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Abstract

A mathematical model of coupled thermoelectricity is presented to investigate the transient and
steady-state behaviour of thermoelectric bulk material. Governing partial differential equations
(PDEs) for the coupled thermal and electrical behaviour of the thermoelectric model are discretised
using the explicit finite-difference method. Differencing schemes like Upwind and Lax—-Wendroff
methods are employed to obtain solutions for the first-order hyperbolic PDEs, whereas FTCS
(Forward Time, Centred Space) scheme is employed to solve second-order parabolic PDEs. Courant-
Friedrichs-Lewy and Von Neumann stability analyses are done to ensure the stability and convergence
of the model. The model considers the temperature dependency of thermal conductivity, electrical
conductivity, and Seebeck coefficient of the P/N materials separately. and accounts for the Seebeck,
Peltier, and Joule-Thomson effects in thermoelectric materials. The new model is practically useful to
predict the transient and steady-state behaviours of a thermoelectric device with multiple P-N
elements. The results of the presented finite-difference model are proven to agree well with
experimental values as well as 3D simulations with ANSYS”.

1. Introduction

Thermoelectricity is the direct conversion of thermal energy into electricity [1]. The thermoelectric effect,
generally known as the Seebeck effect, was discovered about two centuries ago, but it became more popular over
the last few decades, mainly as it can be utilized as a new way to recover waste heat energy into usable electricity,
thus increasing the overall efficiency of numerous energy transformation processes [2]. A device, which utilizes
the principle of the Seebeck effect is called a Thermoelectric Generator (TEG), which is a solid-state device
composed of several couples of p- and n- types semiconductor elements.

Over the past decades, a large number of attempts have been made to increase the performance of the TEG
devices. Most of the current research works [3—5] are concentrated on developing new thermoelectric materials
to obtain a higher ‘figure-of-merit’ (ZT) value, which determines the energy conversion efficiency of
thermoelectric material. Usually, before assembling the actual physical module, the performance ofa TEG
device is often determined by using a computer model. According to the literature, three major types of
modelling platforms can be found for thermoelectrics. The first type of model uses the equivalent circuit models
to solve thermoelectric problems. Typically, these models have been developed using open-source, analogue-
electronic circuit simulator software called SPICE [6-9]. The second type of models has been developed in
multi-physics engineering simulation software like ANSYS®[10, 11], Cosmol [12], and Fluent [13]. Most of
these commercial software cannot capture all the essential physics of the TE device, including Peltier, Thomson,
Joule effects and take the temperature dependency material properties into account. Therefore, some models are
confined by the limitations of the software packages. The best way to model un-modelled physics is to
numerically solve the partial differential equations (PDEs) that describe the thermal and electrical characteristics
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Figure 1. The geometry of the model. Region 1: hot-side substrate material, Region 2: P and N thermoelectric material, Region 3: cold-
side substrate material. Letter A, B, C, D represent the boundary A, B, C, D, respectively.

of thermoelectric materials. So, the third type is the numerical models that have been created in programming
platforms using a programming language [14—16].

In this work, a complete formulation and implementation of finite-difference method based thermoelectric
model is presented. The model contains the system of PDEs for the typical TE module (figure 1): two heat
equations (one for the hot side substrate and the other for the cold side substrate), pair of PDEs for both P and N
type thermoelectric materials (one for the heat transport, the other for the electric field), set of boundary
equations for boundaries A, B, C, and D. The main advantage of the proposed finite-difference model over the
previous implementations [15] is that, in this formulation, electric field and heat transport in both P and N type
materials are handled separately, and the temperature dependencies of thermal conductivity, electrical
conductivity, and Seebeck coefficient of the P/N materials are addressed directly. PDEs, which are time-
dependent, are discretised using the finite-difference ‘explicit’ method, which is particularly well-suited in
solving heat-related high-speed dynamic events [17]. In the discretisation process, difference schemes such as
FTCS (Forward Time, Centred Space), Upwind, Lax—Wendroff method are employed to obtain the stable
solutions for first and second-order PDEs. Stability and convergence of the solutions are handled using Courant-
Friedrichs-Lewy (CFL) [18] and Von Neumann stability analysis [19].

