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Abstract
Amathematicalmodel of coupled thermoelectricity is presented to investigate the transient and
steady-state behaviour of thermoelectric bulkmaterial. Governing partial differential equations
(PDEs) for the coupled thermal and electrical behaviour of the thermoelectricmodel are discretised
using the explicit finite-differencemethod.Differencing schemes likeUpwind and Lax–Wendroff
methods are employed to obtain solutions for the first-order hyperbolic PDEs, whereas FTCS
(ForwardTime, Centred Space) scheme is employed to solve second-order parabolic PDEs. Courant-
Friedrichs-Lewy andVonNeumann stability analyses are done to ensure the stability and convergence
of themodel. Themodel considers the temperature dependency of thermal conductivity, electrical
conductivity, and Seebeck coefficient of the P/Nmaterials separately. and accounts for the Seebeck,
Peltier, and Joule-Thomson effects in thermoelectricmaterials. The newmodel is practically useful to
predict the transient and steady-state behaviours of a thermoelectric device withmultiple P-N
elements. The results of the presented finite-differencemodel are proven to agreewell with
experimental values aswell as 3D simulations withANSYS®.

1. Introduction

Thermoelectricity is the direct conversion of thermal energy into electricity [1]. The thermoelectric effect,
generally known as the Seebeck effect, was discovered about two centuries ago, but it becamemore popular over
the last few decades,mainly as it can be utilized as a newway to recover waste heat energy into usable electricity,
thus increasing the overall efficiency of numerous energy transformation processes [2]. A device, which utilizes
the principle of the Seebeck effect is called a Thermoelectric Generator (TEG), which is a solid-state device
composed of several couples of p- and n- types semiconductor elements.

Over the past decades, a large number of attempts have beenmade to increase the performance of the TEG
devices.Most of the current researchworks [3–5] are concentrated on developing new thermoelectricmaterials
to obtain a higher ‘figure-of-merit’ (ZT) value, which determines the energy conversion efficiency of
thermoelectricmaterial. Usually, before assembling the actual physicalmodule, the performance of a TEG
device is often determined by using a computermodel. According to the literature, threemajor types of
modelling platforms can be found for thermoelectrics. Thefirst type ofmodel uses the equivalent circuitmodels
to solve thermoelectric problems. Typically, thesemodels have been developed using open-source, analogue-
electronic circuit simulator software called SPICE [6–9]. The second type ofmodels has been developed in
multi-physics engineering simulation software like ANSYS® [10, 11], Cosmol [12], and Fluent [13].Most of
these commercial software cannot capture all the essential physics of the TE device, including Peltier, Thomson,
Joule effects and take the temperature dependencymaterial properties into account. Therefore, somemodels are
confined by the limitations of the software packages. The best way tomodel un-modelled physics is to
numerically solve the partial differential equations (PDEs) that describe the thermal and electrical characteristics
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of thermoelectricmaterials. So, the third type is the numericalmodels that have been created in programming
platforms using a programming language [14–16].

In this work, a complete formulation and implementation offinite-differencemethod based thermoelectric
model is presented. Themodel contains the systemof PDEs for the typical TEmodule (figure 1): two heat
equations (one for the hot side substrate and the other for the cold side substrate), pair of PDEs for both P andN
type thermoelectricmaterials (one for the heat transport, the other for the electric field), set of boundary
equations for boundaries A, B, C, andD. Themain advantage of the proposedfinite-differencemodel over the
previous implementations [15] is that, in this formulation, electric field and heat transport in both P andN type
materials are handled separately, and the temperature dependencies of thermal conductivity, electrical
conductivity, and Seebeck coefficient of the P/Nmaterials are addressed directly. PDEs, which are time-
dependent, are discretised using the finite-difference ‘explicit’method, which is particularly well-suited in
solving heat-related high-speed dynamic events [17]. In the discretisation process, difference schemes such as
FTCS (Forward Time, Centred Space), Upwind, Lax–Wendroffmethod are employed to obtain the stable
solutions forfirst and second-order PDEs. Stability and convergence of the solutions are handled using Courant-
Friedrichs-Lewy (CFL) [18] andVonNeumann stability analysis [19].

In this work, we introduce finite-difference numerical techniques to develop a thermoelectricmodel for any
given bulkmaterial. Previous researchers (for e.g. [15]) assumed that the temperature dependent properties such
as thermal conductivity, electrical conductivity, and Seebeck coefficient of P andN types of a given bulkmaterial
are the same.However, as evident from thematerial information sheet [20], this is not the case. In this workwe
consider the Seebeck, Peltier, Thomson, and Joule effects, as well as the temperature dependent properties of P
andN types of a bulk thermoelectricmaterial separately.

