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Abstract

1. Both native and non-native bamboo populations can expand their distributions in a

rather irregular manner, inflicting changes in native vegetation with potential conse-

quences for litter-dwelling arthropod communities. To our knowledge, no studies

have been undertaken to explore the impacts of bamboo spread on litter-dwelling

arthropods.

2. This study examined the impacts of Bambusa bambos, a spreading native bamboo

species, on abundance and order richness of litter-dwelling arthropods in tropical

moist evergreen forests. Bamboo-rich and non-bamboo forests were compared in

three study sites at Moragahakanda in the Central Province of Sri Lanka. Arthro-

pods were sampled from leaf litter and individuals were categorised into their

respective orders.

3. Arthropod abundance and order richness were higher in bamboo-rich forests than

in non-bamboo forests across all sites, indicating more hospitable micro-habitat

conditions following bamboo spread. Litter-dwelling arthropods belonging to orders

Blattodea, Hymenoptera, Diptera, Lepidoptera and Orthoptera were either more

prevalent or more frequently associated with bamboo-rich forests than non-

bamboo forests, suggesting a potential shift in community structure.

4. The abundance and order richness of litter-dwelling arthropods in non-bamboo for-

ests was explained by environmental variables, whilst no such associations were

observed in bamboo-rich forests.

5. The overall findings indicate that the spread of bamboo may facilitate litter-dwelling

arthropods and cause a compositional shift in taxonomic assemblages, perhaps as a

result of changes in the micro-habitat conditions on the forest floor.
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INTRODUCTION

Litter-dwelling arthropods contribute significantly to the arthropod

diversity in tropical forests (Bardgett et al., 2005; Novotny

et al., 2006; Stork & Grimbacher, 2006), and play a key role in ecosys-

tem functions such as nutrient cycling and carbon sequestration

(Costanza et al., 2017; deVries et al., 2013; Jeffery et al., 2010). They

are well-known drivers of many functions in forest ecosystems and

are influenced by natural/semi-natural disturbances (fire, invasion,

etc.,) and forest management activities (logging, harvesting and resto-

ration), emphasising their pivotal role as bio-indicators in monitoring

forest health (Hartshorn, 2021; Oliver et al., 2000; Perry et al., 2021).

Litter-dwelling arthropods are involved in the primary decomposition

that facilitates the subsequent microbial breakdown of organic matter

(Cardenas et al., 2017; Grandy et al., 2016). Therefore, any changes to

communities of litter-dwelling arthropods could trigger a significant

impact on ecosystem functions and their stability (Wolters, 2001).

Ground-dwelling insect communities are highly sensitive to envi-

ronmental changes (Levings & Windsor, 1984), thus making them vital

bio-indicators of ecosystem dynamics and disturbances (Moldenke

et al., 2000). Any deviations to the above-ground vegetation could

impose changes in the micro-environment of the forest floor (light

intensity, temperature and soil moisture), for example through

changes in the quantity and quality of litter fall and canopy openness.

(Frey et al., 2016; Liu et al., 2019). These micro-environmental

changes in turn influence the movement, distribution and reproduc-

tive success of litter-dwelling arthropods (Schirmel et al., 2011; Talley

et al., 2012; Wolkovich et al., 2009). The litter-dwelling arthropod

abundance and richness are best described using the upper soil layer

and forest floor characteristics. Vegetation characteristics are also

known to affect arthropod communities (Richards & Windsor, 2007;

Hartshorn, 2021). As litter-dwelling arthropods show specific prefer-

ences for different substrates for their feeding and breeding, any

changes to above-ground vegetation could lead to modifications in

their species composition and assemblage structure (Bernays &

Graham, 1988).

Until recently, invaders were defined as alien/exotic species that

colonise and expand their distributions in habitats to which they are

introduced. Since there is growing evidence that some native species

have the potential to expand their populations in a way similar to that

of exotic invaders, Simberloff (2012) termed them as ‘native invaders’
to avoid unnecessary confusion in terminology. In bamboos, some

native and exotic species show great tendencies to expand their

populations inflicting profound impacts on their resident forest com-

munities (Tian et al., 2020) in terms of the forest structure (Kobayashi

et al., 2015; Kudo et al., 2011; Lima et al., 2012), composition (Rother

et al., 2016; Wijewickrama et al., 2020) and functions (Dutta &

Reddy, 2016; Suzuki, 2015; Tokuoka et al., 2015; Yang et al., 2015).