In this work, we introduce finite-difference numerical techniques to develop a thermoelectric model for any
given bulk material. Previous researchers (for e.g. [ 15]) assumed that the temperature dependent properties such
as thermal conductivity, electrical conductivity, and Seebeck coefficient of P and N types of a given bulk material
are the same. However, as evident from the material information sheet [20], this is not the case. In this work we
consider the Seebeck, Peltier, Thomson, and Joule effects, as well as the temperature dependent properties of P
and N types of a bulk thermoelectric material separately.

The paper is organized in the following manner. The model is presented with the governing equations,
finite-difference formulation and the model configuration in the Numerical Model section. The next section
presents a validation of the transient solution of the model by comparing it with the experimental results of
Bi,Te; based TEG. It also compared the steady-state solution of the model with the simple 3D finite element
ANSYS"” simulation for the same material. Results of the model are analysed, studying the voltage distributions
in detail. In the final section, the conclusions of our study are presented.

2. Numerical model

The geometry of the model is illustrated in figure 1. Regions 1 and 3 are referred to as the hot-side and the cold-
side respectively, and both the regions represent substrate materials (usually electrical insulators: Alumina,
Zirconia, Silicon Carbide, etc.). Region 2 represents both P and N thermoelectric materials, combined at either
end by an interconnecting material (usually copper). For this work, we neglect this interconnecting material, as it
has a negligible impact on the output voltage. As shown in figure 1, the model contains four major boundaries:
(1) boundary A: the top-most surface at the hot-side which receives constant heat flux from a heat source (2)
boundary B: the separation surface of the hot-side substrate and thermoelectric materials, (3) boundary C: the
surface where the cold-side substrate and thermoelectric materials are separated, and (4) boundary D: the
bottom-most surface at cold-side, which maintains a constant low temperature.
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In this section, the model description is described in more detail. Section 2.1 presents the formulation of a set
of PDEs that governs thermoelectricity. The explicit finite-difference implementation of the governing
differential equations is presented in section 2.2.

2.1. Governing equations
The dynamics of the regions 1 and 3 are governed by the thermal diffusion equation.

oT

E == NVZT (1)
5= p’(‘: @

where T (x, t)isthetemperature, k is the thermal diffusivity of regions 1 and 3, k is the thermal conductivity, p
is the density, and C, is the specific heat capacity. Together pC, can be considered as the volumetric heat capacity
[21]. Itis assumed that the above-mentioned material properties are constant within the regions 1 and 3.

The dynamics of the thermoelectric region, region 2, are governed by,

v.(a_D+]):o 3)
ot

oT

C,—+V-q=Q=]-E 4
p 3t+ g=Q=] 4)

where ¢ is the heat flux, ] is the electrical current density, E (x, t)is the electric field, Q is the internal heat
generation rate, and D is the electric flux density. Those thermoelectric governing equations, equations (3) &
(4), are coupled by the three constitutive equations: constitutive equation for the electric current, heat flux, and
dielectric medium. An in-depth description of these equations can be found in Refs. [22, 23]. Combination of
the reversible Seebeck effect and irreversible Joule effect gives the constitutive equation for the electric current.

J=0o(E — aVT) (5)

where o is the electrical conductivity, and a is the Seebeck coefficient.
Constitutive equation for the heat flux is generated by coupling of the reversible Peltier effect and the
irreversible Fourier effect.

q=7] — kVT (6)

where 7 is the Peltier coefficient. Relation between the Peltier and Seebeck coefficient can be expressed as,
7w = «T. Thus, using equation (5) for the electric current J, the constitutive equation for the heat flux becomes,

q = oaTE — (k + ca®T)VT (7)

