, of which 1,126,272 were parsi-

mony informative. The alignment completeness was 62.8%. The cor-

responding dataset aligned with MAFFT was 1,649,496 nucleotide

positions long, of which 893,640 were parsimony informative. The

alignment completeness was 82.2%.

Phylogenetic analyses

The choice of the alignment software (hmmalign vs. MAFFT) had little

impact on the results of the phylogenetic analyses (Figures 1, 2, and

S1–S12), and neither did the presence of incomplete alignment sites.

However, the choice of the alignment software had an impact on the

inferred position of Passalidae (e.g., Figures S7–S12). Both sets of

genes yielded very similar phylogenies, except that in trees based on

the smaller Endopterygota USCO dataset (Figures S37–S60), the sin-

gle species of passalid included in our analyses was consistently

placed as sister to Glaphyridae + Hybosoridae + Scarabaeidae, while

in the larger Coleoptera-specific set (Figures S1–S36), its position

differed in the various phylogenetic analyses. Including only fast or

slowly evolving genes (Figures S25–S36) did not lead to noteworthy

consistent differences in topology, although support values were gener-

ally lower than with the complete gene set. The most significant topo-

logical differences were found between trees inferred from datasets

that included all three codon positions (NT123; e.g., Figures S9 and

S12) and between trees inferred from datasets which included only

nucleotides of the first and second codon position (e.g., Figures S8 and

S11) and those that were analysed on the AA level (e.g., Figures S7 and

S10). Whether a concatenation-based (e.g., Figures S7–S12) or a

coalescent-based approach (e.g., Figures S1–S6) was used to analyse

the data had little impact on the unrooted topology within Scarabaeoi-

dea, although the rooting of the tree (i.e., the placement of the out-

group) was affected. All datasets yield well-resolved trees, in which

most splits received maximal support.

Scarabaeidae are strongly supported as being monophyletic by

all datasets except the nucleotide datasets that include the third

codon position (NT123; Figure 1). Analysis of the latter suggested

Hybosoridae as the sister group of pleurostict Scarabaeidae.

T AB L E 2 Likelihood tests regarding the monophyly of Scarabaeidae using the coleopteran-specific dataset, with constraint trees using a
variety of resampling tests in IQ-TREE using the RELL approximation including bootstrap proportion (BP), Kishino–Hasegawa test (KH),
Shimodaira–Hasegawa test (SH), expected likelihood weights (ELW), and the approximately unbiased (AU) test.