The paper is organized in the followingmanner. Themodel is presentedwith the governing equations,
finite-difference formulation and themodel configuration in theNumericalModel section. The next section
presents a validation of the transient solution of themodel by comparing it with the experimental results of
Bi2Te3 based TEG. It also compared the steady-state solution of themodel with the simple 3Dfinite element
ANSYS® simulation for the samematerial. Results of themodel are analysed, studying the voltage distributions
in detail. In the final section, the conclusions of our study are presented.

2.Numericalmodel

The geometry of themodel is illustrated infigure 1. Regions 1 and 3 are referred to as the hot-side and the cold-
side respectively, and both the regions represent substratematerials (usually electrical insulators: Alumina,
Zirconia, SiliconCarbide, etc.). Region 2 represents both P andN thermoelectricmaterials, combined at either
end by an interconnectingmaterial (usually copper). For this work, we neglect this interconnectingmaterial, as it
has a negligible impact on the output voltage. As shown in figure 1, themodel contains fourmajor boundaries:
(1) boundaryA: the top-most surface at the hot-sidewhich receives constant heat flux from aheat source (2)
boundaryB: the separation surface of the hot-side substrate and thermoelectricmaterials, (3) boundaryC: the
surfacewhere the cold-side substrate and thermoelectricmaterials are separated, and (4) boundaryD: the
bottom-most surface at cold-side, whichmaintains a constant low temperature.

Figure 1.The geometry of themodel. Region 1: hot-side substratematerial, Region 2: P andN thermoelectricmaterial, Region 3: cold-
side substratematerial. Letter A, B, C, D represent the boundary A, B, C, D, respectively.
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In this section, themodel description is described inmore detail. Section 2.1 presents the formulation of a set
of PDEs that governs thermoelectricity. The explicit finite-difference implementation of the governing
differential equations is presented in section 2.2.

2.1. Governing equations
The dynamics of the regions 1 and 3 are governed by the thermal diffusion equation.

( )k
¶
¶

= 
T

t
T 12

( )k
r

=
k

C
2

v

where ( )T x t, is the temperature, k is the thermal diffusivity of regions 1 and 3, k is the thermal conductivity, r
is the density, and Cv is the specific heat capacity. Together rCv can be considered as the volumetric heat capacity
[21]. It is assumed that the above-mentionedmaterial properties are constant within the regions 1 and 3.

The dynamics of the thermoelectric region, region 2, are governed by,
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where q is the heatflux, J is the electrical current density, ( )E x t, is the electricfield, Q is the internal heat
generation rate, and D is the electric flux density. Those thermoelectric governing equations, equations (3)&
(4), are coupled by the three constitutive equations: constitutive equation for the electric current, heat flux, and
dielectricmedium. An in-depth description of these equations can be found inRefs. [22, 23]. Combination of
the reversible Seebeck effect and irreversible Joule effect gives the constitutive equation for the electric current.

( ) ( )s a= - J E T 5

where s is the electrical conductivity, and a is the Seebeck coefficient.
Constitutive equation for the heatflux is generated by coupling of the reversible Peltier effect and the

irreversible Fourier effect.

( )p= - q J k T 6

where p is the Peltier coefficient. Relation between the Peltier and Seebeck coefficient can be expressed as,
p a= T .Thus, using equation (5) for the electric current J , the constitutive equation for the heatflux becomes,

( ) ( )sa sa= - + q TE k T T 72

Constitutive equation for a dielectricmedium can be derived fromdielectric permittivity  as,

( )= ⋅D E 8

Substituting equations (5) (7) (8) into equations (3) (4), thermoelectric governing equations can be rewritten
as,
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In semiconductors, material properties like s, k, and a usually depend on temperature [24]. The
temperature dependency of s, k, and a results in amaterial nonlinearity. The involvement ofmaterial
nonlinearities is a necessity for the precisemodelling of thermoelectricity. The temperature dependency of s, k,
and a can be expressed as second-degree polynomial functions.

