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Herein, we have developed a chemically modified glassy carbon electrode (GCE) using tea polyphenols medi-
ated zero-valent iron/reduced graphene oxide nanocomposites (rGO-ZVI-P) for rapid determination of Hg2+ in
water. Highly conductive rGO-ZVI-P were fabricated by a green chemical method using tea polyphenols as the
reductant. The rGO-ZVI-P shows a unique affinity to aqueous Hg2+ due to a synergy between ZVI and rGO. The
rGO-ZVI-P electrochemical sensor shows optimal performance for Hg2+ determination in pH 5.00 phosphate
buffer and 180 s accumulation time at −1.2 V accumulation potential used under square wave anode stripping
voltammetry (SWASV). At these conditions, the Hg2+ determination sensitivity is 41.42 μA/μM and the deter-
mination limit is 1.2 nM. There are no interferences to the rGO-ZVI-P modified GCE sensor in the presence of
0.5 μM Cd2+, 0.5 μM Pb2+, and 0.5 μM Cu2+ in solution, either in discrete cations or multi-cations modes.
Moreover, the typical chemical species found in the matrix of river water samples do not interfere with the
as-fabricated Hg2+ electrochemical sensor. The Hg2+ determination by the rGO-ZVI-P modified GCE sensor
is repeatable, stable, and robust, and it has potential in environmental applications.
1. Introduction

Mercury typically occurs as Hg0, Hg2+, and methylated Hg in the
environment. The toxicity of mercury species ordered as methylated
Hg ≫ Hg0 > Hg2+ causes serious damage to biota even in presence
of minute concentrations of mercury species[1]. Mercury ions in the
environment can enter the body through the food chain and combine
with sulfhydryl groups in enzymes and proteins in the body to cause
serious damage to the kidney and nervous systems. The US Environ-
mental Protection Agency (EPA) requires that the content of mercury
ions in drinking water should be less than 10 nM[2,3]. The major
sources of mercury in the environmental systems include coal mining,
fossil fuel burning, and various industrial activities[4,5]. In the envi-
ronment, the formation of Hg0 or methylated Hg seems to mediate
via Hg2+ [6]. Therefore, developing a rapid and low-cost method for
Hg2+ traces determination in water is timely.
Widely used mercury determination methods include high-perfor-
mance liquid chromatography[7], colorimetry[8], inductively coupled
plasma spectroscopy, atomic absorption spectrometry[9], etc.
Although these methods are stable and accurate, most of them require
costly equipment and complex operation procedures, so they are not
suitable for in situ mercury analysis of environmental samples. Fur-
ther, all of these methods determine total concentrations of mercury.
On the contrary, the electrochemical methods have attracted attention
because of their portability, simple operation, low cost, high effi-
ciency, sensitivity, etc. They are also capable of determining chemical
species[10]. Square wave anodic stripping voltammetry[11] (SWASV)
is widely used as one of the most effective electrochemical methods for
determining heavy metal ions. It is well known that electrochemical
performance mainly depends on the electrode modification. At pre-
sent, a large number of researchers are still devoted to the investiga-
tion of sensing materials, intending to construct the electrochemical
interfaces with high activity, selectivity, and stability[12].
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Table 1
The electrochemical response of rGO-ZVI-P to Hg2+ compared with other reported materials.

Electrodes Technique in details Linear range (μM) Sensitivity (μA/μM) LOD (nM) Correlation coefficient Reference

MoS2/rGO SWASV 0.40–2.00 9.76 90.00 0.998 [43]
[Ru(bpy)3]2+/GOa DPASVb 0.10–1.20 3.71 350.20 0.950 [44]
Graphene-MnO2 LSVc 12.00–210.00 0.11 2000.00 0.993 [45]
N-doped graphene DPSVd 0.07–9.00 15.73 10.00 0.987 [8]
SN-rGOe SWASV 0.60–1.70 20.48 8.93 0.999 [47]
rGO-ZVI-P SWASV 0.05–0.60 41.42 1.20 0.999 This work