Tree logL deltaL BP-RELL p-KH p-SH c-ELW p-AU

hmmalign NT12

1: Dung scarabs + Pleurosticti �48,463,502 0 1 1 1 1 1

2: Hybosoridae + Pleurosticti �48,465,916 2414 0 0 0 0 2.45E-05

3: Hybosoridae + Dung scarabs �48,465,122 1620.3 0 0 0 0 1.68E-59

hmmalign NT123

1: Dung scarabs + Pleurosticti �124,696,860 1522.3 0 0 0 0 1.08E-05

2: Hybosoridae + Pleurosticti �124,695,338 0 1 1 1 1 1

3: Hybosoridae + Dung scarabs �124,697,335 1997.4 0 0 0 0 1E-07

hmmalign AA

1: Dung scarabs + Pleurosticti �44,349,511 0 1 1 1 1 1

2: Hybosoridae + Pleurosticti �44,353,242 3730.9 0 0 0 0 1.48E-08

3: Hybosoridae + Dung scarabs �44,351,488 1976.8 0 0 0 0 7.45E-09

MAFFT NT12

1: Dung scarabs + Pleurosticti �31,506,595 0 1 1 1 1 1

2: Hybosoridae + Pleurosticti �31,508,450 1855 0 0 0 0 0.000172

3: Hybosoridae + Dung scarabs �31,507,967 1372 0 0 0 0 3.29E-69

MAFFT NT123

1: Dung scarabs + Pleurosticti �87,783,308 2052.7 0 0 0 0 4.4E-82

2: Hybosoridae + Pleurosticti �87,781,255 0 1 1 1 1 1

3: Hybosoridae + Dung scarabs �87,783,596 2341.4 0 0 0 0 1.48E-48

MAFFT AA

1: Dung scarabs + Pleurosticti �26,130,488 0 1 1 1 1 1

2: Hybosoridae + Pleurosticti �26,133,387 2898.7 0 0 0 0 6.66E-06

3: Hybosoridae + Dung scarabs �26,132,268 1780 0 0 0 0 4.07E-06

Note: The confirmed most likely topology is highlighted in bold.

Abbreviations: AA, amino acid; NT, nucleotide.
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All remaining scarabaeoid families that were represented by more

than one species in our datasets were consistently supported as being

monophyletic.

Phylogenetic analysis of the NT12 and AA supermatrices sug-

gested Lucanidae is the sister group of Glaresidae + Trogidae. They

furthermore suggested Geotrupidae + Bolboceratidae is the sister group

of a clade that comprised Glaphyridae, Hybosoridae, and Scarabaeidae.

Passalidae was placed in various positions within that group depending

on the specific analysis. Hybosoridae was found as the sister group of

Scarabaeidae. The monophyly of Scarabaeidae was always maximally

supported by our data (Figures 1, S1, and S2). Coalescence-based sum-

mary trees of all gene trees differed from the supermatrix-based trees in

suggesting Bolboceratidae +Geotrupidae being the sister group of Glare-

sidae, Lucanidae, and Trogidae. However, some the coalescence-based

summary trees inferred from exclusively slowly evolving genes showed

the same topology as the concatenation-based trees.

The two subgroups of Scarabaeidae, Aphodiinae + Scarabaeinae,

and Pleurosticti were always strongly supported as being monophy-

letic, as were the two subfamilies, Aphodiinae and Scarabaeinae.

Within Pleurosticti, Orphnus MacLeay (Orphninae) was consistently

found as sister group of the remaining pleurostict scarabaeid lineages,

that were divided into two major clades: the first clade comprised

(1) Sericoidinae—Australasian and Neotropical taxa referred to by some

authors as Southern World Melolonthinae (Ahrens et al., 2011, 2014;

Ahrens & Vogler, 2008; Šípek et al., 2016) or Liparetrinae (Eberle

et al., 2019; Lacroix, 2007, 2014; Pacheco et al., 2022)—and

(2) Ablaberini + Sericini + the Australian genus Diphucephala (i.e.,

Diphucephalini), which represented the sister group of the two former

tribes. The second clade comprised Pachypus Dejean (Pachypodini) and

three major lineages, in which Pachypus was found to be sister group of

the latter. The phylogenetic relationships among the latter three lineages

differed among the inferred trees. These three lineages were: (1) Hopliini,

(2) Melolonthini, including the genus Sparrmannia Laporte (currently

placed within the probably polyphyletic Tanyproctini; Eberle et al., 2019),

and (3) Cetoniinae + (Dynastinae + Rutelinae). Supermatrix-based

phylogenetic analyses consistently provided support for Melolonthini

being the sister group of the remaining two lineages. Coalescence-based

analyses were inconsistent in regard of the phylogenetic arrangement of

T AB L E 3 Likelihood tests regarding the monophyly of Rutelinae using the coleopteran-specific dataset, with constraint trees using a variety
of resampling tests in IQ-TREE using the RELL approximation including bootstrap proportion (BP), Kishino–Hasegawa test (KH), Shimodaira–
Hasegawa test (SH), expected likelihood weights (ELW), and the approximately unbiased (AU) test.