Constitutive equation for a dielectric medium can be derived from dielectric permittivity € as,
D=¢-E 8)
Substituting equations (5) (7) (8) into equations (3) (4), thermoelectric governing equations can be rewritten

as,
E@_E = —0E + 0aVT )
ot
oT 2 2 2
pCva— = o0(E)* — 0aEVT + kV*T 4+ 0a*V(TVT) — caV(TE) (10)
t

In semiconductors, material properties like o, k, and « usually depend on temperature [24]. The
temperature dependency of o, k, and « results in a material nonlinearity. The involvement of material
nonlinearities is a necessity for the precise modelling of thermoelectricity. The temperature dependency of o, k,
and « can be expressed as second-degree polynomial functions.

o(T) =0y + T+ 0, T?
K(T)=ko+ T+ kT?
a(T) =g+ T + aT? (11)

2.2. Finite-difference discretisation

Here, the model structure is utilised as a 1D model, and x-direction is taken as the lengthwise coordinate for A to
B, B to C (for both P and N legs), and C to D (see figure 2). Therefore, variations in the electric field and the
temperature are assumed to be independent of y- and z-directions. Hence, the 1D equations of equation (1) (9)
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Figure 2. Grid points distribution of 1D FDM TE model. Letters A, B, C, D denotes boundaries A, B, C, D, respectively. I and I
describe the material's length of hot (region 1) and cold (region 3) sides as well /), is TE material length (region 2). Grid points count of
regions 1, 2, 3 is respectively Nj,, Ny, N.. Length between two points is Ax.

and (10) are as follows,

oT O°T

c, 2L 2L 12
P ot Ox? (12)

OF oT
= — _GE el 13
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The aforementioned governing partial differential equations are discretised using the finite-difference (FD)
method. When utilizing the FD method, the spatial domain is first divided into a finite number of points, usually
arranged as an evenly dispersed mesh of grid points. Figure 2 illustrates the 1D model structure and grid points
distribution throughout the spatial domain. Here we employed FD ‘explicit’ scheme so that the time domain is
explicit. In the explicit scheme, the state of the system at the next time step is calculated from the state of the
system at the present time step.

Then the functionof x and #, T (x, f)and E(x, t),areaveraged over grid points using differencing
schemes. FD method converts linear or non-linear differential equations into a system of linear algebraic
equations using these differencing schemes. The solution of each grid point can be obtained by solving those
algebraic equations. In this work, we employed Upwind and Lax—Wendroff scheme for solving first-order
hyperbolic PDEs and FTCS (forward time, central space) scheme for solving second-order parabolic PDEs. To
illustrate the schemes Upwind, Lax-Wendroff and FTCS, consider the following 1D linear hyperbolic first-order
PDE (15) and 1D linear parabolic second-order PDE (16) of the form,

ouU 0*U
o A =0 (10

Applying FD discretisation of spatial and temporal derivatives to equation (15), the Upwind scheme is given
by,

m+1 m Um _Um

Y X Y + A "“A " —0,forA<0 (17)
t X

m+1 m m __ m

Yn A U, +AU" A Ll —0,forA >0 (18)
t X
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The Lax—Wendroff scheme for solving the PDE (15) is given by,

umtl — ym _ AtAU'TH - Ul I lAtzAzU':nH -2U + U, (19)
! " 2Ax 2 Ax?
and the FTCS scheme for solving the PDE (16) is given by,
Uyt - Uy U, - 207 + U o0

At Ax?
where 71 is ng, grid point, #1 is time step counter, Ax = Iy, a,¢)/ N u, ) 1s the length between two grid points (see
figure 2),and At = t™*+! — ™ s the time step.

