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A B S T R A C T   

We fabricated iron-doped carbon nitride on a diatomite surface through a single-step polymerization (FGD-x, 
where x represents Fe loading content). The FGD-x efficiently degrades tetracycline hydrochloride by a collab-
orative photo-Fenton process. The FGD-3 (FeCl3 loading 75 mg) showed the best catalytic performance in TC 
degradation with minimal H2O2 (viz. 1 mmol/L) at a wide pH range (2.0–7.0). Under optimized conditions, the 
FGD-3 can degrade 98.3% of 20.0 mg/L TC at pH 4.0 within 100 min under visible light irradiation. The scanning 
electron microscopic and X-ray photon spectroscopic data show that iron is successfully doped on g-C3N4. 
Electrochemical impedance spectroscopy and transient photocurrent performance analyses confirmed that 
photogenerated electrons rapidly transfer at FGD-3 and solution interface. Free radical quenching experiments 
and electron spin resonance analysis show that h+, ∙O2

-, and ∙OH can degrade TC efficiently. Besides, FGD-3 has 
an ultra-high catalytic activity and extremely low iron leaching after repeated use. The FGD-3 provides a feasible 
way to design a new photo-Fenton catalyst for the destruction of organic pollutants from water.   

1. Introduction 

Tetracycline is a widely used antibiotic in human and veterinary 
medical applications. However, tetracycline is weakly absorbed in the 
body, which results in its direct discharge into the environment, causing 
serious problems to ecosystem health [1–3]. Tetracycline remediation 
methods in water include adsorption [4], membrane separation [5], 
chemical oxidation [6], photocatalysis [7], and biological degradation 
[8]. The treatment methods based on adsorption or membrane separa-
tion merely concentrate the pollutant into another compartment/ phase 
without really destroying it [9]. The chemical or photocatalysis medi-
ated tetracycline degradation results in intermediates that require spe-
cial attention. 

On the other hand, biological treatment methods’ efficiency di-
minishes over time due to tetracycline’s antibiotic properties or its by- 
products. Photo-Fenton technology effectively destructs refractory 
organic pollutants as tetracycline. The catalyst used in these methods 

can recycle and be economical [10]. Photo-Fenton technology over-
comes problems such as low efficiency and stringent solution acidity 
requirements associated with homogeneous Fenton reaction. However, 
photo-Fenton and Fenton processes are prone to generate iron slag and 
other shortcomings [11]. As a novel semiconductor photocatalyst, 
g-C3N4 has attracted much attention due to its good chemical stability 
and visible light response [12]. However, its low specific surface area, 
fast recombination of photogenerated electron and hole pair, and nar-
row visible light absorption range restrict g-C3N4’s catalytic activity[13, 
14]. At present, many strategies applied to prevent e- and h+ recombi-
nation of g-C3N4 have been found. These strategies include substrate’s 
structural modifications[15], metallic or nonmetallic doping [16,17], 
precious metal deposition [18], and construction of heterojunctions 
[19]. A semiconductor bandgap is vital for efficient charge transfer by 
doping with metal ions [20]. Zhang et al. [21] prepared a Co/g-C3N4 
photocatalyst. Co’s doping causes the absorption spectrum of the 
Co/g-C3N4 to redshift, and the recombination rate of the photogenerated 
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electron-hole pair is reduced. The catalyst’s visible light absorption ef-
ficiency has increased, showing its excellent performance for methylene 
blue degradation. Wang et al. [22] prepared porous Fe-g-C3N4 nano-
sheets with different Fe loading. The bonding between pyridine N and Fe 
atoms in g-C3N4 enhances the electron transport rate, limits iron ions 
leaching thus curtailing secondary environmental pollution. However, 
g-C3N4 is easy to agglomerate by thermal polymerization, which greatly 
reduces the catalytic activity. The agglomeration problem can be solved 
by fixing g-C3N4 nanosheets on porous substrates or templates [23,24]. 
As a natural mineral material, diatomite has a stable porous structure 
with a large specific surface area. And also, there are a large number of 
silicon hydroxyl groups and hydrogen bonds on the surface, which 
makes the diatomite’s strong adsorption ability [25,26]. The perfor-
mance of the photocatalyst to remediate recalcitrant pollutants can be 
improved by fixing it on the surface of diatomite or allied substrate in 
constructing a composite material with multi-elements [27]. 