Tree logL deltaL Bp-RELL p-KH p-SH c-ELW p-AU

hmmalign NT12

1: Adoretus + Anomala �48,463,550 0 0.986 0.983 1 0.986 0.991

2: Adoretus + Dynastinae �48,463,962 412.1 0.0006 0.0012 0.0012 0.000607 0.0013

3: Anomala + Dynastinae �48,463,842 292.12 0.0134 0.0168 0.0277 0.0135 0.0129

hmmalign NT123

1: Adoretus + Anomala �124,695,262 0 0.97 0.976 1 0.97 0.991

2: Adoretus + Dynastinae �124,695,650 387.47 0.0053 0.0063 0.0129 0.00534 0.00767

3: Anomala + Dynastinae �124,695,590 327.26 0.0244 0.0236 0.0407 0.0245 0.0198

hmmalign AA

1: Adoretus + Anomala �44,349,512 0 1 1 1 1 1

2: Adoretus + Dynastinae �44,349,994 482.06 0.0002 0.0001 0.0002 0.000195 0.000127

3: Anomala + Dynastinae �44,350,021 508.52 0.0002 0 0.0002 0.00019 0.000164

MAFFT NT12

1: Adoretus + Anomala �31,506,594 0 1 1 1 1 1

2: Adoretus + Dynastinae �31,507,065 470.61 0.0001 0.0002 0.0003 0.0001 7.03E-05

3: Anomala + Dynastinae �31,507,098 503.3 0 0 0 5.19E-05 0.000247

MAFFT NT123

1: Adoretus + Anomala �87,781,254 0 0.998 0.997 1 0.998 0.998

2: Adoretus + Dynastinae �87,781,673 419.51 0.0021 0.0031 0.0048 0.00214 0.0029

3: Anomala + Dynastinae �87,781,779 524.79 0.0001 0.0002 0.0005 0.00013 0.000376

MAFFT AA

1: Adoretus + Anomala �26,130,489 0 1 1 1 1 1

2: Adoretus + Dynastinae �26,130,951 462.27 0.0003 0.0001 0.0005 0.000317 0.000697

3: Anomala + Dynastinae �26,130,995 506.31 0.0002 0.0001 0.0002 0.000164 0.000818

Note: The confirmed most likely topology is highlighted in bold.

Abbreviations: AA, amino acid; NT, nucleotide.
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the three lineages. While the monophyly of Dynastinae + Rutelinae was

consistently well supported, a monophyly of Rutelinae was strongly sup-

ported only in concatenation-based trees. In coalescence-based trees, the

grouping was not consistently found, and if so, it typically received only

low support—a pattern also confirmed by results of previous studies in

which monophyly of Rutelinae did not result (e.g., Ahrens et al., 2014;

Ahrens & Vogler, 2008; Neita-Moreno et al., 2019; Šípek et al., 2016).

With Cetoniinae + (Dynastinae + Rutelinae) consistently found

nested within the lineages so far classified as Melolonthinae, our

study confirmed the paraphyly of Melolonthinae (Ahrens et al., 2014;

Ahrens & Vogler, 2008; Gunter et al., 2016; McKenna et al. 2019;

Neita-Moreno et al., 2019; Šípek et al., 2016).

Topology tests

In tests assessing the support for monophyly of Scarabaeidae, the

originally inferred topology (i.e., monophyly of Scarabaeidae)

consistently received the highest support when analysing the NT12

and AA supermatrices. Likewise, the monophyly of Hybosoridae +

Pleurosticti consistently received the highest support when analysing

the NT123 datasets. Alternative trees were rejected with p < 0.001

(Table 2). The topology tests supported the sister group relationship

of Hopliini and the CRD clade, rejecting alternative topologies

with p < 0.001. Likelihood tests testing the monophyly of Rutelinae

supported the latter irrespective of what dataset we analysed, but

often only with p between 0.01 and 0.05 (Tables 3 and 4).