Bambusa bambos (L.) Voss. has drawn our attention as its population

started expanding in a rather erratic manner, with the potential of

altering the structure and composition of native forests in Sri Lanka

(Wijewickrama et al., 2020). It is a thorny bamboo species native to

south and south-east Asia, belonging to a genus that contains both

exotic and native invaders (Canavan et al., 2017). B. bambos prefers

areas with a humid tropical climate with a low to moderate elevation

(<1000 m) and a rainfall of 2000–2500 mm (Sarojam & Kumar, 2001).

In Sri Lanka, it is distributed from the outer parts of the intermediate

climatic zone (lies in-between the wet and dry zones) to the immedi-

ate margins of the dry zone. Due to its ability to expand rapidly under

resource-poor conditions (Duriyaprapan & Jansen, 1995; Ohrnberger,

1999), B. bambos has been identified as a problematic plant despite its

native status (Gunatilleke et al., 2008). However, due to many com-

mercial uses, bamboos and their likely impacts garnered little attention

from researchers and conservationists until recently.

In bamboo-dominated forests, mass flowering/death events and

the clumped distribution of bamboo allow soil fauna to receive

resources in a temporally and spatially heterogeneous manner

(Griscom & Ashton, 2006; Olivier, 2008). While the highly dynamic

nature of bamboo forests is relatively well understood, it is still not

clear how bamboo-dominated forests re-structure their soil faunal

communities (Jacobs et al., 2018). A study carried out in the south-

western Amazon discovered a modified community structure of

ground-dwelling beetles in bamboo forests in comparison to terra

firme forests (Jacobs et al., 2018), while another study noted thriving

ant colonies due to increased nest sites in dead bamboo culms (jointed

hollow stems of bamboos) (Davidson et al., 2006). Chica et al. (2013)

observed a slightly higher diversity of nematodes following bamboo

invasion of broadleaf forests. However, no studies have been under-

taken to evaluate the impacts of the bamboo dominance on litter-

dwelling arthropods. The present study was designed to investigate if

and how the spread of native bamboo restructures the litter-dwelling

arthropod assemblages, thus causing potential impacts on functional

aspects of native forests. We hypothesized that the bamboo domi-

nance increases the abundance and order richness of litter-dwelling

arthropods through bamboo-driven modifications to the forest floor

leading to an increased complexity of microhabitats that are likely to

favour their survival.

MATERIALS AND METHODS

Study area

The study was conducted in Tropical Moist Evergreen forests

(TMEFs) in the Intermediate Zone of Sri Lanka. It is the dominant

native forest type in the study area and consists of three vertical

strata including a canopy (20–25 m), a sub-canopy/shrub layer

(5–10 m), and ground vegetation. This region of Sri Lanka is domi-

nated by secondary forests that were repeatedly disturbed due to,

for example, shifting cultivation and logging. TMEFs are located

along the northern borders of the Central Province of Sri Lanka

that belong to the northern intermediate floristic region of the

island (Ashton and Gunatilleke, 1987), and are dominated by tree

species such as Mangifera zeylanica, Canarium zeylanicum, Filicium

decipiens, Dimorcarpus longan, Nothopegia beddomei and Gironniera

parvifolia (Gunatilleke et al., 2008). The mean annual temperature in
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the area is in the range of 22.5–25.0�C with an annual rainfall of

2000–2500 mm (Kulawardhana et al., 2004). The study area

receives a significant portion of its annual rainfall from the north-

east monsoons from November to February. There is a long dry

spell from May to September. According to Wijenayake (2016),

B. bambos was introduced to forest reserves (dominated by Tropical

Dry Mixed Evergreen forests) in the Dry Zone of Sri Lanka a few

decades ago as a source of raw material for paper manufacturing,

though they have never been utilised for this purpose. Over time,

the bamboo populations have gradually expanded, leading to the

formation of highly localised bamboo-rich forest patches

(Gunatilleke et al., 2008; Wijewickrama et al., 2020).

