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Semiclassical quantization of non-
Hermitian multidimensional systems
using Hamilton–Jacobi equation1

Asiri Nanayakkara

Abstract: The Hamilton–Jacobi equation of motion is solved in action variables for non-
Hermitian systems. Both real and complex semiclassical eigenvalues are obtained that make
action variables into integers. This study shows, regardless of the existence of periodic or
quasi-periodic classical trajectories, Hamilton–Jacobi methods can be applied to quantize
some complex non-Hermitian systems with a good accuracy.

PACS Nos.: 23.23.+x, 56.65.Dy

Résumé : Nous solutionnons les équations de Hamilton–Jacobi en fonction des variables
d’action pour des systèmes non hermitiques. Nous obtenons les valeurs propres semi-
classiques réelles et complexes donnant des valeurs entières aux variables d’action. Cette
étude montre que, sans regard à l’existence de trajectoires périodiques ou quasi-périodiques,
la méthode de Hamilton–Jacobi peut être utilisée pour quantifier certains systèmes complexes
non hermitiques avec une bonne précision.

[Traduit par la Rédaction]

1. Introduction

Semiclassical investigations of non-Hermitian complex Hamiltonian systems are important from
both a fundamental and a practical point of view. In the first place, they expose important clues hidden
in the correspondence between classical and quantum mechanics. Secondly, they provide powerful
tools for the calculations of highly excited energy spectra of multi-dimensional complex systems. Since
the classical trajectories of complex Hamiltonians generally lie in complex phase space, one needs
to deal with complex versions of real dynamical quantities that are used in the classical mechanics
of real Hermitian systems. In this study, we assume that the Hamiltonian and the canonical variables
are complex quantities. Use of complex classical quantities in semiclassical quantization methods for
real Hermitian systems is not uncommon. One-dimensional quantum action variable theory [1–3],
semiquantum action variable theory [4], and semiclassical quantization with complex trajectories [5]
are a few examples. With these methods, real eigenvalues of both Hermitian and non-Hermitian systems
can be found.

In this paper, we study both periodic and nonperiodic complex systems that are non-Hermitian.
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All the trajectories of some of these systems are neither periodic nor quasi-periodic and hence action
variables cannot be defined directly in the usual way, such as

∮
p dx for one-dimensional theory and∫

C

px dx and
∫
C

py dy for two-dimensional theory. In the present study, we apply the Hamilton–Jacobi

methods that were developed by Capman et al. [6] for real Hermitian systems to non-Hermitian systems
by analytical continuation of the formulas, and we examine the validity of the method.

The outline of the paper is as follows. In Sect. 2, we describe the Hamilton–Jacobi method developed
by Capman et al. [6] and Born [7]. In Sect. 3, the formulas derived in Sect. 2 are applied to non-
Hermitian one-dimensional systems by analytical continuation. We apply the Hamilton–Jacobi method
to two-dimensional nonseparable non-Hermitian systems and test the validity of the method in Sect. 3.
Concluding remarks are given in Sect. 4.

2. The Hamilton–Jacobi method

In this section, we briefly describe the Hamilton–Jacobi method developed for real Hermitian non-
separable systems by Capman et al. [6]. Please refer to ref. 6 for details. Consider the multi-dimensional
Hamiltonian of the form

H(p, x) = p2

2m
+ V0(x) + V (x) (1)

where (x, p) = {xi, pi}, i = 1, .....f are the Cartesian coordinates and momenta, and f is the number
of degrees of freedom. We assume that the reference potential is separable.

V0(x) =
f∑

i=1

vi(xi) (2)

and we further assume that the vi(xi) are of the form

vi(xi) = 1

2
mω2

i x
2
i (3)

where ωi is a constant. The potential V (x) is nonseparable and hence the problem may not have exact
analytical solutions. Now we make the transformation from (x, p) coordinates to action angle variables
(n, q) that correspond to the reference potential V0(x). Since V0(x) has the form given in (2) and (3),
xi and pi are given by

xi (ni, qi) =
[
(2ni + 1)

mωi

]1/2

cos qi (4)

pi (ni, qi) = − [(2ni + 1) mωi]
1/2 sin qi (5)

The reason for having 2ni + 1 instead of 2ni in the above formulae is that 1/2 has to be introduced
with quantum number ni to incorporate the phase contributions from the classical turning points in the
semiclassical quantization of one-dimensional systems. In terms of the action angle variables (n, q),
the Hamiltonian in (1) becomes

H(n, q) = H0(n) + V (n, q) (6)

and

H0(n) =
f∑

i=1

ωi

(
ni + 1

2

)
= ω.