Four-cluster likelihood mapping revealed support for a mono-

phyly of Scarabaeidae when analysing the NT12 and AA datasets

(Figure 3). When analysing the NT12 datasets, a monophyly of Scara-

baeidae was supported by 55%–60% of the quartets. When analysing

the AA datasets, the support was >80%. However, it should be noted

that in all analyses almost all quartets that include the most remotely

related outgroups Helophorus and Ocypus supported Hybosoridae

+ Pleurosticti, while among those containing the closest outgroup

Eulasia Truqui (Glaphyridae), more than 90% supported monophyly of

T AB L E 4 Likelihood tests regarding the monophyly sister group relationship of Hopliini and Melolonthinae s. str. (including Melolonthini and
Sparrmannia, excluding Pachypus and Sericini) using the coleopteran-specific dataset, with constraint trees using a variety of resampling tests in
IQ-TREE using the RELL approximation including bootstrap proportion (BP), Kishino–Hasegawa test (KH), Shimodaira–Hasegawa test (SH),
expected likelihood weights (ELW), and the approximately unbiased (AU) test.

Tree logL deltaL Bp-RELL p-KH p-SH c-ELW p-AU

hmmalign NT12

1: Hopliini + Dynastinae, etc. �48,463,522 0 1 1 1 1 1

2: Melolonthinae + Dynastinae, etc. �48,466,907 3384.2 0 0 0 0 9.98E-06

3: Melolonthinae + Hopliini �48,466,288 2765.9 0 0 0 0 9.98E-06

hmmalign NT123

1: Hopliini + Dynastinae, etc. �124,695,344 0 1 1 1 1 1

2: Melolonthinae + Dynastinae, etc. �124,703,111 7766.7 0 0 0 0 1.01E-08

3: Melolonthinae + Hopliini �124,701,830 6486 0 0 0 0 2.33E-43

hmmalign AA

1: Hopliini + Dynastinae, etc. �44,349,512 0 1 1 1 1 1

2: Melolonthinae + Dynastinae, etc. �44,352,720 3208.2 0 0 0 0 1.65E-52

3: Melolonthinae + Hopliini �44,352,216 2704.6 0 0 0 0 1.22E-57

MAFFT NT12

1: Hopliini + Dynastinae, etc. �31,506,595 0 1 1 1 1 1

2: Melolonthinae + Dynastinae, etc. �31,509,134 2539.6 0 0 0 0 2.63E-44

3: Melolonthinae + Hopliini �31,508,736 2141.3 0 0 0 0 1.64E-67

MAFFT NT123

1: Hopliini + Dynastinae, etc. �87,781,254 0 1 1 1 1 1

2: Melolonthinae + Dynastinae, etc. �87,787,291 6037.7 0 0 0 0 4.16E-50

3: Melolonthinae + Hopliini �87,786,383 5129.7 0 0 0 0 4.65E-07

MAFFT AA

1: Hopliini + Dynastinae, etc. �26,130,487 0 1 1 1 1 1

2: Melolonthinae + Dynastinae, etc. �26,132,818 2331 0 0 0 0 1.09E-45

3: Melolonthinae + Hopliini �26,132,612 2124.8 0 0 0 0 6.7E-09

Note: The confirmed most likely topology is highlighted in bold.

Abbreviations: AA, amino acid; NT, nucleotide.
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Scarabaeidae, even when analysing the NT12 datasets. When analys-

ing the NT123 datasets, more than 70% of quartets supported

Hybosoridae + Pleurosticti.

DISCUSSION

The interfamilial results found in our study agree well with those

of other multi-gene phylogenetic studies with less taxon and/or

gene sampling (i.e., Cai et al., 2022; McKenna et al. 2019; Zhang

et al., 2018). One exception is the position of Passalidae, which other

studies found to be phylogenetically closely related to Geotrupidae

+ Bolboceratidae (Beza-Beza et al., 2020; McKenna et al. 2019). We

found this phylogenetic position only in a few of our trees. In the

majority of the inferred trees, we found Passalidae to be closely

related to Scarabaeidae. As Passalidae had been represented by only

few taxa on relatively long branches in all phylogenetic studies (includ-

ing ours) conducted so far, a definitive statement on the phylogenetic

position of Passalidae must await broader taxonomic sampling of the

family itself and of related clades.