The study was conducted in forest patches with a high prevalence

of B. bambos (BM; with a bamboo cover of more than 50%) from three

localities, Galboda (7.6177�N 80.7208�E), Moragolla (7.6516�N

80.7100�E) and Maragomuwa (7.7088� N 80.7133� E) that are situ-

ated approximately 4–13 km from each other. Bamboo-rich forests

can be easily recognised from their physiognomy. For comparison,

three forest patches without bamboo (NB) were also selected from

respective localities. In these forests, a few bamboo bushes were still

noted, but they formed a very minor component of the vegetation.

The tree canopy height at BM was 10–15 m and 3404 � 1875 stems

per ha (in terms of all non-bamboo individuals higher than 2 m in

height) while it was 8–20 m in height and 3352 � 1255 stems/ha at

NB forests (Wijewickrama et al., 2022). The study sites are described

in detail in Wijewickrama et al. (2020).

Sampling of litter-dwelling arthropods

Litter sampling was carried out from September to November in

2018, just before the onset of north-east monsoons. Each sampling

event was approximately 5 hr (from 9.00 a.m. to 2.00 p.m.) per forest

type (BM/NB) in each study site (Galboda, GAL; Moragolla, MOR and

Maragamuwa, MAR). Eighteen litter samples were collected from each

forest type per study site using a 1 m � 1 m wooden quadrat along

three transects (located approximately parallel to each other and run-

ning from the forest edge towards the forest interior) at different dis-

tances of 0, 20, 40, 60, 80 and 100 m, totaling 108 samples

[6 distances � 3 transects � 2 forest types (BM/NB) � 3 study sites

(GAL/MOR/MAR)]. The arthropods were extracted from litter sam-

ples using the Winkler extraction method (Bestelmeyer et al., 2000)

and preserved in 70% ethyl alcohol until identified to their respective

orders based on morphological characters using keys and identifica-

tion guides. Abundance (number of individuals per sq. m) and order

richness (number of orders per sq. m) were calculated based on the

number of individuals and orders for each plot (Jacobs et al., 2015).

Environmental variables

A parallel study was conducted to evaluate the vegetation, surface

litter accumulation and soil parameters in BM and NB forest

communities in the same three study sites (Wijewickrama

et al., 2020; Wijewickrama et al., 2022). Information from this study

was used to investigate potential relationships between litter-

dwelling arthropods and relevant vegetation, litter and soil variables.

At the time of collecting litter samples to quantify litter-dwelling

arthropods, soil samples (up to a depth of 10 cm) were also collected

to analyse pH in soil: distilled water in 1:2.5 ratio with a pH meter

(Model: HM-20S; Brand: TOA DKK) and gravimetric soil moisture

content (Anderson & Ingram, 1993). Plant individuals >2 m in height

were sampled along the same transects along which arthropods were

sampled. Along each transect, 100 m2 quadrats were laid at regular

intervals of 0, 20, 40, 60, 80 and 100 m totaling 36 quadrats per study

site. All plant individuals were counted and identified to species levels.

Completely and/or partially dead individuals were also recorded. In

each quadrat, the number of culms was recorded. Surface litter sam-

ples were collected using 1 m2 quadrats and air-dried before taking

weight measurements. The vegetation survey was carried out during

the period from January to April, 2017 (Wijewickrama et al., 2020).

Vegetation characteristics such as plant density and richness (per

100 sq. m), culm density (number of culms per 100 sq. m), mortality

(partially/completely dead trees/shrubs per 100 sq. m) and surface lit-

ter biomass (dry biomass Kg per sq. m) were used to investigate asso-

ciations with litter-dwelling arthropods.

Data analysis

The collected data were summarised using descriptive statistics.

Correlations among environmental variables (litter mass, soil mois-

ture, soil pH, culm density, plant abundance, plant richness and tree

mortality), arthropod abundance and order richness with respect to

the forest types (BM/NB) were assessed using the Spearman corre-

lation coefficients. Fisher’s Exact test was conducted to test for

associations between the arthropod orders and forest type. A multi-

variate two-sample Hotelling’s-T2 test was used to compare the sig-

nificant difference in the means of environmental variables between

the two forest types followed by the univariate 95% Bonferroni

confidence interval for each variable. To identify the percentage

contribution of each order to the observed value of the Bray–Curtis

dissimilarity, the similarity percentage (SIMPER) was calculated.