a ruthenium(II)-textured graphene oxide nanocomposite.
b Differential pulse anodic stripping voltammetry.
c Linear sweep voltammetry.
d Differential pulse stripping voltammetry.
e Assembling reduced graphene oxide with sulfur/nitrogen.
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Nano zero-valent iron (ZVI) is environmentally benign and low
cost. It can be used for pollution remediation[13] and pollutants deter-
mination[14]. Due to its high electrochemical activity and strong
reduction ability, nano ZVI presents an enhanced electrochemical sig-
nal when used to construct an electrochemical sensing interface, and
its electrochemical behavior is mainly manifested as improving the
adsorption and electron transferring process[15,16]. When the heavy
metal ions are adsorbed on the surface of the nano ZVI modified elec-
trode, nano ZVI works as an electron donor that can promote the
reduction of heavy metal ions, resulting in the highly sensitive deter-
mination of heavy metal ions[16,17]. However, nano ZVI is easy to
aggregate and undergoes rapid oxidation upon exposure to the atmo-
sphere, thus inhibiting its applications[18]. Halpegama et[19] used
tea polyphenols as a reducing agent in the preparation with promising
results, which minimized nano-zero valent iron aggregation and oxida-
tion. Compared to chemical methods, the nano ZVI synthesized by tea
polyphenols shows good dispersibility and stability in the atmosphere.
The polyphenol route for nano zero-valent production is superior to
conventional chemical synthesis [20]. Pu et al. [21] also noted that
the preparation of zero-valent iron nanoparticles on the graphene
framework is efficient in solving problems related to aggregation
and oxidation.

Graphene, a two-dimensional honeycomb lattice material with a
single atom thickness, has attracted attention due to its unique elec-
tronic, optical, chemical, mechanical, and thermal properties. To
improve the application potential of graphene, researchers have car-
ried out many modifications to the substrate [22]. Especially when
combined with iron nanoparticles, e.g., zero-valent iron/reduced gra-
phene oxide nanocomposites (rGO-ZVI) show an excellent adsorption
effect for heavy metal ions. Ren and others[23] used chemically syn-
thesized zero-valent iron/ reduced graphene oxide to treat CrO4

2- with
promising results. The rGO skeleton prevents the accumulation of
nano zero-valent iron particulates. The rGO-ZVI converts CrO4

2- →
Cr3+, which readily adsorb at negatively charged rGO. Wang et al.
[24] also assembled nano zero-valent iron into graphene to remove
arsenic and vanadium by adsorption. However, the determination of
heavy metal ions using rGO-ZVI as a starting material for sensors has
not been reported so far.

We have prepared rGO-ZVI-P by reducing Fe2+ on the rGO frame-
work using tea polyphenols, which acts as a reductant and blocker dur-
ing the synthesis process. The rGO-ZVI-P thus prepared was used to
chemically modify glassy carbon electrode for electrochemical deter-
mination of Hg2+ by SWASV in water. The electrochemical behavior
of the rGO-ZVI-P modified GCE was carefully optimized to maximize
the sensitivity and robustness of Hg2+ determination. The determina-
tion mechanism of Hg2+ on the electrochemical sensing interface was
also investigated. The chemical interference by divalent cations ubiq-
uitous in aquatic systems, e.g., Cd2+, Pb2+, and Cu2+ on Hg2+ deter-
mination, was also examined. Finally, the new sensor's potential for
2

environmental applications was assessed by examining Hg2+ in a river
water sample.
2. Experimental section

2.1. Materials and reagents

Tea polyphenols were purchased from Shanghai Macklin Biochem-
ical Co., Ltd. All other analytical grade chemicals (e.g., graphite pow-
der, H2SO4 (98%), NaNO3, KMnO4, HCl (37%), H2O2 (30%),
FeSO4·7H2O, etc.) were obtained from Sinopharm Chemical Reagent
Co., Ltd (PR China) and used as received. 0.1 M acetic acid buffer
(ABS) was prepared by mixing 0.1 M acetic acid with sodium acetate
solution. 0.1 M phosphoric acid buffer (PBS) was prepared by mixing
0.1 M disodium hydrogen phosphate and potassium dihydrogen phos-
phate solution. 0.1 M citrate buffer (CPBS) was prepared from a mix-
ture of 0.1 M citric acid and sodium citrate solution. Deionized water
was used to prepare all solutions.
2.2. Preparation of zero-valent iron/reduced graphene oxide

2.2.1. Preparation of tea polyphenols mediated zero-valent iron/reduced
graphene oxide (rGO-ZVI-P)

Graphene oxide (GO) was prepared according to the improved
Hummers method. To synthesize rGO, tea polyphenols were added
to a 10 g/L GO aqueous suspension while stirring for 30 min., contin-
uously. The mixture color change from brownish yellow to black con-
firms the rGO formation. The rGO residue was washed with deionized
water several times to a neutral pH and dried in a vacuum drying oven.
To synthesize rGO-ZVI-P, rGO powder was dispersed in deionized
water under sonication for 30 min to prepare 5 g/L rGO suspension,
and then 0.25 M FeSO4·7H2O was added to 100 mL rGO suspension
while shaking vigorously for 1 h. Afterward, 5 g/L tea polyphenols
were added to rGO/Fe2+ suspension, and stirring continued for 24 h
to yield black colored rGO-ZVI-P. The rGO-ZVI-P was washed thor-
oughly with deionized water, dried, and stored in a vacuum drying
oven.
2.2.2. Preparation of potassium borohydride reduced zero-valent iron/rGO
(rGO-ZVI-B).