(
n + 1

2

)
(7)
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where here we have taken the units such that � = 1. V (n, q) is written using (4) as

V (n, q) = V (x(n, q)) (8)

Since dni/dt = −∂H0/∂qi = 0, action variables ni are constants of motion for the Hamiltonian
H0(n). Hence, when V (n, q) = 0, the eigenvalues of the system could be determined by the condition

E(n) = H0(n) (9)

where now n = {ni}, i = 1, ....f and the ni are integers. When V (n, q) �= 0, the ni are not constants of
motion of the Hamiltonian H(n, q). Now we transform (n, q) to new action variables (N , Q) such that
the total Hamiltonian H will depend only on the action variables N . Eigenvalues of the nonseparable
Hamiltonian H are given by

E(N) = H(N) (10)

where N ≡{Ni}, i = 1, ...f . The existence of such action variables N for a given multi-dimensional
system is assumed. If the system is quasiperiodic, then the action variables Ni can be defined as

∫
Ci

pi dxi

where the Ci are topologically independent paths in the invariant torus. If such N can be found then the
Ni become constants of motion. Further, the Hamiltonian systems we investigated are time independent
and hence total energy E is also a constant of motion. Therefore, all the action variables Ni are not
independent and they are related through the relation E(N) = E.

If the generating function F of the above transformation [n, q → (N , Q)] is assumed to be a
function of N and q only then F must be of the F2 type [7,8]. Hence, the action variables n, q, N , and
Q should satisfy the differential equations

ni(N , q) = ∂F (N , q)

∂qi

(11)

Qi(N , q) = ∂F (N , q)

∂Ni

(12)

for i = 1, ...f

Combining (6) and the condition (10) with (11) we have

E(N) = H0

(
∂F (N , q)

∂q

)
+ V

(
∂F (N , q)

∂θ
, q

)
(13)

This is the Hamilton–Jacobi equation for the generating function F . When V (n, q) = 0, by observ-
ing the differential (11) and (12), we write

lim
V →0

F(N , q) = q · N (14)

(As V → 0, (n, q) = (N, Q))
When V (N , q) �= 0, it is convenient to write F(N , q) as

F(N , q) = q · N + �(N , q) (15)

where the function �(N , q) is to be determined. Differentiating (15) and substituting in (13), we obtain
the following differential equation for �(N , q):

E(N) = H0

[
N + ∂�(N , q)

∂q

]
+ V

[
N + ∂�(N , q)

∂q
, q

]
(16)
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For the present case,

H0(N + ∂�(N , q)

∂q
) = ω · N + ω · ∂�(N , q)

∂q

see, (7). Therefore,

E(N) = ω ·
(

N + 1

2

)
+ ω · ∂�(N , q)

∂q
+ V

[
q, N + ∂�(N , q)

∂q

]
(17)

The condition that the semiclassical wave function has to be single valued, implies that �(N , q)

must be a periodic function of qi [9] and it can be expanded in a Fourier series as

�(N , q) = i
∑
k

′
Bk eik·q (18)

where prime on the summation implies that k = 0 is omitted. Combining (11), (15), and (18), we find
the relationship between n and N to be

n = N −
∑
k′

k′ eik′qBk′ (19)

Substituting (18) into (17), multiplying by e−ik·q and integrating over q yields

E(N)δk,0 = ω

(
N + 1

2

)
δk,0 − ω · kBk + 1

(2π)f

2π∫
0

dq e−ik·qV

(
N −

∑
k′

′
k′ eik′·qBk′ , q

)
(20)

This equation can be written as

E(N) = ω ·
(

N + 1

2

)
+ 1

(2π)f

2π∫
0

dqV

(
N −

∑
k′

k′ eik′·qBk′ , q

)
(21)

when k = 0 and

ω · kBk = 1

(2π)f

2π∫
0

dq e−ik·qV

(
N −

∑
k′

′
k′ eik′·qBk′ , q

)
(22)

when k �= 0.
Now we define Ak as Ak = ω · k Bk . Then we can write (21) and (22) as