General Linear Mixed-Effects models were fitted to test for effects

of the environmental variables, study site, and forest type on

arthropod abundance and order richness. The sites (GAL/MOR/

MAR) and distances (0, 20, 40, 60, 80 and 100 m) from the edge

were considered as random effects while the forest type (BM/NB)

was a fixed effect. The covariates of the model were the environ-

mental variables considered in the study (soil pH, soil moisture, litter

mass, plant abundance, plant richness, tree mortality and culm den-

sity). A Principal Component Analysis (PCA) was performed to iden-

tify the existence of significant groupings among the observations

with respect to the study site and the forest type. The statistical

analyses were carried out using the R statistical software (R Core

Team, 2020) along with the relevant libraries such as ggplot2
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(Wickham, 2016), lme4 (Bates et al., 2015) and Hotelling (Curran &

Hersh, 2021) at 0.05 significance level. To test that the arthropods

were sampled to completion, accumulation curves (number of

orders) were plotted against area and abundance using the software

Past 4.0 (Hammer et al., 2001).

RESULTS

Abundance and richness of litter-dwelling arthropods

A total of 1982 individuals of litter-dwelling arthropods belonging to

18 orders were recorded in the study. Of 18 orders, 10 (≈56%) were

recorded across all forest types (BM/NB) and study sites (GAL/MOR/

MAR). The order accumulation curves (drawn with the number of

orders against the area and the abundance) reached a plateau more

rapidly in NB forests than in BM indicating a relatively more homoge-

neous nature of the litter-dwelling arthropod community in

non-bamboo forests (Figure S1). A multivariate analysis followed by

Hotelling’s- T2 test revealed a significant difference between means

of the Simpson 1-D index, Shannon H index and evenness between

the two forest types (Hotelling’s-T2 = 10.736, df1 = 3, df2 = 105,

p < 0.001). Univariate analysis of each variable indicated that the

mean Shannon H index was higher in BM forests (1.74 � 0.100) than

that of NB (1.50 � 0.471), while the evenness for BM (0.93 � 0.222)

was lower than that of NB (1.06 � 0.208) forests.

The mean arthropod abundance and order richness were higher

in the bamboo (BM) forests compared to non-bamboo (NB) (Figure 1).

The mean order richness for BM was 1.78 orders higher than that of

NB while the mean abundance for BM was 15.26 (individuals per trap)

higher than that of NB. The results revealed that the fixed effect for-

est type was significant (F = 18.84, df = 1, p < 0.001) while the vari-

ance component of the random effects was not significantly different.

Among the covariates of the model, the only significant covariate was

surface litter biomass (F = 5.13, df = 1, p = 0.026). A similar model

for arthropod abundance indicated that the fixed effect (forest type)

was significant (F = 22.00, df = 1, p < 0.001) and the variance compo-

nent of the random effects were not significantly different from zero.

Among the covariates of the model, none of them were significant.

The mean abundance or the order richness of litter-dwelling arthro-

pods showed no consistent variation from the forest edge towards

the forest interior (Figure S2).

The SIMPER analysis was performed to identify arthropod orders

and their relative contribution (as a %) to the potential dissimilarity

between BM and NB forests. Accordingly, three orders collectively

contributed towards the total dissimilarity between BM and NB forest

communities at GAL (57.0%) and MOR (54.1%), while four orders con-

tributed to 54.8% dissimilarity at MAR (Table 1). Of all 18 orders, Blat-

todea (representing cockroaches and litter-dwelling termites) played

the most prominent role in discriminating arthropod assemblages

between BM and NB forest communities in all three study sites. In

addition, Hymenoptera and Diptera also contributed to differences in

litter-dwelling arthropod assemblages between BM and NB forests

(Table 1). Further analysis was carried out using Fisher’s Exact test to

see whether there were any associations between the arthropod

orders to either BM or NB forests. Diptera, Lepidoptera, Orthoptera

F I GU R E 1 (a) Mean abundance (mean number of individuals per sq. m) and (b) mean order richness (mean number of orders per sq. m) of
litter-dwelling arthropods between bamboo (BM, shown in grey) and non-bamboo (NB, shown in white) forests across study sites, Galboda (GAL),
Moragolla (MOR) and Maragomuwa (MAR), in Central Province of Sri Lanka (n = 54). The mean order richness of arthropods in BM forests is
significantly higher than that of NB forest in GAL site, as indicated by*
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and Psocoptera were more likely to be observed in BM forests than