( )s s s s= + +T T T0 1 2
2

( ) = + +k T k k T k T0 1 2
2

( ) ( )a a a a= + +T T T 110 1 2
2

2.2. Finite-difference discretisation
Here, themodel structure is utilised as a 1Dmodel, and x-direction is taken as the lengthwise coordinate for A to
B, B toC (for both P andN legs), andC toD (see figure 2). Therefore, variations in the electric field and the
temperature are assumed to be independent of y- and z-directions. Hence, the 1D equations of equation (1) (9)
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and (10) are as follows,
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The aforementioned governing partial differential equations are discretised using thefinite-difference (FD)
method.When utilizing the FDmethod, the spatial domain isfirst divided into afinite number of points, usually
arranged as an evenly dispersedmesh of grid points. Figure 2 illustrates the 1Dmodel structure and grid points
distribution throughout the spatial domain. Herewe employed FD ‘explicit’ scheme so that the time domain is
explicit. In the explicit scheme, the state of the system at the next time step is calculated from the state of the
system at the present time step.

Then the function of x and t , ( )T x t, and ( )E x t, , are averaged over grid points using differencing
schemes. FDmethod converts linear or non-linear differential equations into a systemof linear algebraic
equations using these differencing schemes. The solution of each grid point can be obtained by solving those
algebraic equations. In this work, we employedUpwind and Lax–Wendroff scheme for solvingfirst-order
hyperbolic PDEs and FTCS (forward time, central space) scheme for solving second-order parabolic PDEs. To
illustrate the schemesUpwind, Lax–Wendroff and FTCS, consider the following 1D linear hyperbolicfirst-order
PDE (15) and 1D linear parabolic second-order PDE (16) of the form,
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Applying FDdiscretisation of spatial and temporal derivatives to equation (15), theUpwind scheme is given
by,
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Figure 2.Grid points distribution of 1DFDMTEmodel. Letters A, B, C, Ddenotes boundaries A, B, C, D, respectively. lh and lc

describe thematerial's length of hot (region 1) and cold (region 3) sides aswell lM is TEmaterial length (region 2). Grid points count of
regions 1, 2, 3 is respectively N ,h N ,M N .c Length between two points is Dx.
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The Lax–Wendroff scheme for solving the PDE (15) is given by,
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and the FTCS scheme for solving the PDE (16) is given by,
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where n is nth grid point, m is time step counter, ( ) ( )/D =x l Nh M c h M c, , , , is the length between two grid points (see
figure 2), andD = -+t t tm m1 is the time step.

Hence, expressing the derivatives in terms of respective differencing schemes (using aforementioned
schemes), the heat transport in regions 1 and 3 (12)was discretised as,
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and dynamics of the thermoelectric region (for P- andN-type separately) (13) (14)was discretised as,
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Themodel has two boundary equations for the hot and cold surfaces of TEG.When the simulation starts,
heatflux = - q k TA is imposed at the hot surface (boundaryA). Here, =n 1 grid point considered as a
boundaryA (see figure 2), and the temperature at boundaryA taken asT .1 Thus, the boundary equation atA can
be given as,
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If = =n A1 , then the heatflux at =n 1 simply assumed as q .A Hence, the boundary equation atA can be
rewritten as,
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Similarly, a constant temperature ismaintained near the cold surface (boundaryD). Here, =n Nc grid point
considered as a boundaryD (see figure 2), and the temperature at boundaryD taken asT .Nc

Therefore,
( )=+T TN cons1c

point usually considered as a constant temperature value (ambient temperature or temperature of
an attached heat sink). Thus, the boundary equation atD can be given as,
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In addition, themodel uses several boundary equations to calculate the dynamics at boundaries B andC.
Here, P andN thermoelectricmaterials have separate boundary equations.We employed similar techniques
proposed in [15] to develop these boundary equations. All the boundary equations are discretised using the
aforementioned differencing schemes.
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Assuming that there is a uniform electric field between two grid points in themodel, the potential difference
Δf between two grid points can be expressed as,

( )( )f-D = ⋅ DE x 27n n P,N

Themodel employed equation (27) in thefinal stage of calculations to approximate the voltage f= åV n

across the TEmaterials.

2.3. Stability andmodel configuration
The explicit FDmethod is conditionally stable. Thus, stability criteria need to be satisfied to generate accurate
numerical solutions and to stay bound. In this work, VonNeumann stability analysis has been done to verify the
stability of second-order parabolic PDEs, as well the Courant-Friedrichs-Lewy (CFL) condition has been used to
assure the stability offirst-order hyperbolic PDEs. For example, theVonNeumann stability criterion requires
the condition


( )

( )k
=

D
D

r
t

x

1

2
28

2

to be satisfied to ensure the stable behaviour of the numerical solution of the PDE (12), which is second-order
parabolic. Similarly, CFL condition ( <CFL 1) has to be satisfied in hyperbolic PDEs (13) to produce stable
numerical solutions. ThusDt andDx cannot be chosen arbitrarily. Before starting the computations, our
model algorithmfirst checks the stability criteria of each PDE are satisfied, otherwise it will not allow continuing
the calculations if one stability analysis is failed.