E(N) = ω ·
(

N + 1

2

)
+ A0 (23a)

Ak = 1

(2π)f

2π∫
0

dq e−ik·qV

(
N −

∑
k′

k′ eik′·q

ω · k′ Ak′ , q

)
(23b)

By using (4) and (19), (23b) may be written as

Ak = 1

(2π)f

2π∫
0

dq e−ik·qV (x(q)) (24)
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where

xi(q) =
[
(2ni + 1)

mωi

]1/2

cos qi (25a)

and

ni = Ni −
∑
k

ki eik·q

ω · k
Ak (25b)

for i = 1, 2, 3......f . In this method, (24) and (25) are solved iteratively to find A0 and then (23a) is
used to find semiclassical eigenenergies E(N) for given integers N ≡ {Ni}. The above(23)–(25) are
derived for the real Hermitian Hamiltonians having “good” action variables. Therefore, these equations
are not valid when the classical phase space is completely chaotic.

3. One-dimensional non-Hermitian systems

In the one-dimensional time independent systems, which we consider in this section, the Hamiltonian
is a constant of motion and equal to the total energy of the system. The first one-dimensionalsystem of
interest is

H1 = p2

2
+ 1

2
ω2x2 + igx3 (26)

where ω and g are real constants and the Hamiltonian H1 is PT symmetric. The quantum energy
spectrum of this system is entirely real [10]. Before applying the Hamilton–Jacobi method described
in the previous section, we study the classical motion of this system in complex phase space. A typical
classical trajectories of H1 is shown in Fig. 1a. It is periodic and the action variable can be defined by
J = ∮

p dx where the path of integration is taken over a complete cycle in complex phase space. The
one-dimensional version of (23)–(25) are

E(N) = ω

(
N + 1

2

)
+ A0 (27)

and

Ak = 1

2π

2π∫
0

dq e−ikqV (x(q)) (28)

where

x(q) =
[
(2n + 1)

mω

]1/2

cos q (29a)

and

n = N − 1

ωk′

∑
eik′qAk′ (29b)

For Hamiltonian H1, we take mass m = 1.0, ω = 1.0, and g = 0.01. Then solve (28) and
(29) iteratively until A0 converges. Then (27) is used to calculate the semiclassical eigenvalues. For
comparison purposes quantum eigenenergies are found by diagonalizing the Hamiltonian H1 in the
one-dimensional harmonic oscillator basis set. The results are presented in Table 1.
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Fig. 1. (a) A typical classical trajectory of the complex PT symmetric Hamiltonian H1 = p2/2m +
1/2ω2x2 + igx3 in complex x plane. This trajectory is periodic. (b) A typical classical trajectory of the
complex non-pseudo Hermitian Hamiltonian H2 = p2/2 + 1/2ω2x2 + igx4 in complex x plane. This
trajectory is nonperiodic and never closes itself.

Although the potential V (x) is complex, the semiclassical Fourier coefficients A0 were found to
be real for all N . The semiclassical eigenenergies obtained with the Hamilton–Jacobi method are in
excellent agreement with the exact energies.

The second potential we investigate in this section is H2 = p2

2 + 1
2ω2x2 + igx4. This complex

Hamiltonian H2 is not pseudo Hermitian and all the quantum eigenvalues are complex. A typical
classical trajectories of H2 is shown in Fig. 1b.

It is evident from Fig. 1b that the trajectory is nonperiodic and never closes itself. It spirals around
and the particle escapes to complex infinity. Therefore, the action variable cannot be defined as in the
previous case. However, we apply (27)–(29) to this system and estimate the semiclassical eigenenergies
by analytically continuing the parameters in the above equations to the complex plane. Unlike the
previous system, the Fourier coefficients A0 are found to be complex. The results are shown in Table 2.
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Table 1. First ten eigenenergies of
V (x) = 1

2 ω2x2 + igx3 where ω = 1.0 and
g = 0.01. Exact eigenenergies are obtained
by diagonalizing the Hamiltonian in the
harmonic oscillator basis set.

