Supplementary Material

for

A Magnetic Core-shell-structured FeO_x/CN Catalyst Mediated Peroxymonosulfate Activation for Degradation of 2,4-Dichlorophenol via Nonradical Pathway

Kaijie Xu^a, Kangping Cui^{a*}, Chenxuan Li^a, Minshu Cui^a, Rohan Weerasooriya ^{b, c}, Xiaoyang Li^d, Zhaogang Ding^{a, b}, Xing Chen^{a, b*}

^a Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China

^b Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, China

^c National Centre for Water Quality Research, National Institute of Fundamental Studies Hantana, Kandy, Sri Lanka

^d State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China

* Corresponding author.

Text captions

Text S1. Chemicals	5
Text S2. Details for the probe experiment.	6

Table captions

Table S1. HPLC analysis conditions for different organics	7
Table S2. Degradation intermediate of 2,4-DCP detected by GC-MS	8
Table S3. Iron contents of Fe-X/CN.	10
Table S4. Comparison of the catalytic activities of Fe-3/CN with the	transition
metal catalysts in the literature.	11

Figure captions

Fig. S1. Schematic illustration of the synthesis FeO _x /CN catalyst
Fig. S2. SEM imagine(a) and TEM imagine(b) of CN
Fig. S3. XRD spectrum of g-C ₃ N ₄ 14
Fig. S4. XPS survey spectra of Fe-3/CN and CN14
Fig. S5. N 1s (a), C 1s (b), O 1s (c), and Fe 2p (d) peaks of Fe-X/CN15
Fig. S6. Nitrogen adsorption-desorption isotherms and the corresponding pore
size distributions curve (inset) of Fe-3/CN and CN16
Fig. S7. 2,4-DCP adsorption - desorption equilibrium diagram17
Fig.S8. Consumption of PMS under different systems. Conditions : [2,4-DCP]0 =
5 mg/L, [PMS]0 = 1.0 mM, [Catalyst]0 = 0.5 g/L, T = 298 K
Fig. S9. The electrochemical impedance spectra of CN and Fe-3/CN19
Fig. S10. Effect of Fe dosage on 2,4-DCP removal20
Fig. S11. The corresponding k values for different factors21
Fig. S12. The concentration of Fe leaching at different pH values22
Fig. S13. Relative concentration of sulfate radical and hydroxyl radical in
FeO _x /CN/PMS system
E's G14 Effect of different doors of TDA(s) and MoOU(h) on 24 DCD

Fig. S14. Effect of different doses of TBA(a) and MeOH(b) on 2,4-DCP

degradation	24
Fig. S15. Magnetization curves of Fe-3/CN.	25
Fig. S16. The concentration of Fe leaching for each cycle.	26
Fig. S17. SEM and TEM images of fresh Fe-3/CN and the reused	27
Fig. S18. The XRD spectrum of Fe-3/CN and the reused	28
Fig. S19. XPS survey spectra of Fe-3/CN and the reused(a); Fe 2p peaks of fi	resh
Fe-3/CN and the reused(b); O 1s peaks of Fe-3/CN and the reused(c)	29
Fig. S20. The Fukui function isosurface.	30
Fig. S21. GC-MS spectroscopy of the main component of the 2,4-DCF	o f
degraded products (TIC).	31
Fig. S22-30. The mass spectrogram of intermediate of the 2,4-DCP degradat	ion.
	31
References	34

Text S1. Chemicals

All the chemicals were used directly without further purification. 2,4dichlorophenol (2,4-DCP, 99%), sodium thiosulfate (Na₂S₂O₃), ferric nitrate (Fe (NO₃)₃·9H₂O), tert-butyl alcohol (TBA, 99.9%), acetonitrile, and methanol (MeOH) of HPLC grade were purchased from Sinopharm Chemical Reagent Co., Ltd. 5,5-di-methyl-1-pyrroline-N-oxide (DMPO, 99%) and 2,2,6,6-Tetramethyl-4-piperidinol (TEMP, 99%) for EPRspectroscopy were purchased from Jiuding Chemistry. Triethylenediamine hexahydrate (DABCO), Benzoic acid (BA), phydroxybenzoic acid (HBA), and p-benzoquinone (BQ) were all purchased from Aladdin Chemistry Co., Ltd (Shanghai, China).

Text S2. Details for the probe experiment.

In this study, the quantification of free radicals during the reaction was obtained indirectly by HPLC. First, excess HBA reacted with the SO_4^{*-} in the solution to form hydroquinone, which was unstable, and then the hydroquinone further converted into stable BQ. By measuring the amount of BQ produced, the concentration of SO_4^{*-} could be obtained indirectly. For \cdot OH, with excessive BA, \cdot OH was quickly consumed, and HBA was accumulated. Based on the measurement results of HBA, the amount of \cdot OH produced was estimated [1, 2]. The detailed test conditions are shown in Table S1.

Analyte		Flow rate	UV	
	Mobile phase	riow rate	radiation	
		1111/11111	nm	
2,4-	2.8 (y/y) water: methanol	1.00	282	
DCP		1.00	202	
	6:4 (v/v) 0.1 % H ₃ PO ₄ :	1.00	265	
IIDA	acetonitrile	1.00	203	
BQ	1:1 (v/v) water: acetonitrile	0.75	246	

Table S1. HPLC analysis conditions for different organics.