0.25 M ferrous sulfate was dissolved in 100 mL 5 g/L rGO solution
and shaken vigorously for 1 h. Then, 25 mL of 1 M potassium borohy-
dride solution was added to rGO/FeSO4·7H2O suspension and stirred
for 24 h. The resulting black material was washed to neutral and vac-
uum dried to obtain potassium borohydride reduced zero-valent iron/
rGO (rGO-ZVI-B).
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2.3. Characterization of rGO-ZVI-P

Field emission scanning electron microscopy (FE-SEM, Hitachi
SU8020) and transmission electron microscopy (TEM, JEM-1400flash)
were used to analyze the surface morphology, microstructure, and ele-
mental composition of the rGO-ZVI-P. Raman spectra of the compos-
ites were obtained using a confocal laser Raman spectrometer
(Raman, LabRAM HR Evolution HORIBA JOBIN YVON, Japan) at
532 nm. Near-surface elemental composition and functional groups
of the materials were examined by X-ray photoelectron spectroscopy
(ESCALAB250Xi Thermo, USA) and Fourier transform infrared spec-
troscopy (Thermo Nicolet, USA). N2 adsorption and desorption were
carried out by gas adsorption apparatus (BET, autosorb-IQ3, USA) at
−196 °C to determine the specific surface area and pore size
distribution.

2.4. Fabrication of rGO-ZVI-P modified glassy carbon electrode

The glassy carbon electrode (GCE) surface was chemically modified
using rGO-ZVI-P, as given below. First, the electrode surface was pol-
ished with 1.0 μm, 0.3 μm, and 0.05 μm alumina powder to achieve a
mirror surface. To remove residual alumina and other impurities from
the surface, the GCE was then treated with 1:1 (v/v) HNO3, ethanol,
and deionized H2O successively by a continuous ultrasonic treatment
for 2 min. 1 mg/mL rGO-ZVI-P suspension was prepared using
dimethylformamide as a solvent. After intermittent shaking, the
rGO-ZVI-P suspension was ultrasonicated for 30 min. A 6 μL rGO-
ZVI-P droplets were placed on the electrode surface and then air-dried.
A three-electrode system consisting of rGO-ZVI-P /GCE working elec-
trode, Ag|AgCl reference electrode, and Pt counter electrode were used
for all measurements by an electrochemical workstation (CHI 760E,
Chenghua Instrument Co., Ltd., China).

2.5. Electrochemical measurements

Electrochemical impedance spectroscopy (EIS) and cyclic voltam-
mograms (CV) were used to study the electrochemical properties of
the rGO-ZVI-P /GCE interface. Square wave anodic stripping voltam-
metry (SWASV) was used to determine Hg2+. Parameter setting of
EIS characterization: AC amplitude 5 mV, frequency ranging from
1 Hz to 106 Hz, DC potential 180 mV. The related parameters of
SWASV are set as follows: potential range from −0.1 V to 0.6 V,
increasing potential step of 4 mV, amplitude of 25 mV, and frequency
of 15 Hz.
3. Results and discussion

3.1. Morphologic and structural characterization of rGO-ZVI-P

The morphology, microstructure, and elemental composition of
rGO-ZVI-P composites were characterized by scanning electron micro-
scopy (SEM) and transmission electron microscopy (TEM). As shown
in SEM (Fig. 1.a), rGO-ZVI-P shows folds and pores intrinsic for rGO
[25]. Such structures provide a large specific surface area for the
attachment of ZVI. As shown in Fig. 1. b, the rGO-ZVI-P contains
34.6 % (Fe), 40.7% (C), and 24.6% (O), which confirms successful
adherence of ZVI on the electrode surface. The observed O and C con-
centrations were largely derived from tea polyphenols and rGO. As
shown in Fig. 1(c), the spherical ZVI particulates are uniformly dis-
persed on the folded rGO matrix. The ZVI agglomeration is largely
avoided leading to a good sealing property of rGO[19,26]. According
to Fig. 1. d, the measured lattice spacing is around 0.2 nm, correspond-
ing to the (110) plane of Body Centred Cube (BCC) metallic Fe [27].In
addition, the energy spectrum of transmission electron microscopy
shows uniformly distributed Fe0 particulates on the surface of rGO.
3