N Exact energy Semiclassical energy

0 0.500 14 0.500 094
1 1.500 89 1.500 84
2 2.502 38 2.502 34
3 3.504 62 3.504 57
4 4.507 59 4.507 55
5 5.511 31 5.511 27
6 6.515 77 6.515 72
7 7.520 95 7.520 91
8 8.526 87 8.526 83
9 9.533 51 9.533 47

Table 2. First ten eigenenergies of V (x) =
1
2 ω2x2 +igx4 where ω = 1.0 and g = 0.01. Exact
eigenenergies are obtained by diagonalizing the
Hamiltonian in the harmonic oscillator basis set.

N Exact energy Semiclassical energy

0 0.5002 + i0.0074 0.5001 + i0.0038
1 1.5020 + i0.0373 1.5014 + i0.0336
2 2.5074 + i0.0963 2.5066 + i0.0928
3 3.5186 + i0.1837 3.5174 + i0.1804
4 4.5374 + i0.2981 4.5360 + i0.2952
5 5.5653 + i0.4380 5.5639 + i0.4354
6 6.6033 + i0.6021 6.6017 + i0.5994
7 7.6522 + i0.7886 7.6502 + i0.7865
8 8.7125 + i0.9964 8.7111 + i0.9942
9 9.7845 + i1.2239 9.7827 + i1.2224

It is evident from the Table 2 that the agreement between the eigenvalues obtained using the
Hamilton–Jacobi method and the exact eigenenergies are in good agreement although the action variable
cannot be defined as in the previous case. This indicates that even for non-pseudo Hermitian complex
systems having nonperiodic trajectories, the action variable may exist. However, further studies are
needed to define it properly.

4. The two-dimensional non-Hermitian systems

Classical trajectories in the phase space of multi-dimensional Hermitian systems are usually cate-
gorized as either regular or irregular. For a real two-dimensional potential, regular trajectories occupy
a limited amount of the energetically allowed phase space and have well-defined Poincare’ surfaces of
section. In this case, there exists a constant of motion in addition to the energy and it is the action variable.
On the other hand, irregular trajectories appear to fill up the allowed phase space and have effectively
random Poincare’ surfaces [11] due to the absence of this additional constant of motion. In this case,
the action variable cannot be defined. For two-dimensional Hamiltonian systems, the Hamilton–Jacobi
method described in Sect. 2 is valid only when there exists a constant of motion N , other than the
total energy. To identify the regions of classical phase space where such constants of motion exist, the
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Fig. 2. (a) Typical Poincare surfaces of section (or projections) for the complex PT-symmetric potential
Hamiltonian H1 = p2

x/2 + p2
y/2 + w2

xx
2 + w2

yy
2 + igxy2 with wx = 0.7, wy = 1.3, and g = 0.1. This

represents a regular quasi-periodic classical motion. (b) Typical Poincare surfaces of section (or projections)
for the complex non-Hermitian Hamiltonian H4 = p2

x/2 + p2
y/2 + w2

xx
2 + w2

yy
2 + igx2y2 with wx = 0.7,

wy = 1.3, g = 0.06, and E = 1.0. This represents a non-quasi-periodic classical trajectory.

classical trajectories have to be investigated to find whether they are either regular or chaotic (irregular).
For both Hermitian and non-Hermitian systems, Poincare’ surfaces of section are normally used to
distinguish regular trajectories from irregular ones [12]. As in the previous section, before we apply
the Hamilton–Jacobi method for two-dimensional non-Hermitian systems, we investigate the classical
phase space.

The first two-dimensional system we study is the PT-symmetric complex Barbanis potential V (x, y)

= w2
xx

2+w2
yy

2+igxy2, which is known to have all eigenvalues real. For the values wx = 0.7, wy = 1.3,
and g = 0.1, most of the classical trajectories of this system are quasi-periodic and the Poincare sections
are found to be closed curves when the energy is below 15.0. as shown in Fig. 2a.

Since a constant of motion other than the total energy exists when the motion is regular, action
variable N can be defined. Therefore, the Hamilton–Jacobi method discussed in Sect. 2 can be applied.
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Table 3. First five eigenenergies of V (x, y) =
w2

xx
2 + w2

yy
2 + igxy2 with wx = 0.7, wy = 1.3,

and g = 0.1. Exact eigenenergies are obtained
by diagonalizing the Hamiltonian in the harmonic
oscillator basis set.