Our results confirm the early divergence of Orphninae within

Pleurosticti, which had remained unresolved in some earlier molecular

studies (e.g., Ahrens et al., 2014). However, an early divergence

had been suspected based on morphological evidence (e.g., Ahrens,

2006; Browne & Scholtz, 1998). For example, Orphninae lack the

derived conformation of spiracles after which Pleurosticti is named

(Erichson, 1848).

The results of our study confirmed the sister group relationship

of dung feeding scarabs and phytophagous pleurostict scarabs

(i.e., monophyly of Scarabaeidae), which was not always found in pre-

vious studies with limited gene sampling (see Table 1). We found

monophyly of Scarabaeidae with both supermatrix and coalescent-

based tree reconstruction approaches. However, tree reconstruction

results based on the nucleotide sequence data heavily depended on

whether or not the third codon position was included—a phenomenon

frequently observed in phylogenomic studies (Li et al., 2014).

The results of the likelihood mapping analyses strongly suggested

that the non-monophyly of Scarabaeidae in the analyses of the

NT123 data is an artefact. As this result is suggested primarily by

quartets that include distantly related outgroup taxa, it can possibly

be explained by long-branch attraction between the outgroup and the

relatively long-branched dung-feeding scarabs. Likewise, long-branch

attraction between the CRD clade and outgroups may have led to an

artificial grouping of Melolonthinae and Hopliini.

The inferred monophyly of Scarabaeidae supports the initial

hypothesis that the radiation of angiosperms had primarily affected

F I GU R E 3 Four-cluster likelihood mapping based on alignments of the amino acid (AA), nt12, and nt123 datasets of Coleoptera single-copy
orthologues with hmmalign and MAFFT.
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species diversity, diversity of feeding habits, and morphological dis-

parity of only a single lineage of Scarabaeoidea. This sheds new light

on possible causes for their successful diversification, which might be

highly lineage related, possibly also in regard to genome-driven events

(e.g., McKenna et al. 2019). The successful diversification of other major

herbivorous beetle lineages, such as the Phytophaga (Chrysomeloidea +

Curculionoidea), was attributed to the genomic presence of plant cell

wall-degrading enzymes (PCWDEs) obtained from bacteria and fungi

(McKenna et al. 2019). However, the presence of PCWDEs in Scara-

baeoidea was only limited to glycosine hydrolase 1 and 9 that were

expected to occur in most beetle species (McKenna et al. 2019).

Cellulase, hemicellulase, pectinase, xylanase, and other polysaccharide-

degrading enzymes have been documented in the hind/midgut of several

scarab lineages, some of which were attributed to endosymbiotic bacteria

(Bauchop & Clarke, 1975; Huang et al., 2010; Wada et al., 2014).The

presence of these gut endosymbionts has likely promoted the diversifica-

tion in association with angiosperm plants and could have been a trigger

for the successful radiation of Scarabaeidae.

As one key innovation in this regard can be seen the development

of female accessory glands at the end of the digestive and genital

duct, which are present in Aphodiinae and pleurostict scarabs

(Ahrens, 2006). Accessory glands are known to have an important

function in the transmission of endosymbiont bacteria (see above)

that are known, beyond their active part in cellulose digestion

(Martin, 1983; Martin et al., 1991), to assist the production of phero-

mones (Hoyt et al., 1971). The latter could have had an important

impact on the improvement of chemical communication in these

groups (Pacheco et al., 2022). It should be noted that accessory glands

are absent in Scarabaeinae, but other mechanisms for transmission of

endosymbiotic bacteria have been documented (Estes et al., 2013).

Nevertheless, the confirmed monophyly of Scarabaeidae allows us to

interpret the reduction of accessory glands in Scarabaeinae dung

beetles as a true loss and not as a parallelism between pleurostict

scarabs and Aphodiinae.