that of NB (with Odds Ratios of 9.52, 5.85, 7.58 and 9.80, respectively

at Fisher’s Exact p ≤ 0.001 for each).

Environmental variables in BM and NB forests

A multivariate two-sample test (Hotelling’s-T2 test) revealed a signifi-

cant difference between means of environmental parameters in BM

and NB forests (Hotelling’s-T2 = 27.931; df1 = 7, df2 = 101,

p < 0.0001). According to 95% Bonferroni confidence intervals, means

of all parameters except soil moisture significantly differed between

BM and NB forest communities. Soil pH and abundance of dead tree/

shrub individuals were significantly higher in BM, while litter biomass,

abundance and richness of the above-ground vegetation were higher

in NB forests (Figure S3).

Arthropod assemblage versus environmental variables

According to the Spearman correlation analysis, environmental vari-

ables such as surface litter biomass, and abundance and richness

of aboveground vegetation were significantly and positively corre-

lated with both order richness and abundance of litter-dwelling

arthropods in NB forests (Table 2), while no similar correlations

were observed in BM forests with any of the environmental vari-

ables tested.

The PCA biplot showed a clear partitioning of BM and NB forest

communities (Figure 2). In general, our results highlight the complex

interplay of environmental variables (soil, litter and vegetation) gov-

erning the litter-dwelling arthropod abundance and richness across

the three study sites. According to the PCA, the key environmental

variables including culm density, tree mortality and soil pH were rela-

tively more decisive environmental variables for the clear separation

of litter-dwelling arthropod community of BM forests from NB.

DISCUSSION

The effects of bamboo spread on litter-dwelling
arthropods

Our results show that the abundance and order richness of litter-

dwelling arthropods was higher in bamboo than in non-bamboo for-

ests across all three study sites (Figure 1), indicating a potential

facilitative role of the B. bambos spread on litter-dwelling arthropods.

Previous studies observed a strong correlation between litter-

dwelling arthropod communities and specific features of the extant

vegetation (Basset et al., 2012; Lynggaard et al., 2020; Zhang

et al., 2016). Vegetation features such as tree density and canopy

T AB L E 1 Summary of SIMPER analysis showing the most dominant arthropod orders that contribute to the dissimilarity of arthropod
assemblages between in bamboo-(BM) and non-bamboo (NB) forest communities at Galboda, Moragolla and Maragamuwa in the Central
Province of Sri Lanka

Site Order Contribution % Cumulative % Mean abundance BM Mean abundance NB

Galboda Blattodea 26.6 26.6 13.3 0.4

Orthoptera 15.6 42.3 4.5 0.1

Diptera 14.8 57.1 4.1 0.1

Araneae 14.6 71.6 3.9 3.3

Moragolla Araneae 23.5 23.5 7.8 1.8

Hymenoptera 18.0 41.5 7.3 3.0

Blattodea 12.6 54.1 5.2 1.1

Diptera 10.5 64.5 4.5 2.2

Hemiptera 7.8 72.3 2.1 1.5

Neuroptera 5.0 77.3 0.2 1.4

Acari 4.4 81.7 0.1 1.3

Maragomuwa Blattodea 16.3 16.3 1.3 2.1

Hymenoptera 15.9 32.2 2.9 1.7

Coleoptera 13.3 45.5 2.9 1.9

Diptera 9.3 54.8 1.3 0.2

Metastigmata 8.7 63.5 1.4 0.9

Orthoptera 6.9 70.5 1.0 0.4

Araneae 6.7 77.1 0.6 0.8

Hemiptera 4.5 81.7 0.5 0.3

Note: The orders in bold letters collectively contribute approximately 50% of the total dissimilarity between BM and NB forest communities.
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gaps are known to modify forest floor characteristics such as soil

moisture, shade and the amount of litter, and in turn influencing soil-

dwelling faunal communities (Cerda et al., 2015; Higgins et al., 2017;

Jacobs et al., 2018; Perry et al., 2018; Swengel & Swengel, 2007).