Presently, we fabricated a well-dispersed, iron-doped g-C3N4 com-
posite (FGD-x, where x represents Fe loading content) using urea and 
FeCl3 on a diatomite surface to be suited for efficient reactivity under 
visible light irradiation (Fig. S1). As a heterogeneous catalyst, the new 
composite operates via two modes, viz. photocatalysis and the Fenton 
process. Tetracycline was used as a probe to assess the catalytic reac-
tivity of the composite. The mechanism of TC degradation by the photo- 
Fenton process was examined with LC-MS, free radical capture experi-
ments, and electron spin resonance spectroscopy methods. In addition, 
the stability of the catalyst was studied through repeated experiments. 

2. Experiments 

2.1. Materials and chemicals 

Diatomite was purchased from International Building Materials 
Environmental Technology Co., Ltd. Urea, anhydrous iron trichloride 
(FeCl3), purchased from Sinopharm Chemical Reagent Co., Ltd, China. 
Hydrochloric acid (HCl), sodium hydroxide (NaOH), hydrogen peroxide 
(H2O2), tetracycline hydrochloride (TC⋅HCl), sodium sulfate (Na2SO4), 
tert-butanol (TBA), disodium ethylenediaminetetraacetic acid (EDTA- 
2Na), and 1,4-benzoquinone (BQ) were all purchased from Shanghai 

Macleans Chemical Co., Ltd., China. All experiments use deionized 
water, and all the chemical reagents used in the experiment are of 
analytical grade. 

2.2. Synthesis of Fe-g-C3N4/DE 

The Fe-g-C3N4/DE composite material is prepared and synthesized 
by a single-step thermal polymerization method. First, 10.0 g urea and 
1.0 g diatomite were dispersed in 50 mL deionized water while adding 
pre-determined aliquots of FeCl3, and the mixture was ultrasonicated for 
30 min. Evenly dispersed diatomite mixture was then slowly added to 
the above solution maintained at 60 ℃ and stirred to evaporate the 
water. The resulting composite was dried in a tube furnace at 550 ℃ 
(heating rate 5 ℃/min) for 2 h under continuous nitrogen (99.999%) 
purging. The FeCl3 content added in the composite was varied from 25 
to 100 mg at 25 mg intervals, and the resultant substrates were desig-
nated as FGD-1, FGD-2, FGD-3, and FGD-4, respectively. The prepara-
tion methods of pure g-C3N4, Fe/DE(FD), and g-C3N4/DE(GD) are in the 
Supporting InformationText S1. 

2.3. Catalyst characterization 

The morphology, microstructure, and element composition of the 
prepared samples were studied using SU-8020 thermal field emission 
scanning electron microscope (SEM, Hitachi, Tokyo), JEM-2100F 
transmission electron microscopy (HRTEM, JEOL, Japan), and energy- 
dispersive X-ray spectrometer (EDS). The phase structures of the pre-
pared samples in the range of 2θ = 10◦–70◦ were studied using an X-Pert 
PRO MPD fixed-target X-ray diffractometer (XRD, PANalytical, 
Netherlands). The chemical properties of the samples were studied by 
Fourier infrared spectrometer (FT-IR, Thermo Nicolet, USA). The surface 
chemical properties of the samples were studied by an X-ray photo-
electron spectrometer (XPS, Thermo, USA), and the C1s, O1s, N1s, Si2p, 
and Fe2p spectra of the samples were analyzed by advantage software. 
The specific surface area and the pore size distribution of the samples 
were determined by Brunauer-Emmett-Teller analyzer (Autosorb-IQ3, 
Quantachrome, USA). UV–vis–NIR diffuse reflectance spectra (DRS) of 
the samples were obtained against the BaSO4 reference (Cary 5000, 

Fig. 1. SEM (a) and HRTEM images (b), and elemental mapping images (c) of FGD-3.  
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USA). 

2.4. Photo-Fenton catalytic activity 

The photocatalytic performance of the prepared samples was eval-
uated by degradation of TC solution under the irradiation of a 500 W 
xenon lamp. In the degradation experiment, 10 mg of catalyst was added 
to 25 mL of TC aqueous solution at an initial concentration of 20 mg/L. 
After adding the solution, the sample reacted in darkness for 30 min to 
reach the equilibrium of adsorption-desorption. Irradiation before 
joining a certain concentration of H2O2, 20 min intervals in a certain 
volume of the reaction solution, and use a 0.45 µm filter membrane to 

filter to remove the catalyst. 