The degree of defect and disorder in the graphene, reduced gra-
phene oxide, and rGO-ZVI-P structures can be identified by Raman
spectroscopy. Peaks D and G[28], respectively, represent the degree
of carbon sp2 and sp3 hybridization. The peaks intensity ratio (ID: IG)
measures the hybridization of carbon atoms in sp2 and sp3 modes
and represents the degree of defect and disorder in the crystal struc-
ture. As shown in Fig. 2.a, peaks D and G appear at 1350 cm−1 and
1603 cm−1. The ID: IG ratio of rGO increased, indicating that GO
was reduced to rGO, and the sp2 conductive structure of graphene
was repaired under the action of green tea polyphenols[29]. Notably,
the ID: IG ratio of rGO-ZVI-P increased, confirming the successful syn-
thesis of the nanocomposite, as the loading of zero-valent iron pro-
vided more defect sites on rGO[30]. The peak shapes of rGO and
rGO-ZVI-P are similar, indicating that the iron nanoparticles are
loaded on the carbon skeleton without perturbing the graphene struc-
ture[31].

Fig. 2.b shows the Fourier transformed infrared spectra of GO, rGO,
and rGO-ZVI-P. For GO, the broad band at 3411 cm−1 is related to the
OAH stretching vibrations[32], the band at 1729 cm−1 is due to the
stretching of C@O in –COOH, the band at 1390 cm−1 is due to the
stretching of CAC[19], and the stretching vibration of C@C appears
at 1624 cm−1[33]. The CAO(alkoxy) and CAO(epoxy) bands appear
at 1065 cm−1 and 1221 cm−1[34], respectively. In the infrared spec-
tra of rGO or rGO-ZVI-P, the C@O peak gradually disappeared, indicat-
ing that a large number of oxygen-containing functional groups were
removed from GO under the action of tea polyphenols[35]. The
CAO(epoxy) peak was due to hydrogen-bonded –COOH deformation
and was significantly strengthened upon reducing GO and Fe2+ with
tea polyphenols. Compared with the rGO spectrum, the CAO peak at
1205 cm−1 in the rGO-ZVI-P spectrum shifted right, which may be
related to the combination of graphene and ZVI particles. The Fe-O
peaks appear at 602 and 472 cm−1, corresponding to Fe-O in Fe3O4

and Fe2O3[36]. This is because part of ZVI particles is oxidized, form-
ing the adventitious core–shell structure of ZVI[37]. The shell compo-
sition is mainly ferric oxide, which is consistent with XPS analysis. ZVI
may have π-π interactions with the rGO framework.

To further analyze the chemical composition and Fe valence states
of the rGO-ZVI-P composite, an X-ray photoelectron spectroscopy
(XPS) study was conducted (Fig. 3.c). The XPS diagram of rGO
(Fig. 3.a) was used as a control. In the case of rGO-ZVI-P, the same
peaks of C1s(283 eV) and O1s(530 eV) appear in the energy spectrum
as those of rGO, and a new peak corresponds to Fe2p appears at 711 eV
[23].

The type of C1s high-resolution peak of rGO-ZVI-P (Fig. 3 (d)) is
attributed to rGO (Fig. 3 b), such as C@O(288.1 eV), CAO
(285.3 eV), CAC/C@C(284.6 eV) [38], but the peak intensity changes.
In rGO, CAC/C@C peaks are derived from the sp2 (conjugated gra-
phene) and sp3 (removing O-derived functional groups) hybridization
[37]. The C@O and CAO peaks are related to oxygen-containing func-
tional groups' abundance in the composites [37]. In rGO-ZVI-P, the C1s
intensity of C@O and CAO peaks decreased significantly, while the
intensity of CAC/C@C peaks increased because the tea polyphenols
used for Fe2+ → Fe0 conversion also reduced the oxygen-containing
functional groups in graphene.

As shown in Fig. 3.e, the peaks of Fe2p correspond to the concur-
rent occurrence of Fe3+, Fe2+, and Fe0 in rGO-ZVI-P. Peaks at
710.9 eV and 725.1 eV belong to Fe2+, and peaks at 712.5 eV and
733.4 eV belong to Fe3+ [39]. The peak at 707.3 eV is caused by
Fe0, while the corresponding satellite peak occurs at 719.5 eV. The
spectral data confirms the successful incorporation of well-preserved
ZVI particles on the graphene surface[40,41]. As shown in Fig. 3.e,
the peak intensity of Fe0 is small compared to Fe2+ and Fe3+ intensi-
ties. The XPS mainly analyzed the elemental composition of materials
near-surface and their valence state. In the preparation of the rGO-ZVI-
P composite, part of ZVI on the material's surface is slightly oxidized
by oxygen in the air, forming a dense iron oxide shell on the surface.