The creation of canopy gaps seems to have a stronger impact on

ground-dwelling arthropods than other disturbances to the under-

story vegetation (Perry et al., 2018). A vegetation survey carried out

concurrently at the same study sites noted that the B. bambos spread

has inflicted some structural and compositional modifications to

these forest communities (Wijewickrama et al., 2020). The linear

correlation analysis showed a positive association between the

above-ground vegetation and litter-dwelling arthropod assemblages

in non-bamboo forests, further endorsing the vital role of the extant

vegetation on litter-dwelling soil fauna perhaps through shared feed-

back (Donoso et al., 2013; Jacobs et al., 2018; O’Brien et al., 2017).

The lack of similar associations in bamboo forests may be caused by

the heterogeneous nature of the vegetation and its accompanying

microclimatic conditions following the B. bambos spread, masking the

potential impacts. The higher prevalence of dead woody material on

the forest floor and the patchy nature of the bamboo spread have

T AB L E 2 The Spearman’s correlation coefficients of abundance and order richness of litter-dwelling arthropods and environmental
parameters (soil pH, soil moisture, litter biomass, richness and abundance of the vegetation and tree mortality) in BM and NB forests, separately

Arthropod order richness Arthropod abundance

BM NB BM NB

pH �0.034 �0.172 0.068 �0.031

Moisture �0.123 �0.174 �0.198 �0.217

Litter 0.167 0.376** 0.237 0.272*

Plant Abundance 0.115 0.311* 0.011 0.204

Plant richness 0.143 0.399** 0.146 0.289*

Tree mortality 0.059 0.174 �0.135 0.021

Note: The level of significance indicated by p-value *< 0.05; **< 0.01.

F I GU R E 2 Biplot of the principal component analysis (PCA) on abundance and richness of litter-dwelling arthropods and environmental
variables (soil, litter and vegetation) showing the projection of the data set in the PC1 � PC2 planes (31.56% and 17.97% of the total variance,
respectively). The two principal components (PC1 and PC2) showed a clear partitioning of arthropod communities in bamboo (BM) and non-
bamboo (NB) forest communities
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transformed these native forests into highly heterogeneous habitats

that may favour litter-dwelling arthropods. Previous studies noted

that coarse woody debris (branches >10 cm in diameter) are known

to increase the habitat complexity whilst providing food and a hospi-

table habitat for the litter-dwelling fauna (McElhinny et al., 2005;

Tews et al., 2004).

Associations between environmental variables and
litter-dwelling arthropods

The overriding effect of physical attributes of the habitat on shaping

arthropod diversity and abundance has been highlighted previously

(Southwood et al., 1979). Despite differences in environmental vari-

ables (such as pH, litter biomass and tree mortality) between BM and

NB forests (Figure S2), no distinct associations were observed

between litter-dwelling arthropods and environmental variables in BM

forests (Table 2) suggesting the intricate nature of factors influencing

arthropod assemblages. However, the PCA biplot shows a notable

contribution of tree mortality and culm density that lead to a clear

separation of litter-dwelling arthropod assemblages of BM and NB

forests. The high prevalence of dead trees and shrubs in bamboo for-

ests has created more frequent canopy openings, allowing more sun-

light to reach the forest interior, thus creating a denser and richer

ground vegetation compared to non-bamboo forests (Wijewickrama

et al., 2022). Accordingly, the bamboo spread has the potential to

modify the microclimate of the forest floor (Araujo, 2008; Griscom

et al., 2013; Rother et al., 2016) by increasing the soil temperature

and diminishing the soil moisture (Collins et al., 1985; Fahey &

Puettmann, 2007; Gray et al., 2002; Ishizuka et al., 2002; Perry &

Herms, 2016). These modifications may create more diverse and suit-

able niches for arthropods (Perry et al., 2021), thus increasing their

abundance and richness.