2.5. Analysis methods 

The TC concentration was investigated by liquid chromatography 
(LC, Shimadzu LC-20A, Japan) equipped with an SPD-20A UV-Vis de-
tector and C18 column (4.6 × 250 mm). The detection wavelength was 
355 nm. The mobile phase was using 20% acetonitrile and 80% 10 mM 
oxalic acid solution at a flow rate of 1.0 mL/min. The degraded inter-
mediate was analyzed by high-performance liquid chromatography- 
mass spectrometry (HPLC-MS, Agilent 1290/6460, USA). The degree 
of mineralization of TC was evaluated by TOC/TN analysis (Multi-N/ 

Fig. 2. The XRD patterns (a) and FT-IR spectra (b) of synthesized photocatalysts.  

Fig. 3. XPS spectra of O1s(a), C1s (b), N1s (c) and Fe2p (d) for FGD-3.  
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c3100). The electron paramagnetic resonance spectroscopic method 
(ESR, Bruker, Germany) was used to detect ∙OH and ∙O2

- radicals, using 
DMPO as scavengers. 

3. Results and discussion 

3.1. Structural and morphological characterizations 

The SEM morphology of diatomite, g-C3N4, GD, and FGD-3 com-
posites are shown in Fig. S2. and Fig. 1. Diatomite has a disc-shaped, 
porous structure with a diameter of 30 µm; many broken diatom cells 
are also observed, which are ideal for hosting the catalyst (Fig. S2a). The 
g-C3N4 has a layered structure with irregular surface morphology and 
agglomeration (Fig. S2b). Fig. S2c shows the microstructure of GD, 
where g-C3N4 is loaded on the diatomite surface. However, the GD 
morphology did not change even after Fe doping (Fig. 1a). Compared to 
g-C3N4, when loaded to diatomite, the distribution of g-C3N4 is even: this 
arrangement resolved the agglomeration problem of g-C3N4 particu-
lates; the diatomite enhanced the contact area between the catalyst and 
the pollutant; it also facilitated photogenerated carriers’ migration by 
improving quantum efficiency [27]. Fig. 1b is the HRTEM image of 
FGD-3. The crystal planes of g-C3N4 (002) and the lattice fringes with a 
spacing of 0.318 nm can be found. EDS data (Fig. 1c) show that the 
prepared FGD-3 composite is mainly composed of C, N, O, Si and Fe, and 
the elements of C, N, and Fe are evenly distributed on the surface of 
diatomite, which further confirms the existence of Fe doping on FGD-3. 

Fig. 2a shows the X-ray diffractograms of all samples used for TC 
removal/ degradation. The crystal structure of the g-C3N4 shows two 
peaks around 13.2◦ and 27.6◦ corresponding to (100) and (002) crystal 
planes (JCPDS No. 87-1526). The broad hump shown in the X-ray dif-
fractogram characterizes the amorphous nature of diatomite. The peak 
at 26.6◦ corresponds to the SiO2 (101) crystal plane (JCPDS No. 46- 
1045). The diffraction pattern of GD sample shows two main peaks at 
26.6◦ and 27.6◦, corresponding to SiO2 (101) crystal plane and g-C3N4 
(002) crystal plane respectively. After Fe doping, the peak correspond-
ing to (100) crystal plane disappeared and the intensity of the peak 
corresponding to (002) crystal plane of g-C3N4 decreased gradually with 
the increase of Fe doping amount, indicating the Fe doping destroyed 
the intrinsic periodic structure of g-C3N4 by the coordination Fe-Nx bond 
[28]. 

To determine the nature of functional groups on the new composites, 
we used FTIR and XPS measurements data. As shown in Fig. 2b, strong 
IR peaks are observed in diatomite at 3471 cm− 1, 1617 cm− 1, 
1125 cm− 1, 796 cm− 1, and 467 cm− 1 (Fig. 2b). The peaks at 467 cm− 1 

and 1125 cm− 1 are due to asymmetric stretching vibrations of Si-O-Si in 
diatomite [29,30]. The wide peaks at 3471 cm− 1 and 1617 cm− 1 are due 
to H-OH stretching and bending vibration of adsorbed water, 

respectively [31]. The peak observed at 796 cm− 1 is attributed to the 
Si-O-Al bond bending. The wide IR bands of g-C3N4 shown between 
3700 and 3000 cm− 1 are derived from the tensile vibrations of N-H and 
O-H, which indicate the presence of amino and adsorbed hydroxyl 
species on the nanosheets. The peaks in the range of 1200–1700 cm− 1 

are due to tensile vibrations of C-N and C––N of the heterocyclic ring 
[32]. The peak at 808 cm− 1 corresponds to ring vibrations of 
tri-striazine [33]. But there is no significant difference in the FT-IR 
spectra among Fe-doped composites, diatomite, and g-C3N4, indicating 
that the composite’s chemical structure has not changed. However, with 
the increase of Fe content, CN heterocycles’ peak strength weakens, 
which confirms the successful doping of Fe into g-C3N4. A new peak 
appears at 2180 cm− 1 with the increase of Fe content attributed to C N’s 
tensile vibration [34]. 