Fig. 1. SEM (a-b), TEM (c), HRTEM (d), and EDS mapping of oxygen (f), iron (g), and carbon (h) in the selected region (e) of rGO-ZVI-P nanomaterials, the inset in
(b) is EDS analysis of rGO-ZVI-P.

Fig. 2. Raman spectra (a) and Fourier transformed infrared spectra (b) of GO, rGO, and rGO-ZVI-P materials.
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In the high-resolution figure of O1s (Fig. 3 (f)), a high strength Fe-O
peak at 530.0 eV can be observed, but a large amount of ZVI is pro-
tected by tea polyphenols [42].

N2 adsorption–desorption isotherms and pore size distribution of
rGO and rGO-ZVI-P are shown in Fig. S1. The specific surface area
of rGO after loading zero-valent iron decreases from 17.39 m2/g to
12.37 m2/g because zero-valent iron with a smaller diameter occupies
the gap of rGO. The specific surface area of graphene decreases with
4

the loading of zero-valent iron. However, it still contains abundant
micropores and mesopores, which is consistent with the previous data
[24].

3.2. Electrochemical behavior of rGO-ZVI-P modified electrode

Cyclic voltammograms and electrochemical impedance spec-
troscopy were used to characterize the electrochemical properties



Fig. 3. XPS total spectrum of rGO (a), the high-resolution spectrum of C1s (b), XPS total spectrum of rGO-ZVI-P (c), the high-resolution spectrum of C1s (d), the
high-resolution spectrum of Fe2p (e), and high-resolution spectrum of O1s (f).
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and the electrons transfer kinetics at the solid–liquid interface of the
rGO-ZVI-P modified GCE. The CV and EIS of bare GCE, rGO, and
rGO-ZVI-P modified GCE were examined in 5 mM Fe (CN6)3-/4- in
0.1 M KCl. As shown in Fig. 4a, the three electrodes maintain a high
and symmetrical redox peak. Among them, the potential difference
of the bare GCE is the lowest, while the potential difference of the
rGO-ZVI-P modified GCE increases, indicating that the composite
material successfully modified the surface of the electrode. Compared
to the CV curve of rGO modified GCE, the peak current of rGO-ZVI-P
modified GCE is increased. The ZVI on rGO promotes more efficient
electron transfer than rGO or bare GCE surface.

Fig. 4b shows a typical Nyquist diagram of the rGO-ZVI-P modified
GCE in three electrodes configuration using EIS data. The magnitude
5

of the diameter of the semi-circle shows a measure of electron transfer
resistance at high frequencies. In contrast, the linear part shows the
diffusion limiting process at low frequencies. Through equivalent cir-
cuit simulation, the EIS data of the modified electrodes were analyzed
(inset of Fig. 4. b), R1 represents solution resistance, R2 represents elec-
tron transfer resistance, Wo represents Warburg impedance, and CPE
represents constant phase angle element. See Table S1 for the specific
data of each circuit component. The EIS curve of rGO-ZVI-P modified
GCE is consistent with the CV result. Compared to the bare GCE, the R2

value of the rGO modified GCE and the rGO-ZVI-P modified GCE
increased obviously, and the R2 value of the rGO-ZVI-P modified
GCE was lower than that of the rGO modified GCE. The rGO contains
many oxygen-rich functional groups, which hinder the electron trans-



Fig. 4. Cyclic voltammograms (a) and typical Nyquist curves (b) of GCE, rGO /GCE, rGO-ZVI-P /GCE in a solution containing 5 mM Fe(CN6) 3-/4- and 0.1 M KCl,
the inset is an equivalent circuit model.
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fer at the solid–liquid interface. However, with the introduction of ZVI
into rGO, the electron transfer rate at the electrode and solution inter-
face is enhanced.
3.3. Optimisation of experimental electrochemical conditions

rGO-ZVI-P modified GCE was used for electrochemical Hg2+ deter-
mination in environmental samples. The Hg2+ determination sensitiv-
ity by the rGO-GCE sensor can be improved in two ways; by improving
electron transfer dynamics at the electrode-solution interface and by
varying experimental parameters used in analyte determination. The
experimental and instrument parameters optimized for Hg2+ determi-
nation are pH, buffer type, accumulation time, and accumulation
potential At a time, only one parameter was varied while keeping
others fixed. In all cases, 0.5 μM Hg2+ was used.

For choosing a suitable buffer type, three buffers, namely 0.1 M
acetate buffer (ABS), 0.1 M citrate buffer (CPBS), and 0.1 M phosphate
buffer (PBS) were selected. In the solution containing 0.5 μM Hg2+, at
−1.2 V accumulation potential with 100 s accumulation time, the
observed voltammograms are shown in Fig. 5 (a). The peak current
for Hg2+ in PBS buffer is the highest. Therefore, 0.1 M phosphate buf-
fer was selected for Hg2+ determination experiments out of three buf-
fers examined.