Community structure of litter-dwelling arthropods

Our results show that litter-dwelling arthropod orders such as Blat-

todea, Orthoptera, Diptera, Araneae, Coleoptera, Lepidotera and

Hymenoptera contributed notably to dissimilarities observed

between arthropod assemblages of BM and NB forests. Some

arthropod orders were either more abundant or exclusively linked to

BM forests, indicating their preferences for micro-habitat conditions

under the bamboo canopy over that of non-bamboo forests. Previ-

ous studies noted that the composition of litter-dwelling spiders

(Araneae) can be shaped by the thickness of the surface litter than

their nutritional and structural characteristics (Anderson, 1978;

Bultman & Uetz, 1982). Although NB forests had a higher litter bio-

mass than BM forests (Wijewickrama et al., 2022), the field observa-

tions confirmed that BM forests have a thicker surface litter layer

than NB forests, further supporting the pivotal role of bamboo litter

(leaf and culm) in shaping litter-dwelling arthropod assemblages. In

neo-tropical ecosystems, dead bamboo culms provide important

nesting sites for ants (Arruda et al., 2015; Cobb et al., 2006;

Davidson et al., 2006; Fagundes et al., 2011; Leite et al., 2013;

Powell, 2008). Furthermore, falling bamboo leaves and other woody

debris also seem to provide suitable nesting sites for arthropod colo-

nies (Silveira et al., 2010). The recalcitrant nature of bamboo leaf lit-

ter (Liu et al., 2021) appears to provide a better substrate for

breeding and nesting of soil fauna than broadleaved litter that is

easily compostable (O’Brien et al., 2017).

The overall results suggest that the increased abundance and

order richness of litter-dwelling arthropods in BM forests is possibly

due to a combination of factors that make the forest floor more habit-

able for litter-dwelling arthropods following the bamboo spread. Per-

haps due to the sensitive nature of fluctuating micro-environmental

parameters (Levings & Windsor, 1984) and high habitat heterogeneity,

our results revealed no distinct link between the abundance and order

richness of litter-dwelling arthropods and the tested environmental

variables. The findings also reiterate the intricate nature of factors

(altered micro-climatic conditions in the forest floor and availability of

litter and woody debris) responsible for the prevalence of litter-

dwelling arthropods and their composition. The use of arthropod

orders instead of identifying them into genus/species levels is one of

the main limitations of this study. Further studies to explore the

impacts on litter-dwelling arthropods driven by various modifications

to extant vegetation may help implicating their potential role as bio-

indicators of tropical forests.

CONCLUSION

The study concludes that the presence of B. bambos has increased the

abundance, order richness and diversity of litter-dwelling arthropods

possibly through bamboo-driven microclimatic modifications on the

forest floor. High prevalence of plant debris in bamboo forests seems

to provide a more hospitable habitat for litter-dwelling arthropods.

The study also provides evidence to suggest compositional shifts of

arthropod assemblages following the spread of B. bambos. Further

studies are warranted in order to investigate species-level preferences

of litter-dwelling arthropods and their seasonality following the popu-

lation expansion of the native bamboo, B. bambos.
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Figure S1 Accumulation curves of arthropod orders drawn against

(i) abundance and (ii) area in bamboo-(solid line) and non-bamboo

(dotted line) forest communities in study sites at Galboda (GAL), Mor-

agolla (MOR) and Maragomuwa (MAR) in the Central Province of

Sri Lanka. In GAL and MOR sites, the accumulation curves differ in

shape, while at MAR curves display almost similar shapes.

Figure S2: Interval plot of arthropod abundance and order richness

(95% CI for the mean) with distance from the edge of the forest (0 m)

towards the forest interior (20, 40, 60 80 and 100 m).

Figure S3: Interval plot showing the 95% Bonferroni confidence inter-

val for the mean difference between the BM and NB treatment for

each environmental variable (litter, moisture, soil pH, plant abundance,

plant richness and tree mortality), Arthropod abundance and Richness.

The zero-reference line (dashed red colour) that falls outside the inter-

val indicates a significant difference
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