Droduct	$[M+H]^{+}$	Molecular	Structural formula				
Product	(m/z)	formula	Suuciulai loimula				
A(2,4- DCP)	162	C ₆ H ₄ Cl ₂ O	OH CI				
В	144	C ₆ H ₅ ClO ₂	OH CI OH				
E	128	C ₆ H ₅ ClO	CI				
F	178	$C_6H_4Cl_2O_2$					
K	94	C ₆ H ₆ O	ОН				

Table S2. Degradation intermediate of 2,4-DCP detected by GC-

MS.

	Fe-1/CN	Fe-2/CN	Fe-3/CN	Fe-4/CN	Fe-5/CN
Fe content wt %	24.03	46.35	59.49	68.65	75.86

Table S3. Iron contents of Fe-X/CN.

Table S4. Compa	rison of the	catalytic	activities	of Fe-3/	/CN witł
-----------------	--------------	-----------	------------	----------	----------

Catalyst	Catalyst dose (g L ⁻¹)	PMS ^a / H ₂ O ₂ ^b (g L ⁻¹)	Contaminant	[Contaminant] (mg L ⁻¹)	pН	T (□)	TOF	Mineralization (%)	Ref.
Co ²⁺ @PMAP	0.4	1.8 ^a	Phenol	10	7	45	0.185	42	1
DPA-hematite	0.5	2.0 a	BPA	15	7	RT	0.078	22	2
Fe-ZSM-5	1.5	0.6 ^b	Phenol	10	3.5	70			3
Fe/AC	0.5	0.5 ^b	Phenol	6.5	3	50		85	4
Fe-3/CN	0.5	0.5 0.15 ^a	Chlorophenol	5	6.5	RT	0.33	88	This
									work

the transition metal catalysts in the literature.

RT= Room Temperature

Ref.

1. RSC Advances 2015, 5 (10), 7628-7636.

2. J Mater Chem A 2014, 2 (38), 15836-15845.

- 3. Applied Catalysis B: Environmental 1996, 10 (4), L229-L235.
- 4. Applied Catalysis B: Environmental 2006, 65 (3), 261-268.

Fig. S1. Schematic illustration of the synthesis FeO_x/CN catalyst.

Fig. S2. SEM imagine(a) and TEM imagine(b) of CN; SEM images of Fe-X/CN (X=1, 2, 3, 4, and 5) and Pure FeO_x (c).

Fig. S3. XRD spectrum of g-C₃N₄.

Fig. S4. XPS survey spectra of Fe-3/CN and CN.

Fig. S5. N 1s (a), C 1s (b), O 1s (c), and Fe 2p (d) peaks of Fe-X/CN

(X=1, 2, 3, 4, and 5).

Fig. S6. Nitrogen adsorption–desorption isotherms and the corresponding pore size distributions curve (inset) of Fe-3/CN and CN.

Fig. S7. 2,4-DCP adsorption - desorption equilibrium diagram.

Fig.S8. Consumption of PMS under different systems. Conditions : [2,4-DCP]0 = 5 mg/L, [PMS]0 = 1.0 mM, [Catalyst]0 = 0.5 g/L, T = 298

Fig. S9. The electrochemical impedance spectra of CN and Fe-3/CN.

Fig. S10. Effect of Fe dosage on 2,4-DCP removal.

Fig. S11. The corresponding zeta potentials (blue line) and k values (red line) at different pH (a); The corresponding values of k for different factors, Fe-3/CN dosage(b), PMS concentration (c), and 2,4-DCP concentration(d).

Fig. S12. The concentration of Fe leaching at different pH values.

Fig. S13. Relative concentration of sulfate radical and hydroxyl radical in FeO_x/CN/PMS system.

Fig. S14. Effect of different doses of TBA(a) and MeOH(b) on 2,4-

DCP degradation.

Fig. S15. Magnetization curves of Fe-3/CN.

Fig. S16. The concentration of Fe leaching for each cycle.

Fig. S17. SEM and TEM images of fresh Fe-3/CN and the reused.

Fig. S18. The XRD spectrum of Fe-3/CN and the reused.

Fig. S19. XPS survey spectra of Fe-3/CN and the reused(a); Fe 2p peaks of fresh Fe-3/CN and the reused(b); O 1s peaks of Fe-3/CN and the

reused(c).

Fig. S20. The Fukui function isosurface.

Fig. S21. GC–MS spectroscopy of the main component of the 2,4-

DCP of degraded products (TIC).

Fig.S22-30. The mass spectrogram of intermediate of the 2,4-DCP

degradation.

Fig. S22.

Fig. S26.

Fig. S30.

References

[1] W.D. Oh, Z. Dong, G. Ronn, T.T. Lim, Surface–active bismuth ferrite as superior peroxymonosulfate activator for aqueous sulfamethoxazole removal: Performance, mechanism and quantification of sulfate radical, Journal of Hazardous Materials (2016) 71-81. https://doi.org/10.1016/j.jhazmat.2016.11.056.

[2] M.E. Lindsey, M.A. Tarr, Quantitation of hydroxyl radical during fenton oxidation following a single addition of iron and peroxide, Chemosphere 41(3) (2000) 409-17. https://doi.org/10.1016/s0045-6535(99)00296-9.