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Asymptotic behavior of eigen
energies of non-Hermitian cubic
polynomial systems1

Asiri Nanayakkara

Abstract: The asymptotic behavior of the eigenvalues of a non-Hermitian cubic polynomial
system H = (P 2/2) + µx3 + ax2 + bx, where µ, a, and b are constant parameters that
can be either real or complex, is studied by extending the asymptotic energy expansion
method, which has been developed for even degree polynomial systems. Both the complex
and the real eigenvalues of the above system are obtained using the asymptotic energy
expansion. Quantum eigen energies obtained by the above method are found to be in
excellent agreement with the exact eigenvalues. Using the asymptotic energy expansion,
analytic expressions for both level spacing distribution and the density of states are derived
for the above cubic system. When µ = i, a is real, and b is pure imaginary, it was found that
asymptotic energy level spacing increases with the coupling strength a for positive a while it
decreases for negative a.

PACS Nos.: 03.65.Ge, 04.20.Jb, 03.65.Sq, 02.30.Mv, 05.45

Résumé : À l’aide d’une extension de la méthode d’expansion asymptotique en énergie
qui a été développée pour des potentiels en polynôme de degré pair, nous étudions le
comportement asymptotique des valeurs propres de systèmes à potentiel polynomial cubique
non hermitique H = (P 2/2) + µx3 + ax2 + bx, où µ, a et b sont des constantes nues
qui peuvent être réelles ou complexes. Nous obtenons de cette expansion asymptotique les
valeurs propres réelles et imaginaires. Nous observons que les valeurs propres quantiques
obtenues ci-dessus sont en excellent accord avec les valeurs propres exactes. L’utilisation
de l’expansion asymptotique nous donne des expressions analytiques pour la distribution
de la séparation entre les niveaux et la densité d’états pour le système cubique étudié ici.
Lorsque nous prenons µ =i, a réel et b purement imaginaire, nous trouvons que la séparation
asymptotique en énergie entre les niveaux augmente avec la force de couplage pour a positif
et décroît pour a négatif.

[Traduit par la Rédaction]

1. Introduction

Many non-Hermitian PT symmetric quantum Hamiltonians are found to have real spectra when the
PT symmetry is not spontaneously broken [1, 2]. Although the real cubic oscillator potentials have no
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true bound states, the PT symmetric version of it, H = (P 2/2) + ix3, is known to have infinitely many
bound states and the entire quantum spectrum of this system is real and positive [1, 3–5]. On the other
hand, when the PT symmetry of a PT symmetric non-Hermitian Hamiltonian is spontaneously broken
or a non-Hermitian Hamiltonian becomes nonpseudo-Hermitian, the eigen spectrum of such a system
becomes complex.

General cubic PT symmetric systems have been studied intensively in recent past [5–8]. Specifi-
cally, Znojil et al. have investigated the asymptotic solvability of a cubic oscillator with spikes [5] and
Fernandez et al. have studied the convergence of the perturbation expansion of the cubic polynomial
system with numerical perturbation theory [8]. However, the asymptotic behavior of the eigenvalues of
a cubic non-Hermitian polynomial system has not been studied so far.

The asymptotic energy expansion (AEE) method [9] is useful in obtaining analytic expressions for
the quantum action variable J (E) as a power series of energy E. One of the interesting features of the
AEE method is its ability to provide analytic expressions for coefficients that are present in the exact
resolution method of Voros [10] as unknown coefficients. When V (x) = x2N , the AEE method and the
higher order Wentzel–Kramers–Brillouin (WKB) method [11] produce the same expansion and hence
the AEE method also produces the exact eigen energy for the simple harmonic oscillator potential (i.e.,
when N = 1). However, when V (x) contains additional terms (for example, V (x) = x2N + bx2),
terms in the high-order WKB and AEE methods are entirely different. The WKB expansion can be
considered as a rearrangement of the terms of the AEE as a power series in �. Nevertheless, as both
series are infinite series, the rearrangement of terms is a nontrivial task, especially, for the polynomial
potentials such as the cubic non-Hermitian system studied here, higher order AEE terms can be derived
algebraically, even though, higher order WKB terms cannot be derived as algebraic expressions owing
to the complexity of integrals involved.

The analytic form of the AEE formulae is not only important in providing a method for obtaining
accurate quantum eigenvalues but also it is a valuable tool in providing analytic insight into the system.
The parameters in the polynomial potentials are present in the AEE explicitly. Therefore, the AEE is
ideally suited for studying the asymptotic behavior of the eigen energies of polynomial systems with
respect to the changes in the coefficients of the potential. So far, only even-degree polynomial potentials
have been studied using the AEE [9, 12–16]. For PT symmetric polynomial potentials, asymptotic
expressions for the eigen energies have been derived by Sibuya [17] and Shin [18] and the WKB
expressions of energy E and C operators have been derived for cubic potentials by Bender et al. [1, 19].
However, the AEE derived here is not an asymptotic expansion of energy E in some parameter, but an
asymptotic expansion of the action variable J (E) for large E and J (E) becomes n� (n is an integer)
for eigen energies.

The purpose of this paper is twofold. First it is to extend the AEE method for odd-degree cubic
PT symmetric polynomial systems and investigate how accurate it is in predicting eigen values of odd-
degree non-Hermitian polynomial potentials. Second is to study analytically, how the asymptotic level
spacings of adjacent states and the density of states change with parameters in the cubic polynomial
system.