Hence, expressing the derivatives in terms of respective differencing schemes (using aforementioned
schemes), the heat transport in regions 1 and 3 (12) was discretised as,

R w1 — 2T+ T

p(h,c)cv(h,C)T = ko) )’
N

21
and dynamics of the thermoelectric region (for P- and N-type separately) (13) (14) was discretised as,

o op N QO T
E:’+1: 1 — At (P,N) Errln_i_ At (P,N)X(P,N) L 441 n—1
EP,N) EP,N) 2Axp,N)

(22)

2
L Lap[gevaesy | Tk, = 2107+ Ty
(Ax,0))?
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PN Crip )= = opN (B

€(P,N)
At
Tm _ T”L Tm _ sz + Tm_
— o aeN b 4 k= BT
X(P,N) (Axp,Ny)
(T)' = T,n (T — T, ) + T,(T) — 2T, + T, )
(Axp,n)?
(T, — T,"DE;" + T,/ (E; — E;"))

n

2
+ 0N (P, N)

(23)

— OP,N)(P,N) Ax
P.N)

The model has two boundary equations for the hot and cold surfaces of TEG. When the simulation starts,
heat flux g, = —kV T isimposed at the hot surface (boundary A). Here, n = 1 grid point considered as a
boundary A (see figure 2), and the temperature at boundary A taken as T;. Thus, the boundary equation at A can

be gi\/enas,
2 1

Tm+1 _Tm
Coon————L =k, (24)
Py Cv(n) At (h) Ax(h)
Ifn = 1 = A, thentheheatfluxatn = 1simplyassumed as q,. Hence, the boundary equation at A can be
rewritten as,
LS U
TWI+1 _ Tm Ax(h) A
Coon——--L =kp| A (25)
Py v (hy At (h) Ax(h)

Similarly, a constant temperature is maintained near the cold surface (boundary D). Here, n = N grid point
considered as aboundary D (see figure 2), and the temperature at boundary D taken as Ty.. Therefore,
TN.+1(=Tus) point usually considered as a constant temperature value (ambient temperature or temperature of
an attached heat sink). Thus, the boundary equation at D can be given as,

c T{';f1 - Tx Teons — 2TN, + TN,
Poyvr——F—— = Ko
¢ A (Ax ©) )2

(26)
At
In addition, the model uses several boundary equations to calculate the dynamics at boundaries B and C.
Here, P and N thermoelectric materials have separate boundary equations. We employed similar techniques
proposed in [15] to develop these boundary equations. All the boundary equations are discretised using the
aforementioned differencing schemes.
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L

Figure 3. Experimental setup. 1. Hot side PTC heating element 2. Thermoelectric module 3. Cold side heat sink.

Assuming that there is a uniform electric field between two grid points in the model, the potential difference
A¢ between two grid points can be expressed as,

—Ag¢, = Ey - Axppn) (27)

The model employed equation (27) in the final stage of calculations to approximate the voltage V.= "¢,
across the TE materials.

2.3. Stability and model configuration

The explicit FD method is conditionally stable. Thus, stability criteria need to be satisfied to generate accurate
numerical solutions and to stay bound. In this work, Von Neumann stability analysis has been done to verify the
stability of second-order parabolic PDEs, as well the Courant-Friedrichs-Lewy (CFL) condition has been used to
assure the stability of first-order hyperbolic PDEs. For example, the Von Neumann stability criterion requires

the condition
KAt 1

T N2 ey

to be satisfied to ensure the stable behaviour of the numerical solution of the PDE (12), which is second-order
parabolic. Similarly, CFL condition (CFL < 1) has to be satisfied in hyperbolic PDEs (13) to produce stable
numerical solutions. Thus At and Ax cannot be chosen arbitrarily. Before starting the computations, our
model algorithm first checks the stability criteria of each PDE are satisfied, otherwise it will not allow continuing
the calculations if one stability analysis is failed.

Most commercially available TE devices follow the typical ‘Sandwich’ design, with multiple Pand N
semiconductor blocks that are arranged electrically in series and thermally in parallel. The TE model developed
in this work has been for a single P-N couple of TE materials. Therefore, some scaling has to be done to our TE
model to relate the model with the module of multiple P-N couples. The approach for multiple P-N couples can
be generalized to the case with a single P-N couple. This way, all the Z number of P-N couples of TEG are
lumped into a single P-N couple. This has the effect of scaling transport parameters o,y = Zav, kior = Zk,
1/0ws = Z/0.Thus and so, both transport coefficients in the P and N legs can be considered separately for
different materials. This gives the advantage of rejecting the assumptions made in the previous studies such as
using equal transport coefficient values for both P and N materials, and replacing transport parameters with
their combined values (i.e. « = o, — ap k = kp + kyy1/0 = 1/0, + 1/0y).