To optimize the pH value, 0.1 M PBS solutions at pH values ranging
from ∼ 3.00 to ∼ 6.00 were used. The accumulation time and accumu-
lation potential were fixed at 100 s and −1.2 V, respectively. The
voltammograms are shown in Fig. 5. b. When pH varied from ∼ 3.00
to ∼ 6.00, the current shows an optimal value at pH 5.00. This may
be due to the “crowding out” of mercury by hydrogen ions in solution
at acidic pH, while hydrolysis occurs at basic pH. Therefore, the choice
of pH ∼ 5.00 PBS buffer is most appropriate for Hg2+ determination.

The accumulation potentials at the rGO-ZVI-P sensor were investi-
gated between −1.0 and −1.5 V. The voltammograms are shown in
Fig. 5. c. With the increase of the accumulation potential, the response
current increased first and then decreased. The maximum current
value is observed at −1.2 V. Further increase of potential favors
Hg2+ reduction in solution, which increases oxidized ions in the sec-
ond stage and a strong electrochemical signal at the electrode inter-
face. However, at high potential, H+ is also reduced to hydrogen gas
that collects at the interface of the electrode forming gaseous bubbles,
which hinders the Hg2+ reduction. So the optimal accumulation
potential at −1.2 V was chosen for the subsequent investigation.

An additional experiment was carried out to determine the Hg2+

accumulation time on the rGO-ZVI-P modified electrode. The accumu-
6

lation time of Hg2+ accumulation varied between 90 s and 240 s. The
voltammograms are given in Fig. 5d. With the increase of accumula-
tion time, the number of Hg2+ on the surface of the working electrode
increases, and the response current increases. Between the 90 s
and ∼ 180 s range, the current increases rapidly, and in the 180 s
and ∼ 240 s range, the response current only slightly increases. This
may be because the mercury ions in the solution have reached the sat-
uration state at the electrode interface when the accumulation time is
180 s. For subsequent experiments, we used the following optimized
parameters; pH 5.00 0.1 M phosphate buffer, accumulation potential
−1.20 V, and 180 s accumulation time.
3.4. Electrochemical determination of Hg2+ with rGO -ZVI modified GCE

The GCE modified by rGO or rGO-ZVI-P composites was used to
develop an electrochemical sensor for Hg2+ determination by square
wave anodic stripping voltammetry (SWASV). Bare GCE was used as
a control. Compared to the control, the rGO modified GCE shows an
enhanced signal for Hg2+ determination due to the abundance of
active sites for analyte retention. Fig. 6 (a) shows the voltammograms
of 0.5 μM Hg2+ measured with rGO and rGO-ZVI-P modified GCE in
pH ∼ 5.00 solution. Compared to the bare electrode surface, rGO mod-
ified surface provides a larger specific surface area (e.g., active sites),
showing enhanced sensitivity for Hg2+ determination. ZVI is a catalyst
for Hg2+ reduction. When ZVI adheres to the rGO skeleton, uniformly
dispersed sites are generated on the surface (designated as rGO-ZVI-P).
The electron transfer dynamics is facilitated via Fe(0)/Fe(II)/Fe(III)
redox couples[14]. The removal of O-derived functional groups and
repair of sp2 structures enhanced the composites' electric conductivity,
which signifies the increase of peak current for Hg2+ by about six
times.

Under optimal conditions, the GCE modified with rGO-ZVI-P was
used to determine Hg2+ in the solution, and the voltammograms are
shown in Fig. 6 (b). The nearly parallel voltammograms showed a
steep peak indicating the electrochemical signal for Hg2+ determina-
tion at 0.17 V. To examine the sensor's sensitivity, Hg2+ concentra-
tions were incremented by 0.05 μM steps in each cycle. As the Hg2+

concentration increased, the peak current increased, and it is linear
with the Hg2+ concentration (Y(μA) = 41.42 X (μM)-1.66;
R2 = 0.999). The electrode's sensitivity is 41.42 μA/μM, and the limit
of detection (LOD) is 1.2 nM based on the 3δ/S estimation method (S
represents the slope of the linear fitting equation, and δ represents the
signal-to-noise ratio(S/N)). Table 1 summarizes the sensitivity, LOD,
and linear dynamic range of Hg2+ determination by different electro-



Fig. 5. Optimization experiment of rGO-ZVI-P modified electrode:(a) buffer type, (b) pH value of solution, (c) accumulation potential, (d) accumulation time.