The diverse Mesozoic fossil record of Hybosoridae (Lu

et al., 2022) still provides important information for dating the onset

of scarab divergences, given the poor fossil record of the Mesozoic

Scarabaeidae (Krell, 2007), particularly in amber which often allows a

more accurate classification and a more robust systematic placement

of its fossils. While we confirm the sister-group relationship between

Scarabaeidae and Hybosoridae, the limited taxonomic sampling of this

study restricts our ability to accurately place most of the known fos-

sils into the inferred phylogenetic tree. Therefore, we explicitly

refrained from inferring divergence time estimates.

Implications on the classification of Scarabaeidae

Our phylogenetic analyses on Scarabaeidae revealed that there is—

from a phylogenetic point of view—no necessity to split Scarabaeidae

into two families. Given the monophyly of dung beetles and phytoph-

agous pleurostict scarabs, such a splitting (Cherman & Mor�on, 2014)

would be rather arbitrary and in contrary to the aim of maintaining a

stable nomenclature and classification, which are important back-

bones of all biodiversity-related databases (e.g., NCBI, GBIF). It should

be noted, though, that our study did not include some taxonomic

lineages (e.g., Ochodaeidae, Eremazinae) that earlier studies found

(although with poor support) within a clade which included Glaphyri-

dae, Hybosoridae, scarab dung beetles, and pleurostict Scarabaeidae

(Ahrens et al., 2014; Neita-Moreno et al., 2019). Interpretations for

classification and evolution of the Scarabaeidae will be thus more

robust when the position of these groups is better known.

The phylogenetic tree hypothesis supported by our study

(Figure 1) shows some examples of non-homogenous lineage classifi-

cations, in which sister taxa, according to the current classification,

are either classified as tribes or as subfamilies (e.g., Pachypodini

vs. Melolonthinae vs. Rutelinae/Dynastinae/Cetoniinae vs. Hopliini).

Given the non-monophyly of Melolonthinae as currently understood

(Bouchard et al., 2011; Smith, 2006), the question arises to which

clade the name ‘Melolonthinae’ should be referred, with respective

modifications to the current classification. Many unanswered ques-

tions remain due to the limited sampling here and contradictory tree

topologies compared with and between previous studies (e.g., Ahrens

et al., 2014; Eberle et al., 2019).

The clear phylogenetic separation of the monophyletic ‘Southern
World’ Melolonthinae and the clade containing Sericini, Ablaberini, and

Diphucephalini from the remaining pleurostict scarabs (i.e., Cetoniinae,

Dynastinae, Melolonthinae, Rutelinae, etc.) makes it reasonable to treat

both lineages as separate subfamilies. Both lineages are currently

classified as a series of tribes within Melolonthinae (Smith, 2006).

A revised classification that elevates these clades to subfamilies

would alleviate the problem, at least in part, of rendering Melolonthinae

polyphyletic. It would also help to focus on the problem of whether

Melolonthinae are monophyletic under inclusion of Hopliini and

Macrodactylini (the latter not included in taxonomic sampling of

this study). In regard to the sister group relationship Hopliini

+ Melolonthini, based on the current sampling there is good

support that they do not form a monophyletic group (Table 4)

although due to the limited sampling our results should not be

regarded as fully conclusive.

Currently, the clade Melolonthini, which we refer here to a restricted

interpretation of the subfamily ‘Melolonthinae’, includes several lineages
currently circumscribed as subtribes, such as Enariina, Leucopholina,

Melolonthina, Pyglina, Rhizotrogina, and Schizonychina. It also includes

several other minor lineages (Eberle et al., 2019) and could at least con-

tain the genus Sparrmannia. The latter is so far assigned to Tanyproctini

but the position of other genera of the polyphyletic Tanyproctini remains

yet uncertain (Eberle et al., 2019). A restricted Melolonthinae (see

Figure 1) would be a starting point for a re-classification that would allow

retaining well-established subfamily names (e.g., Cetoniinae, Dynastinae,

Rutelinae). However, the exact extent of this clade Melolonthinae is yet

to be identified, particularly with reference to the other lineages so far

classified as ‘Melolonthinae’ (e.g., Diplotaxini, Hopliini, Macrodactylini;

e.g., Ahrens et al., 2014). To further address this topic, the taxonomic

sampling needs to be extended, also to allow more robust statistical

topology testing (Tables 2–4; Figure 3). The same applies to
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Dynastinae + Rutelinae: the monophyly of Rutelinae with respect to