Most commercially available TE devices follow the typical ‘Sandwich’ design, withmultiple P andN
semiconductor blocks that are arranged electrically in series and thermally in parallel. TheTEmodel developed
in this work has been for a single P-N couple of TEmaterials. Therefore, some scaling has to be done to our TE
model to relate themodel with themodule ofmultiple P-N couples. The approach formultiple P-N couples can
be generalized to the case with a single P-N couple. This way, all the Z number of P-N couples of TEG are
lumped into a single P-N couple. This has the effect of scaling transport parameters a a= Z ,tot =k Zk,tot

/ /s s= Z1 .tot Thus and so, both transport coefficients in the P andN legs can be considered separately for
differentmaterials. This gives the advantage of rejecting the assumptionsmade in the previous studies such as
using equal transport coefficient values for both P andNmaterials, and replacing transport parameters with
their combined values (i.e. a a a= - ,p n = +k k k ,p n / / /s s s= +1 1 1p n).

Above temperature dependent equations for Bi2Te3were obtained from the information sheet [20].

3. Results and discussion

This sectionmainly focuses on validating themodel through time-dependent transient solutions and steady-
state solutions. As a time-dependent test, we compared ourmodel with experimentalmeasurements and the
steady state test was comparedwith a 3DANSYS® simulation.

3.1. Time-dependent transient solutions
As shown infigures 3 and 4, the experimental setup consists of a PTC ceramic (ceramic with a positive
temperature coefficient) heating element, a 3× 3 cm commercial TEG, and a heat sink for the cold side. PTC
heating element was connected to the hot side to supply a constant heat flux.Heatflux in (25) can be expressed

Figure 3.Experimental setup. 1. Hot side PTCheating element 2. Thermoelectricmodule 3. Cold side heat sink.
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as, /=q Q AA 0 where Q is the net heat (energy) transfer rate and A0 is the cross-sectional throughwhich the
heat transfer is taking place. In the beginning, the hot surface of the TEGneeds to be heated up to get the
experimentalmeasurements. Thus, a certain amount of electrical voltage needs to be applied to the PTCheating
element.Here we assumed that the electrical power of the PTCheating element was fully converted into thermal
energy. A 30× 30× 0.1 mmaluminium sheet was used to dissipate the heat energy throughout the top surface of
the TEGmodule, which has 71 P-N couples with bismuth telluride (Bi2Te3) based thermoelectricmaterial. On
the bottom side, a heat sinkwith a fan attachedwas used tomaintain a constant temperature at the cold surface
of the TEG. Temperature and voltage probeswere attached to the experimental setup to get themeasurements
(see figures 3 and 4).When the experiment initiates, temperature and voltage readings are recorded
simultaneously, with time.

Figure 5 shows the experimentallymeasured open-circuit voltage and calculated open-circuit voltage using
the FDMmodel as a function of time by applying input electrical power of 5.46Wand 13.07W to the heating
element. Throughout the time, the temperature of the cold surface of TEGwasmaintained at 295.15 K for
5.46Wand 300.15 K for 13.07W.

Time-dependent open-circuit voltages for the aforementioned two scenarios were obtained fromourmodel
by solving the systemof discretised PDEs (18) (19) (20) using theCprograming language. Transport parameter
values for themodel were taken from the values listed in table 1. Temperature dependence equations for a, k, s
are also shown beneath table 1. The initial conditions are as follows: 1. The temperature of each grid point
(including boundaryA andD)was set to 295.15 K for 5.46Wand 300.15 K for 13.07W, 2. The voltage of each
grid point in the thermoelectric region (fromB toC)was set to zero. 3. Grid point count= 105 (Nh = 15,
Nm = 75, Nc = 15).

According tofigure 5, a good agreement can be seen between the 1D finite-differencemodel and the
experimental results. In the beginning, for the two scenarios, the temperatures at the top surface of the TEG
(BoundaryA) gradually rose from the initial surface temperature to theirmaximumvalue due to the heatflux
at the boundaryA. In 360 seconds, themaximumpossible voltage values obtained by themodel for two events

Figure 4. Schematic diagramof experimental setup.

Figure 5.Open-circuit voltage versus time. Lines represent the FDMModel results, and the symbols represent the experimental
values.
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Table 1.Thermal and electrical properties ofmaterials [25, 26].