The XPS characterization was performed to identify the chemical 
state of the composites. Fig. S3a shows the wide-scan XPS spectrum of 
FGD-3. The peak at 103.7 eV corresponds to Si-O in diatomite (Fig. S3b). 
The peaks at 531.6, 532.8, and 533.8 eV are due to N-C-O, OH, and Si-O 
groups, respectively, on diatomite surface (O1s spectrum, Fig. 3a) [27]. 
This indicates that diatomite acts as a carrier in hosting the composite. 
The C1s spectrum can be resolved into two peaks at 284.8 and 288.0 eV, 
which are attributed to C-C [24] and sp2 carbon (N-C––N), respectively 
(Fig. 3b) [35]. The N1s spectrum (Fig. 3c) has resolved into four peaks. 
The peaks at 398.5, 399.2, and 400.8 eV are ascribed to C––N-C, N-(C)3, 
and N-H in the g-C3N4 network [27,36,37]. Compared with N1s of GD in 
Fig. S4, the binding energy of FGD-3 (398.5 eV) is higher than the 
pyridinic N in GD (398.3 eV), which might be due to the formation of the 
Fe-N bond [38,39]. The peak at 404.1 eV occurs due to charging effects 
[40]. Besides, eight peaks are used, fitting the Fe2p spectrum of FGD-3 
(Fig. 3d). The peaks at 709.7 eV, 711.9 eV, 723.3 eV and 725.5 eV are 
assigned to Fe2+2p3/2, Fe3+2p3/2, Fe2+2p1/2 and Fe3+2p1/2, respec-
tively, which indicate that doped Fe has two chemical states. The other 
four broad bands are satellite peaks of Fe2+ and Fe3+ [41]. The above 
results confirm the successful synthesis of FGD-3 composites. The XPS 
analysis of FGD-3 after the reaction was also investigated. The O1s, N1s, 
C1s, and Fe2p of FGD-3 after the reaction are shown in Fig. S3. It can be 
found that the XPS spectrum of the catalyst after the reaction had a 
slightly chemical shift. Through the results of experiments and charac-
terization, we speculate that the changes in XPS spectra before and after 
the reaction might be attributed to the following factors: (1) The Fe-N 
bond has been destroyed to a certain extent during the reaction, 
which results in the leaching of iron and the change of N1s binding 
energy. (2) TC and its degradation products after the reaction contains 
C、N and O elements, which would contribute to the change of the 
energy spectrum of the recovered catalyst for the adsorption effect. 3) 
The reactive oxygen species (ROS) generated in the catalytic reaction 
might also damage the heptazine ring of g-C3N4, so the energy spectrum 

Fig. 4. UV-DRS spectra (a) and EIS Nyquist plots (b) of as-prepared catalysts.  
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of C1s and N1s after the reaction change slightly [42]. 
Diatomite is used as an ideal carrier for supporting photocatalysts 

due to its unique porous structure. The raw diatomite and the composite 
materials were characterized by BET as shown in Fig. S5a. The nitrogen 
adsorption and desorption curves of the three materials followed typical 
II curves, showing the microporous and macroporous structures for the 
adsorption of pollutants. The specific surface area of the raw diatomite is 
37.127 m2/g, and the pore size distribution is around 59.849 nm. After 
loading the photocatalyst, the specific surface area of the catalyst de-
creases. As mentioned before, there are many macroporous and micro-
porous structures on the surface of diatomite. When g-C3N4 was loaded, 
the microporous structures were partially covered with stacked g-C3N4, 
and most of the macroporous structures remained, so the specific surface 
area decreased. For FGD-3, the Fe doping might change the structure of 
g-C3N4 on the surface of diatomite, generating more porous structures 
and enlarging its specific surface area [43], which would provide FGD-3 
with a larger contact interface and expose more active sites. 