Fig. 6. Typical SWASV responses of 0.5 μMmercury ions on naked GCE, rGO and rGO-ZVI-P modified glassy carbon electrodes (a) and electrochemical response of
rGO-ZVI-P to different concentrations of mercury ions under optimized conditions (b).
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chemical methods using various sensors. Our results show the
enhanced performance of the rGO-ZVI-P electrochemical sensor com-
pared to others.

3.5. Possible mechanisms.

From the above results, it can be found that the rGO-ZVI-P was pre-
pared by using tea polyphenols as reductants and protectors. The sp2

structure of graphene improves the conductivity of ZVI, and rGO
may interact with ZVI through π-π. In the follow-up electrochemical
7

test of Hg2+, it was found that the loading of highly active ZVI parti-
cles significantly enhanced the electrochemical response to mercury
ions. However, the possible reaction mechanism between ZVI, tea
polyphenols, and mercury ions is not clear. Therefore, we designed
to prepare zero-valent iron nanoparticles (rGO-ZVI-B) on graphene
framework using potassium borohydride as reductant, and analyze
the electrochemical behavior of mercury ions under the same condi-
tions. The results showed that (Fig. S2), the sensitivity and determina-
tion limit of the sensor were both lower than rGO-ZVI-P. The stripping
peak current of rGO-ZVI-B/GCE was only 2/3 of that of rGO-ZVI-P/
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GCE at the same concentration of mercury ion, which may be related
to the lack of ZVI active sites on graphene surfaces.

In the absence of a protective agent, the zero-valent iron attached
to the graphene surface agglomerates and forms an iron oxide on con-
tact with air, forming a dense iron oxide shell that blocks electron
migration. In addition, the absence of zero-valent iron at metal sites
weakens the Fe2+/Fe3+ cycle[16], resulting in a corresponding reduc-
tion in response current. Tea polyphenols not only play the role of a
green reductant but also can be used as a blocker of ZVI to improve
the dispersity (Fig. 1(c)) and stability of ZVI. In the presence of tea
polyphenols, ZVI particles loaded on the surface of rGO can prevent
further oxidation by oxygen. Tea polyphenols have no reduction abil-
ity to mercury ions, but tea polyphenols easy form a stable polyphenol-
Fe2+ structure with Fe2+[19], that is, the graphene surface contains a
large number of ZVI particles, Fe2+ and polyphenols-Fe2+ structure,
which is conducive to the reduction reaction of mercury ions in the
accumulation stage. However, only a small amount of ZVI active sites
and Fe2+ were found in rGO-ZVI-B material. After contact with air, the
polyphenols-Fe2+ structure will slowly change to a polyphenols-Fe3+

structure[48], which shows that the reduction potential of Fe2+

decreases and the oxidation rate of ZVI increases. Combined with rel-
evant literature [49], the possible mechanisms of ZVI, tea polyphenols,
and Hg2+ can be roughly divided into mercury ion accumulation and
oxidation:

(1) Accumulation stage.
Fe0 + Hg2+→ Hg0 + Fe2+.

2 Fe2++ Hg2+→ Hg0 + 2 Fe3+.
Fig. 7. SWASV responses of rGO-ZVI-P modified electrode to a series of concentrat
Cu2+, (c) in the presence of 0.5 μM Pb2+,(d) in the presence of 0.5 μM Cd2+, Cu2
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2 polyphenols- Fe2++ Hg2+→ Hg0 + 2 polyphenols-Fe3+.

Hg2++2 e-(electrode) → Hg0.

(2) SWASV stripping.

2 Fe3++ Hg0 → Hg2++ 2 Fe2+.

2 polyphenols-Fe3++ Hg0 → Hg2++ 2 polyphenols-Fe2+.

Hg0-2 e- (electrode) → Hg2+.

3.6. Interference experiments with other metal ions

The interference of selected divalent cations on Hg2+ determina-
tion by rGO-ZVI-P modified GCE sensor was examined in two modes:
(1) Discrete cations mode where only one foreign cation is added at a
time; (2) Concurrent cations mode where all cations are added at once.
At any time, the concentration of a foreign cation is 0.5 μM, and the
Hg2+ concentration was varied between 0.1 and 0.9 μM. Irrespective
of the presence of foreign cations, the Hg2+peaks are sharp, and the
variation of peak current intensity vs concentration of Hg2+ is always
linear (Fig. 2S). In all cases, Hg2+ shows an anomalous affinity for
rGO-ZVI-P over other cations present in the solution. However, the
intensity of Cu2+ and Cd2+ peaks enhanced significantly due to the
formation of Hg(0) thin film on the electrode surface facilitating Cd
or Cu and mercury amalgamation[50,51]. However, the current peak
of Pb2+ appeared only once and then disappeared forming Pb3(PO4)2
precipitate with phosphate present excessively in the buffer solution.
The Hg2+ determination sensitivity of the rGO-ZVI-P modified GCE
has decreased in the presence of Cd2+, Pb2+, and Cu2+. Of the three
ions of Hg2+.(a) in the presence of 0.5 μM Cd2+, (b) in the presence of 0.5 μM
+, Pb2+, etc.