Above temperature dependent equations for Bi, Te; were obtained from the information sheet [20].

3. Results and discussion

This section mainly focuses on validating the model through time-dependent transient solutions and steady-
state solutions. As a time-dependent test, we compared our model with experimental measurements and the
steady state test was compared with a 3D ANSYS” simulation.

3.1. Time-dependent transient solutions

As shown in figures 3 and 4, the experimental setup consists of a PTC ceramic (ceramic with a positive
temperature coefficient) heating element, a3 x 3 cm commercial TEG, and a heat sink for the cold side. PTC
heating element was connected to the hot side to supply a constant heat flux. Heat flux in (25) can be expressed

6



10P Publishing

Phys. Scr. 97 (2022) 125008 R A Rathnayake et al

PTC Heating Element |
— 1

Thermoelectric Generator —| Voltage Probes

Temperature
Probes

Heat Sink

Figure 4. Schematic diagram of experimental setup.
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Figure 5. Open-circuit voltage versus time. Lines represent the FDM Model results, and the symbols represent the experimental
values.

as, q, = Q/Ap where Q is the net heat (energy) transfer rate and A, is the cross-sectional through which the
heat transfer is taking place. In the beginning, the hot surface of the TEG needs to be heated up to get the
experimental measurements. Thus, a certain amount of electrical voltage needs to be applied to the PTC heating
element. Here we assumed that the electrical power of the PTC heating element was fully converted into thermal
energy. A 30 x 30 x 0.1 mm aluminium sheet was used to dissipate the heat energy throughout the top surface of
the TEG module, which has 71 P-N couples with bismuth telluride (Bi, Te;) based thermoelectric material. On
the bottom side, a heat sink with a fan attached was used to maintain a constant temperature at the cold surface
of the TEG. Temperature and voltage probes were attached to the experimental setup to get the measurements
(see figures 3 and 4). When the experiment initiates, temperature and voltage readings are recorded
simultaneously, with time.

Figure 5 shows the experimentally measured open-circuit voltage and calculated open-circuit voltage using
the FDM model as a function of time by applying input electrical power of 5.46 W and 13.07 W to the heating
element. Throughout the time, the temperature of the cold surface of TEG was maintained at 295.15 K for
5.46 W and 300.15 K for 13.07 W.

Time-dependent open-circuit voltages for the aforementioned two scenarios were obtained from our model
by solving the system of discretised PDEs (18) (19) (20) using the C programing language. Transport parameter
values for the model were taken from the values listed in table 1. Temperature dependence equations for o, k, &
are also shown beneath table 1. The initial conditions are as follows: 1. The temperature of each grid point
(including boundary A and D) was set to 295.15 K for 5.46 W and 300.15 K for 13.07 W, 2. The voltage of each
grid point in the thermoelectric region (from B to C) was set to zero. 3. Grid point count = 105 (N}, = 15,

N,, =75, N, = 15).

According to figure 5, a good agreement can be seen between the 1D finite-difference model and the
experimental results. In the beginning, for the two scenarios, the temperatures at the top surface of the TEG
(Boundary A) gradually rose from the initial surface temperature to their maximum value due to the heat flux
atthe boundary A. In 360 seconds, the maximum possible voltage values obtained by the model for two events

7



Table 1. Thermal and electrical properties of materials [25, 26].