The effect of Fe doping on optical properties of FGD-3 was also 
examined by UV-Vis diffuse reflectance spectroscopy (DRS). As shown in  
Fig. 4(a), all samples show distinct absorption edges. Compared to g- 
C3N4 (absorption edge λ = 420 nm), both GD and FGD-3 show a 
redshift. This effect is marked in FGD-3 due to doped Fe in g-C3N4 lattice 
that results in distorted band structure; Therefore, in FGD-3, the elec-
trons can shuttle easily between conduction and valence bands of per-
turbed g-C3N4. Further, the bandgap energy (Eg) is estimated by a Tauc 
plot using the Kubelka-Munk function:  

αhv = A(hv–Eg)n                                                                             (1) 

where α represents the absorption coefficient, h is the Planck constant, v 
is the optical frequency, Eg is the bandgap energy, A is a constant, and n 
depends on the characteristics of the semiconductor transition (i.e., 
direct transition (n = 1/2) or indirect transition (n = 2)) [21,44]. As 
shown in the data, g-C3N4 shows the indirect transition (n = 2). The 
bandgap energy (Eg) of FGD-3 as estimated by (αhv)1/2 vs hv plots is 
shown in Fig. S5b. The calculated band gaps were reduced from 2.81 eV 
for pure g-C3N4 to 2.31 eV for FGD-3. The valence band potential of 
FGD-3 is 1.44 eV, which is higher than the theoretical value of pure 
g-C3N4 of 1.40 eV (Fig. S5c). Therefore, the conduction band potential is 
estimated at − 0.87 eV. Thus the electrons generated can reduce Fe3 + → 
Fe2 + (E0 (Fe3+/Fe2+) = 0.771 eV to NHE), which favors cycling of iron 
species in Photo-Fenton reaction [45]. 

The charge transfer efficiency between FGD-3, g-C3N4, or GD and 
solution interface was determined by electrochemical impedance spec-
troscopy (EIS), as shown in Fig. 4b. The Nyquist radius of EIS spectrums 
measures charges transfer resistance in the interfacial region. The 
electrochemical impedance data of the modified electrode were further 
analyzed via the equivalent circuit simulation (inset of Fig. 4b). Table S1 
shows the circuit simulation parameters, and the resistances of g-C3N4, 
GD, and FGD-3 are 922.8 Ω, 395.8 Ω, and 314.1 Ω, respectively. It can 
be found that the FGD-3 modified electrode’s Nyquist arc radius is the 
smallest, indicating that the Fe doping in the FGD-3 improves the charge 
transfer efficiency [46]. 

The photocurrent responses of pure g-C3N4, GD, and FGD-3 com-
posites under the illumination of the Xe lamp are shown in Fig S5d. The 
photocurrent response of the FGD-3 is the highest. This indicates that the 
doped Fe in the composite has increased the charge transferring capacity 
of the catalyst. For pure g-C3N4 or GD, electrons’ separation efficiency 

Fig. 5. The effects of various parameters on the TC degradation in FGD-3 catalyzed photo-Fenton system: (a) different catalysts without addition of H2O2 (Reaction 
conditions: pH 4.0; initial TC, 20.0 mg/L; catalyst, 400 mg/L.); (b) different reaction systems (Reaction conditions: pH 4.0; initial TC, 20.0 mg/L; catalyst, 400 mg/L; 
H2O2, 1.0 mM); (c) H2O2 concentration (Reaction conditions: pH 4.0; initial TC, 20.0 mg/L; catalyst, 400 mg/L) (D) initial TC concentration (Reaction conditions: pH 
4.0; catalyst, 400 mg/L; H2O2, 1.0 mM). 
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would be suppressed by the recombination of photogenerated electron- 
hole. Therefore, FGD-3 might have high photo-Fenton catalytic activ-
ities [45]. 

Fig. S6 shows the Raman spectra of pure g-C3N4, GD, and FGD-3. The 
D and G bands at 1345 and 1560 cm− 1 represent the existence of defects 
of sp3 hybridized carbon atoms and in-plane stretching vibration of 
carbon atom sp2 hybridized, respectively [47]. In addition, the peak at 
752 cm− 1 is associated with the bending vibrations of melon, and the 
vibration at 472 cm− 1 and 1228 cm− 1 belong to heptazine rings in 
melem/melon units [48]. It can be found that the typical peaks appear in 
all these three samples, verifying the characterization of g-C3N4 [49]. 