Fig. 8. Stability and reproducibility of rGO-ZVI-P/GCE. (a) The SWASV responses toward 0.5 μM Hg2+ on seven consecutive days. The inset is the typical
voltammograms curve. (b) The SWASV responses toward 0.5 μM Hg2+ of 8 rGO-ZVI-P/GCEs.
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cations examined, Cu2+ shows the maximum interfering effect for
Hg2+ determination, and the sensitivity decreased to 23.40 μA. μM−1.

Under the same experimental conditions, the Hg2+ determination
was also examined under concurrent cations mode, and the voltammo-
grams are given in Fig. 7. d. In this system, with the increase of Hg2+

concentration in a stepwise fashion, the corresponding current peaks
of Cd2+ and Cu2+ increased slightly. The peak of Pb2+ disappeared
completely, which can be ascribed to the arguments made earlier.
However, the peak and sensitivity of cations decreased in the concur-
rent cations mode compared to the single cation mode. The sensitivity
of Hg2+ determination under the concurrent mode has decreased to
29.83 μA.μM−1. However, it is also observed that even in the presence
of a single or multiple foreign cations, the current peak of Hg2+ is well
separated from the other current peaks. Its peak current is much higher
than that of foreign cations. Moreover, in the presence of interfering
cations, the peak current and Hg2+ concentration still show an excel-
lent linear relationship (R2 = 0.999) which confirms the selectivity of
rGO-ZVI-P sites for Hg2+ retention.

3.7. Stability and reproducibility

The precision and stability of measurement by rGO-ZVI-P modified
GCE were examined using a 0.5 μM Hg2+ solution. The new electro-
chemical sensor was used repeatedly for a week. As shown in Fig. 8
(a), the current response peaks of the 7 experiments coincide. The rel-
ative standard deviation (RSD) of the measurements is 1.75 % which
indicates the stability of the sensor for repeated use under robust con-
ditions. In another experiment, we fabricated eight rGO-ZVI-P modi-
fied GCE sensors to assess reproducibility for Hg2+ determination.
The response curve is shown in Fig. 8 (b). The current peak of eight
sensors is consistent, and the RSD of the current peak is about
2.60% indicating that the electrode fabrication has good precision.

3.8. Determination of spiked Hg2+ in the natural river water

The rGO-ZVI-P modified GCE sensor was also used to check the fea-
sibility and robustness of metal ions determination in real water anal-
ysis. We collected a natural water sample from Nanfeihe River (Hefei,
PR China) for Hg2+ analysis using the rGO-ZVI-P modified GCE sensor
developed by us. After storing the river water for 24 h, it was mixed
with 0.1 M phosphate buffer at a 1:9 ratio (sample: buffer) to yield a
solution with a pH value of ∼ 5.00. We noted that there was no
Hg2+ contamination or the Hg2+ concentration in the river water
was below the determination limit, viz., 1.2 nM. Multiple Hg2+ spike
9

analysis of river water was carried out to determine matrix effects of
river water. The i vs C result from the voltammograms shows a linear
relationship (Fig. S4). The matrix species in river water seemed to have
negligible effect on Hg2+ determination. The Hg2+ recovery rates by
spiked analysis are always around 100 % ± 3% (Table S1 for details).
Our data conclude that the matrix effects of river water on Hg2+ deter-
mination by the new electrochemical sensor could be negligible.
4. Conclusions

We fabricated an rGO-ZVI-P modified GCE sensor for trace determi-
nation of Hg2+ in water by square wave anode stripping voltammetry
(SWASV) with 41.22 μA/μM sensitivity and 1.2 nM determination
limit. Compared to bare GCE or rGO modified GCE sensors, the
Hg2+ determination by rGO-ZVI-P modified GCE shows 3.45 ∼ 2.17-
fold higher sensitivity. The rGO-ZVI-P modified GCE showed minimal
interference for Hg2+ determination by the presence of equimolar
Cd2+, Cu2+, and Pb2+ in solution. The chemically modified GCE
shows good precision and stability in the Hg2+ determination of nat-
ural waters. The rGO-ZVI-P is environmentally benign and robust,
which offers an ideal sensor for in situ Hg2+ trace determination in
environmental samples.
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