Component Material Density p (kgm ™) Specific Heat C, JkgK™") Thermal Conductivity k (W mK™") Electrical Resistivity p (2m) Seebeck Coefficient o (VK ™) Dielectric Permittivity ¢
TEGNleg Bi,Te; 7740 200 a b C 290 L
TEGPleg Bi,Te; 7740 200 d e f 290 L
Substrate Ceramic (Alumina) 3220 419 31 N/A N/A N/A
PN interconnect Copper 8300 385 401 1.69x 1078 N/A N/A

* k, = (2323000 — 5807T + 6.4681T%)*10~°
® p, = (5112 — 163.4T + 0.627T%)*107®
 a,, = (21280 — 1005T + 1.246T%)*10~°

4 k, = (7914000 — 35888T + 47.68T%)*107°
¢ p, = (5112 — 1634T + 0.627T72)*10°°
Ty = (—234500 + 2123T — 2.541T%)*10~°
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Figure 7. For P-type and N-type thermoelectric material of TEG, (a) dimensionless figure-of-merit, (b) Seebeck coefficient, (c)
thermal conductivity, and (d) electrical conductivity versus temperature.

(=0.441V for 5.46 W and 1.067 V for 13.07 W) are more consistent with the experimental values (=0.439 V for
5.46 Wand 1.061 V for 13.07 W). Figure 6 presents the temperature of Boundary A as a function of time. In the
early part of both graphs (figures 5, 6), model results slightly deviated from the experiment because the transport
parameter coefficients used in the model did come from the literature rather than from experimental values.

Since our FDM model gives promising results in comparison to experimental values, we pushed the model
for even higher temperatures to see the temperature-dependent results. Figure 7 shows the temperature-
dependent variation of the figure of merit (ZT), Seebeck coefficient, thermal conductivity, and electrical
conductivity of both P- and N-type thermoelectric materials of the TEG. For this event, model configurations
are as follows: 1. Input power is 59.05 W, 2. The temperature of each grid point was set t0 292.15 K, 3. The
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Figure 8. ANSYS” finite-element model.
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Figure 9. Open circuit voltage versus temperature gradient.

voltage of each grid point in the thermoelectric region was set to zero. 4. Grid point count = 105 (N}, = 15,
N,, =75, N, = 15).

3.2. Steady-state solutions

As a further test, we developed a 3D finite-element simulation of the thermoelectric model (shown in figure 8)
using ANSYS” software to compare the steady-state results of our finite-difference model. This ANSYS” model
has the same 71 P-N couples and the same dimensions as the commercial 3 x 3 cm TEG mentioned in the above
section. In the ANSYS” model, the structure of one P-N couple is developed as in figure 1, consist P-N
thermoelectric material (Bi2Te3), substrate material (Alumina), and P-N junction interconnect material
(Copper). Material properties values from table 1 were used in the ANSYS” model to compute the steady-state
results. We computed the solutions for six different temperature gradients using long periods of time and used
those values to find steady state voltage values of the FDM model. These values were compared with the direct
steady state results from the ANSYS". Also, we conducted experiments to obtain data related to the particular
scenario to ensure the validation. A comparison between the steady-state voltage results of the FDM model, 3D
ANSYS® model and the experimental data with several temperature gradients, is shown in figure 9. As shown in
the figure, an excellent match among the three methods can be seen, thus validating our approach.

4, Conclusion

In this work, we have developed a finite-difference based one-dimensional model for the thermoelectric device.
The governing equations of thermoelectrics were converted into algebraic equations via the finite-difference
explicit discretisation technique. In the discretisation process, difference schemes like FTCS, Upwind and Lax—
Wendroff method are employed to obtain stable solutions for first and second-order PDEs. The model

10
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developed here has several improvements over the existing models. First, the model overcomes the assumptions
previously made in the literature like: using equal transport coefficient values for both P and N materials,
replacing transport parameters with their combined values. Secondly, the model is time-dependent and
considers all the thermal effects (Seebeck, Peltier, Thomson, and Joule), including temperature dependency of
properties like thermal conductivity, electrical conductivity, and the Seebeck coefficient. The results of the
model have an excellent agreement with the time-dependent experimental values, as well as with the steady-state
experimental and ANSYS” 3D simulation results. Therefore, this model can be used to predict the transient and
steady-state behaviour of a complete thermoelectric system with multiple P-N elements.
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