3.2. Photo-Fenton catalytic activity 

The photocatalytic activity of FGD samples with different Fe doping 
amounts was evaluated by visible light irradiation degradation of TC. 
Meanwhile, DE, g-C3N4, FD, and GD were compared. Before evaluating 
the photocatalytic properties of the catalysts, the adsorption experi-
ments were performed in the dark (shown in Fig. S7). The adsorption 
equilibriums of the catalysts were reached in about 30 min, and their 
removal ratios were no more than 20%. So, all the photocatalytic 

experiments were performed after the adsorption for 30 min. The pho-
tocatalytic performances of the catalysts under the visible light irradi-
ation for 100 min are shown in Fig. 5a. It can be found that DE and FD 
have only adsorption effect on TC after 100 min irradiation, and g-C3N4, 
GD and FGD composites with different doping amounts of Fe have 
photocatalytic degradation effects under visible light irradiation. 
Among them, FGD-3 and FGD-4 both have high photocatalytic effects, 
and the degradation effect can reach about 50%, indicating that the 
appropriate amount of Fe doping can improve the photocatalytic effect 
of the catalyst. However, FGD-4 has a higher adsorption effect after the 
dark adsorption reaches the adsorption equilibrium, and FGD-3 has a 
better photocatalytic effect under visible light irradiation. 

Fig. 5b demonstrates the effects of visible light and H2O2 on the 
photocatalytic degradation of TC degradation. Under the visible light 
irradiation, only a very low amount of ∙OH was produced with the 
addition of H2O2 and DE, so TC was slightly degraded. However, for GD, 
after adding H2O2 under the visible light irradiation, the degradation 
ratio reached 72%. Interestingly, FGD-3 and H2O2 have degradation 
effects under both light and dark conditions. The degradation effect 
under the dark conditions might be due to the Fenton reaction between 
Fe and H2O2 in FGD-3. Under visible light irradiation, FGD-3 and H2O2 

Fig. 6. Proposed degradation pathways of TC in the FGD-3 Photo-Fenton system.  
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produced a synergistic photo-Fenton reaction, and the degradation ef-
fect was significantly higher than that of photocatalysis and Fenton 
catalysis, so the reaction speed was improved. To further demonstrate 
the role of diatomite in FGD-3, the catalytic activities of Fe-g-C3N4 (FG) 
and FGD-3 were compared as shown in Fig. S8. Under the visible light 
irradiation, the synergistic effect of FG/H2O2/ light is lower than that of 
FGD-3/H2O2/ light, indicating that the porous diatomite is one of the 
most ideal materials for loading catalysts, which can supply more acti-
vated sites. 

As shown in Fig. 5c, the effect of H2O2 concentration on the degra-
dation effect of TC was studied. It can be seen that as the concentration 
of H2O2 increases, the degradation effect of FGD-3 on TC increases 
significantly. When the concentration of H2O2 is 0.5 mmol/ L, the re-
action rate is relatively slow, the degradation efficiency is about 93%, 
with the ascension of H2O2 concentration, reaction rate increases when 
the concentration of H2O2 is 1.0 mmol/L, degradation efficiency can 
reach 99%, and the concentration of H2O2 is 2.0 mmol/L, degradation 
effect not ascend, only improve reaction rate, therefore, The H2O2 
concentration of 1.0 mmol/L is more suitable in line with resource 
conservation. As the H2O2 concentration was set to 1.0 mmol/L, the 
effects of pH on degradation TC were also studied (Fig. S9). When the pH 
value of the solution increases from 2 to 3 and 4, the degradation effi-
ciency of TC is improved. It might be due to that the reactive oxygen 
species would be scavenged by H+ under the acidic pH [50,51], and the 
corrosion rate of the catalyst also increases. When the pH increased from 
4 to 8, the degradation efficiency of TC decreased from 98.3% to 82%. 

When pH > 4, the degradation rate decreases continuously with the 
increase of pH values. Herein, the increase of pH might reduce the redox 
potential of reactive oxygen species and improve the spontaneous 
decomposition of H2O2 [52,53]. Therefore, FGD-3 has the highest 
degradation efficiency for TC at pH 4. 

The influence of the initial concentration of the TC on the catalytic 
reaction was also investigated (shown in Fig. 5d), showing that the 
initial concentration of 10 mg/L and 20 mg/L, and the degradation ef-
ficiencies reached 99%. With the increase of TC initial concentration, 
the degradation efficiency declined slightly, and the reaction rate 
decreased. 