Dynastinae recovered by our results was often not supported in other

studies (e.g., Ahrens et al., 2014; Ahrens & Vogler, 2008; Neita-Moreno

et al., 2019; Šípek et al., 2016), although Guo et al. (2022) also found a

clade of Adoretini + Anomalini to the exclusion of Dynastinae using

mitochondrial genomes, similar to our results. However, as our datasets

contained only one representative each of two of the seven currently

recognised tribes of Rutelinae, a decision on the classification of these

two subfamilies should await further studies.

The following formal classification changes are proposed. Sericinae

Kirby, 1837 stat. rest. and sensu n. is re-elevated to subfamily and

revised to include the tribes Ablaberini, Diphucephalini and Sericini.

Sericoidinae Erichson, 1847 stat. rest. and sensu n. is re-elevated to

subfamily and revised to include the tribes Heteronychini,

Liparetrini, Maechidiini, Phyllotocini, Scitalini and Sericoidini.

Sericoidinae Erichson, 1847 has formally priority over the younger

name Liparetrinae Burmeister, 1855 (and other tribal names within

the lineage) and also includes the tribe Automoliini not included in

this analysis but being confirmed in previous molecular phylogenies

to be part of the same lineage (Ahrens et al., 2014; Ahrens &

Vogler, 2008). Based on morphological characters, other candidate

members of this subfamily are Colymbomorphini, Comophorinini,

Pachytrichini, and Phyllotocidiini, however, their phylogenetic

placement has not been confirmed yet with molecular data.

The major subdivision of pleurostict scarabs between Rutelinae

+ Cetoniinae + Dynastinae + Melolonthinae on the one hand and

Sericinae/Sericoidinae on the other was also retrieved by Ahrens

(2006) based on a morphology-based phylogeny, although the posi-

tion of Hopliinae was uncertain. In that study, Sericoidinae was recov-

ered as paraphyletic in respect to Sericinae. The lineage Rutelinae

+ Cetoniinae + Dynastinae + Melolonthinae (Figure 1) is well charac-

terised by placoid, round antennal sensilla (Bohacz et al., 2020;

Pacheco et al., 2022) as well as by adjacent metatibial spines

(Ahrens, 2006). While the monophyly of Sericinae is well supported

by unique elongate, placoid antennal sensilla (Pacheco et al., 2022),

Sericoidinae share in many respects a mix of ancestral and derived

characters, and show highly plastic character transformations, for

example in sensilla (from trichoid to scale like and placoid sensilla;

Pacheco et al., 2022) or mouth parts (e.g., towards pollen feeding in

Phyllotociini). All this made it so far difficult to characterise this

diverse group based on morphology. Conversely, these results bring

some generally accepted apomorphies into question. The metatibial

spines separated by base of tarsomere 1, which has been for a long

time considered to be a key character to Sericinae, has to be consid-

ered a plesiomorphy given the sister group relationship of Pleurosticti

and Orphninae (which also share the same character). As a result,

all Mesozoic fossils so far assigned to Sericinae based on this trait

(see Krell, 2007) are very likely in need of a reclassification.

Apart of some of our robust results regarding the monophyly

of Scarabaeidae, we consider this work also as a primer and starting

point for further and more detailed phylogenomic research in

Scarabaeoidea. In this, the generated transcriptomic data will serve as

backbone for other approaches such as DNA target enrichment

approaches, which would possibly allow to considerably extend the

taxon sampling1. Because also dry museum specimens could be ana-

lysed this way, we expect that even yet entirely obscure lineages

(e.g., Belohinidae, Dynamopodinae, Phaenomeridinae), which never

have been considered in any phylogenetic analysis, will find their place

in a phylogenetic tree.
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