N1 N2 Exact energy Semiclassical energy

0 0 1.0021 1.0022
1 0 1.7038 1.7033
0 1 2.3152 2.3171
2 0 2.4055 2.4044
1 1 3.0202 3.0202

For two-dimensional systems, (23)–(25) become

Ak1,k2 = 1

2π

2π∫
0

dq1 dq2 e−i(k1q1+k2q2)V (x1(q1, q2), x2(q1, q2)) (30)

where

x1(q1, q2) =
[
(2n1(q1, q2) + 1)

ω1

]1/2

cos q1 (31a)

x2(q1, q2) =
[
(2n2(q1, q2) + 1)

ω2

]1/2

cos q2 (31b)

n1(q1, q2) = N1 −
′∑

k′
1,k

′
2

k1 ei(ω1k1+ω2k2)

ω1k1 + ω2k2
Ak′

1,k
′
2

(32a)

and

n2(q1, q2) = N2 −
′∑

k′
1,k

′
2

k2 ei(ω1k1+ω2k2)

ω1k1 + ω2k2
Ak′

1,k
′
2

(32b)

E(N1, N2) = ω1

(
N1 + 1

2

)
+ ω2

(
N2 + 1

2

)
+ A0 (33)

We solve (30)–(32) iteratively and obtain A0. Then (33) is used to obtain semiclassical energies.
Table 3 shows the first five eigenenergies calculated with the above method. The agreement between the
eigenvalues obtained using the Hamilton–Jacobi method and the exact method is clearly evident from
Table 3.

The second system we investigate is the non-Hermitian system V (x, y) = w2
xx

2 + w2
yy

2 + igx2y2

for which all the eigenvalues are complex. Unless the energy is very small (E � 1.0), the classical
trajectories are found to be non quasi-periodic and the Poincare surfaces of sections are not closed
curves as shown in Fig. 2b.

Since the Poincare surfaces of sections are not closed curves, but randomly distributed points, the
action variable N cannot be defined as in the previous case. However, we apply the formulas given in
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Table 4. First five eigenenergies of V (x, y) =
w2

xx
2 + w2

yy
2 + igx2y2 with wx = 0.7, wy = 1.3,

and g = 0.06. Exact eigenenergies are obtained by
diagonalizing the Hamiltonian in the harmonic oscillator
basis.

N1 N2 Exact energy Semiclassical energy

0 0 1.0008 + i0.0164 1.0007 + i0.0164
1 0 1.7037 + i0.0488 1.7037 + i0.0489
0 1 2.3047 + i0.0485 2.3047 + i0.0485
2 0 2.4090 + i0.0803 2.4085 + i0.0805
1 1 3.0171 + i0.1440 3.0179 + i0.1437

(30)–(33) to this system and obtain the semiclassical energies. In Table 2 the semiclassical energies are
compared with the exact energies.

It is evident that the semiclassical energies are in good agreement with the exact energies although
the action variable cannot be defined as in the previous case.

5. Concluding remarks

In this investigation, we studied both one-dimensional and two-dimensional non-Hermitian systems
semiclassically. For one-dimensional real Hermitian systems, the existence of periodic trajectories is
important for semiclassical quantization while for multi-dimensional systems, existence of invariant tori
is required. In other words, periodic or quasiperiodic motion is required for semiclassical quantization.
The Hamilton–Jacobi method developed by Capman et al. [6] and Born [7], which is the main subject
of this paper, assumes the existence of the invariant tori and hence the integrability of the system. With
two examples of one-dimensional non-Hermitian systems, we showed that even when a system is not
having periodic trajectories in complex phase space, the Hamilton–Jacobi method produced accurate
semiclassical eigen values. Further, for multi-dimensional systems, even when the Poincare surfaces of
section have random points, we showed with two examples that the Hamilton–Jacobi method produced
accurate semiclassical eigenvalues. In other words, nonperiodic and nonquasi-periodic trajectories in
non-Hermitian systems some times behave as periodic in some sense. Therefore, the way the action
variables defined for real Hermitian systems may have to be changed for non-Hermitian systems.
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