3.3. Possible pathway of TC degradation 

As shown in Fig. 10, about 70.2% of TOC in TC solution was 
degraded after 100 min of catalytic reaction, indicating that TC can be 
mineralized into harmless products in the photo-Fenton catalytic sys-
tem. These TC degradation intermediates were determined and analyzed 
by HPLC-MS. Eleven possible intermediates are listed in Table S2, 
including m/z = 472, 445, 417, 405, 399, 374, 342, 306, 287, 274 and 
156. Based on the molecular structure of the product and previous 
studies on TC degradation, four possible decomposition pathways are 
suggested in Fig. 6. 

In the process of the whole light degradation Fenton, these in-
termediates were produced mainly for two reasons: the loss of the 
functional groups and ring-opening reaction. For pathway I, the 

Fig. 7. (a) Effect of radical scavengers on the degradation of TC and (b) rate constants for the degradation of TC with or without various trapping agents. (Reaction 
conditions: pH 4.0; initial TC, 20.0 mg/L; catalyst, 400 mg/L; H2O2, 1.0 mM). 

Fig. 8. ESR spectra of ∙O2
- (a) and ∙OH (b) generated by FGD-3 in the presence and absence of visible light irradiation.  
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generation of TC1 (m/z = 472) is attributed to C––C bond cleavage, the 
rearrangement of ∙OH, and N-methyl oxidation [54]. For Route II, TC2 
(m/z = 417) is formed by the demethylation of dimethylamino groups. 
Then, ∙OH continues to attack TC2, TC2 is deamidated to form TC3 
(m/z = 374), and further dehydration, deamination and hydroxyl form 
TC4 (m/z = 274) and TC6 (m/z = 306) [55]. In route III, TC is degraded 
to TC5 (m/z = 405), which is caused by the loss of acyl groups. The 
rupture of the carbon atom ring of TC5 leads to the formation of TC6 
(m/z = 306) [56]. In route IV, TC is degraded to TC7 (m/z = 399), 
which is caused by the demethylation of the dimethylamino group and 
the loss of ∙OH. TC7 is further degraded to TC8 (m/z = 342). This is due 
to the loss of acyl and ∙OH of TC7. TC8 is further degraded to TC9 
(m/z = 287) [57], and finally degraded to TC10 (m/z = 156). The re-
sults show that TC can be oxidized into small molecular acids and 
non-toxic CO2 and H2O in the photo-Fenton catalytic system. 

3.4. Photo-Fenton degradation mechanism of TC 

To further study the mechanism of photo-Fenton catalysis, the 
experiment of activated free radical capture was carried out. In the 
photodegradation process, hydroxyl radical (∙OH), superoxide radical 
(∙O2

-), and hole (h+) are generally considered as the main reactive 
species. To test the effects of these active substances, disodium ethyl-
enediaminetetraacetic acid salt (EDTA-2Na), tert-butanol (TBA), and p- 
benzoquinone (BQ) were used as scavenging agents for h+, ∙OH and 
∙O2

-, respectively [58,59]. As can be seen from Fig. 7a, the degradation 
efficiency of TC was significantly inhibited after the addition of TBA, BQ, 
and EDTA-2Na, indicating that ∙OH, ∙O2

- and h+ all played a role in the 
catalytic process. The degradation efficiency decreased with the addi-
tion of TBA, which indicated that ∙OH had little effect on the degrada-
tion of TC, and the degradation efficiency of TC was inhibited most 
obviously with the addition of EDTA-2Na. The minimum reaction rate 
constant k4 is also confirmed in Fig. 7b. Therefore, in the 
FGD-3/H2O2/light system, the order of the effect of active free radicals 
on TC degradation is h+ > ∙O2

- > ∙OH. 
The active substances in the optical Fenton system were further 

analyzed by ESR spectroscopy, and the corresponding results are shown 
in Fig. 8. In Fig. 8a, the ∙O2

- signal was not observed under dark con-
ditions, but an obvious DMPO-∙O2

- signal was observed under the irra-
diation of the 300 W xenon lamp. The results show that ∙O2

- is a major 
active species and plays an important role in photocatalytic degradation. 
∙OH in the reaction was also studied. As can be seen in Fig. 8b, a weak 
∙OH signal can be observed under dark conditions, and the signal of 
DMPO-∙OH is enhanced under the irradiation of a 300 W xenon lamp. 