Component Material Density r (kgm−3) SpecificHeat Cv (J kgK
−1) Thermal Conductivity k (WmK−1) Electrical Resistivity r (Ωm) Seebeck Coefficient a (VK−1) Dielectric Permittivity 

TEGN leg Bi2Te3 7740 200 a b c 290⊥
TEGP leg Bi2Te3 7740 200 d e f 290⊥
Substrate Ceramic (Alumina) 3220 419 31 N/A N/A N/A

PN interconnect Copper 8300 385 401 1.69× 10−8 N/A N/A

a ( )= - + -*k T T2323000 5807 6.4681 10n
2 6

b ( )r = - + -*T T5112 163.4 0.627 10n
2 8

c ( )a = - + -*T T21280 1005 1.246 10n
2 9

d ( )= - + -*k T T7914000 35888 47.68 10p
2 6

e ( )r = - + -*T T5112 163.4 0.627 10p
2 8

f ( )a = - + - -*T T234500 2123 2.541 10p
2 9
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(= 0.441 V for 5.46Wand 1.067 V for 13.07W) aremore consistent with the experimental values (=0.439 V for
5.46Wand 1.061 V for 13.07W). Figure 6 presents the temperature of BoundaryA as a function of time. In the
early part of both graphs (figures 5, 6), model results slightly deviated from the experiment because the transport
parameter coefficients used in themodel did come from the literature rather than from experimental values.

Since our FDMmodel gives promising results in comparison to experimental values, we pushed themodel
for even higher temperatures to see the temperature-dependent results. Figure 7 shows the temperature-
dependent variation of the figure ofmerit (ZT), Seebeck coefficient, thermal conductivity, and electrical
conductivity of both P- andN-type thermoelectricmaterials of the TEG. For this event,model configurations
are as follows: 1. Input power is 59.05W, 2. The temperature of each grid point was set to 292.15 K, 3. The

Figure 6.Temperature at the top surface of TEG versus Time. Lines represent the FDMModel results, and the symbols represent the
experimental values.

Figure 7. For P-type andN-type thermoelectricmaterial of TEG, (a) dimensionless figure-of-merit, (b) Seebeck coefficient, (c)
thermal conductivity, and (d) electrical conductivity versus temperature.
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voltage of each grid point in the thermoelectric regionwas set to zero. 4. Grid point count= 105 (Nh = 15,
Nm = 75, Nc = 15).

3.2. Steady-state solutions
As a further test, we developed a 3D finite-element simulation of the thermoelectricmodel (shown infigure 8)
usingANSYS® software to compare the steady-state results of ourfinite-differencemodel. This ANSYS®model
has the same 71 P-N couples and the same dimensions as the commercial 3× 3 cmTEGmentioned in the above
section. In the ANSYS®model, the structure of one P-N couple is developed as infigure 1, consist P-N
thermoelectricmaterial (Bi2Te3), substratematerial (Alumina), and P-N junction interconnectmaterial
(Copper).Material properties values from table 1were used in the ANSYS®model to compute the steady-state
results.We computed the solutions for six different temperature gradients using long periods of time and used
those values tofind steady state voltage values of the FDMmodel. These values were comparedwith the direct
steady state results from theANSYS®. Also, we conducted experiments to obtain data related to the particular
scenario to ensure the validation. A comparison between the steady-state voltage results of the FDMmodel, 3D
ANSYS®model and the experimental data with several temperature gradients, is shown infigure 9. As shown in
thefigure, an excellentmatch among the threemethods can be seen, thus validating our approach.

4. Conclusion

In this work, we have developed afinite-difference based one-dimensionalmodel for the thermoelectric device.
The governing equations of thermoelectrics were converted into algebraic equations via the finite-difference
explicit discretisation technique. In the discretisation process, difference schemes like FTCS,Upwind and Lax–
Wendroffmethod are employed to obtain stable solutions forfirst and second-order PDEs. Themodel

Figure 8.ANSYS®finite-elementmodel.

Figure 9.Open circuit voltage versus temperature gradient.
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developed here has several improvements over the existingmodels. First, themodel overcomes the assumptions
previouslymade in the literature like: using equal transport coefficient values for both P andNmaterials,
replacing transport parameters with their combined values. Secondly, themodel is time-dependent and
considers all the thermal effects (Seebeck, Peltier, Thomson, and Joule), including temperature dependency of
properties like thermal conductivity, electrical conductivity, and the Seebeck coefficient. The results of the
model have an excellent agreement with the time-dependent experimental values, as well as with the steady-state
experimental andANSYS® 3D simulation results. Therefore, thismodel can be used to predict the transient and
steady-state behaviour of a complete thermoelectric systemwithmultiple P-N elements.
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