∙OH and ∙O2
- exist in the reaction system, which is consistent with the 

results of free radical trapping experiments. 
According to the experimental results, we proposed the possible 

enhancement mechanism of photo-Fenton catalytic activity of the FGD-3 
catalyst as shown in Fig. 9. The FGD-3 catalyst produces photogenerated 
electrons and holes after being excited by visible light. Because the 
reduction potential of Fe3+/Fe2+ (+0.771 eV vs NHE) is located between 
the valence band (VB) and conduction band (CB) of g-C3N4, Fe3+ can 
capture photogenerated electrons to produce Fe2+, and the captured 
electrons react with the electron acceptor (e.g. O2) to form superoxide 
radicals (∙O2

-). However, the potential of the valence band is lower than 
the potential of ∙OH/OH- and ∙OH/H2O, and ∙OH cannot be generated 
[60]. Fe3+ reacts with e-/H2O2 to form Fe2+, and the resulting Fe2+

continues to react with H2O2 to form Fe3+, the rapid cycle between Fe3+

and Fe2+ not only accelerates the electron migration rate but also in-
hibits the recombination of photo-generated electrons and holes. 
Simultaneously, the reaction also produces oxidative ∙OH radicals [40], 
in the reaction H2O2 promotes the cycle between Fe3+ / Fe2+. Due to the 
rapid consumption of e-, a large number of highly oxidizing h+ and ∙O2

- 

radicals are generated, which can directly degrade organic pollutants. 
∙OH radicals produced in the reaction process also have a degradation 
effect on TC. In conclusion, Fe doping into the lattice of g-C3N4 changes 
the electronic structure of g-C3N4 and forms a new impurity band for 
g-C3N4, which promotes the separation of photogenerated electrons and 
holes and reduces the resistance of charge transfer. In addition, Fe 
doping leads to the decrease of bandgap and the increase of visible light 
absorption. All these factors contribute to the enhancement of photo-
catalytic activity. 

Part of the reaction process can be described as follows (Eqs. (2)– 
(10)):  

Catalyst + hv→ e- + h+ (2)  

O2 + e− + hv → H2O2                                                                     (3)  

Fe3+ + e− → Fe2+ (4)  

Fe3+ + H2O2 → Fe2+ + ∙O2H + H+ (5)  

∙O2H ⇋ ∙O2
- + H+ (6)  

O2 + e− →∙O2
-                                                                                (7)  

Fe3++ ∙O2H→ Fe2++ O2+ H+ (8)  

Fe2+ + H2O2 → Fe3+ + ∙OH + OH-                                                 (9)  

Fig. 9. Possible photo-Fenton degradation mechanism.  
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h+/∙O2
-/∙OH + TC → CO2 + H2O                                                  (10)  

3.5. Stability and reusability of catalyst 

The reusability and stability of the catalyst are important indicators 
in practical applications and the important significance of the catalyst 
preparation. The stability and reproducibility of the catalyst have been 
studied through repeated experiments. The dosage of the FGD-3 sample 
was set at 0.4 g/L, and the initial concentration of TC was 20 mg/L. 
After the experiment, the catalyst sample was collected and washed with 
deionized water 3 times with a neutral pH. The solution was centrifuged 
and then dried at 80 ℃. As shown in Fig. 10, after 5 repeated tests, the 
TC removal rate using FGD-3 remained 96%. The TOC mineralization 
effect of FGD-3 catalyst 5 times and the amount of iron leaching were 
also studied. In Fig. 10, the TOC degradation rate of TC was still 64.8% 
after five cycles. In the catalytic system, the total iron concentration is 
1.5 mg/L. As shown in Fig. S10, after each cycle, the amount of leaching 
iron in the whole solution gradually decreased from 0.067 mg/L to 
0.065 mg/L, and the leaching rate of iron decreased relatively low. From 
Fig. S3, the XPS diagram of the catalyst after five cycles showed that 
Fe3+ increased and Fe2+ decreased in the spectrum of Fe2p, which also 
proved the conversion between Fe3+ and Fe2+ reactions. These results 
indicate that the FGD-3 catalyst has excellent reusability and stability, 
and has a broad application prospect in the treatment of organic 
pollutants. 

4. Conclusions 

A new type of diatomite-supported iron-doped carbon nitride cata-
lyst was synthesized by simple thermal polymerization. The appropriate 
doping amount of Fe makes the catalyst have higher visible light ab-
sorption and higher TC degradation performance. The results showed 
that the low concentration of H2O2 (1 mmol/L) and a wide pH value 
(2–7) showed excellent catalytic activity for TC. The h+ produced by 
FGD-3 in the catalytic process plays a major role in the removal of TC. It 
is found that the catalyst has good stability and reusability after five 
repeated experiments. These results indicate that the FGD-3 photo- 
Fenton catalyst has great potential in the removal of organic pollutants. 
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