2. Asymptotic energy expansion of cubic general complex polynomial
potential

Now consider the general cubic non-Hermitian Hamiltonian system

H = P 2

2
+ µx3 + ax2 + bx (1)

where µ, a, and b are either real or complex and the system can be Hermitian, PT symmetric, or non-
pseudo Hermitian according to the parameters µ, a, and b. Table 1 shows the Hermiticity of this system
for various values of µ, a, and b.
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Table 1. The system given in (1) can be Hermitian, PT symmetric, or non-pseudo Hermitian. When
all the parameters are real, the system is Hermitian. However, in this case, there are no true quantum
bound states. When the system is PT symmetric, quantum eigenvalues are found to be real and
positive. If any of these three parameters are complex, the system is non-pseudo Hermitian and
quantum eigenvalues are complex.

i a b System

Real Real Real Hermitian
Real Real Imaginary Non-Hermitian and PT-symmetric
Imaginary Real Imaginary Non-Hermitian and PT symmetric
Imaginary Real Real Non-pseudo Hermitian
Real or Complex Real or Complex Real or Complex Non-pseudo Hermitian (if all are not real)

In this paper, we derive a single analytic expression for quantum action J (E), which can be used
to calculate quantum eigenvalues of system (1) for all the cases in Table 1.

The Schrödinger equation for the system in (1) is given by

−�
2 ∂2U(x, E)

∂x2 + V (x)U(x, E) = EU(x, E) (2)

where V (x) = µx3 + ax2 + bx. Substituting

P(x, E) = �

i

∂U(x, E)/∂x

U(x, E)

in (1), we obtain the Riccati equation

�

i

∂P (x, E)

∂x
+ P 2(x, E) = E − µx3 − ax2 − bx (3)

For the N th degree polynomial system V (x) = xN + aN−1x
N−1 + aN−2x

N−2 + .... + a1x, the AEE
method has been derived for even N by the transformation E = 1/εN and y = µ1/Nεx [13]. For even
N , after this transformation, (3) will contain terms with integer powers of ε. However, when N is odd,
under the same transformation, (3) will have terms with nonintegers of ε. By re-examining the AEE
method, it was found that if we let E = 1/ε6 and y = µ1/3ε2x, (3) can be brought to a form where
asymptotic expansion can be derived.

h̃ε8 ∂p(y, E)

∂y
+ ε6P 2(y, E) = 1 − y3 − A y2ε2 − B yε4 (4)

where h̃=�

i
µ1/3, A = a

µ2/3 , and B = b
µ1/3 .

Let P(y, E) = εs
∑
k=0

ak(y)εk . Substituting P(y, E) in (4) and equating coefficients for powers of

ε, we obtain recurrence relations for ak .
s = −3 and

a0 =
√

1 − y3 (5a)

a1 = 0

a2 = − 1

2a0
Ay2 (5b)
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a3 = 0

a4 = − 1

2a0

(
By + a2

2

)
(5c)

and for n ≥ 5

an = − 1

2a0

{
n−1∑
k=1

akan−k + h̃
dan−5

dy

}
(5d)

Now we use the quantum action variable J (E), defined as

J (E) = 1

2π

∫
C

P dx (6a)

where P is given inn (3) and C encloses the two physical turning points of classical momentum function
PC = √

E − V (x). Details of these definitions are described in ref. 20. For the system in (1), the action
variable J (E) is

J (E) =
∞∑

k=0

bkE
−(k−5)/6 (6b)

where b′
ks are given by

bk = 1

2πh̃

∮
C

ak(y) dy (7)

The contour C in the integral (7) encloses y = 1 and y = ∞. This integral is quite different from
the integrals encountered in obtaining asymptotic expressions for even degree polynomial potentials[9,
12–16]. To evaluate the integral, we make the transformation s = 1/y. Now the integral becomes

bk = − 1

2πh̃

∮
CS

s−2ak(s) ds (8)

The contour CS encloses points s = 0 and s = 1 and the section of the real axis between them. The
integral (8) is obtained in terms of � functions. The first seven nonzero coefficients in terms of �, µ, a,
and b are

b0 = �[1/6]
5
√

π�[2/3]

b4 = − (a2 − 3bµ)

µ4/3

�[5/6]
3
√

π�[1/3]

b5 = − �

2i
µ1/3 (9)

b6 = − a

µ2

(
9bµ − 2a2

) �[1/6]
162

√
π�[2/3]
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b10 = − 1

µ10/3 (4a5 − 30µa3b + 54µ2ab2 + 81µ4
�

2)
�[5/6]

972
√

π�[1/3]

b12 = − 1

µ4

(
7a6 − 63µa4b + 162µ2a2b2 − 81µ3b3

) �[1/6]
52488

√
π�[2/3]

b16 = 5

µ16/3

(
11a8 − 132µa6b + 540µ2a4b2 − 810µ3a2b3 + 243µ4b4

−324µ4a3
�

2 + 1458µ5ab�
2
) �[5/6]

314928
√

π�[1/3]
In this method the quantum eigen energies are obtained by imposing the quantization condition J (E) =
n�.

3. Asymptotic energies and level spacings

Now we show the accuracy of the above formulae with two illustrations. We calculate first ten
quantum eigen energies of two cubic systems, the first system is a PT symmetric version of (1) with
µ = i, a = 0.1, and b = 0.1i and all of its eigen values are real and positive while the second system
is the non pseudo-Hermitian version of (1) with µ = i, a = 0.1, and b = 0.1 and all eigen values are
complex.

Table 2 shows the eigen values of the first system, obtained by the formulae given in equations (6)
and (9) and for comparison purposes exact eigen energies obtained by diagonalizing the Hamiltonian
in harmonic oscillator basis sets are also presented. It is evident from Table 2 that, except for the first
few lowest states, the agreement between the two methods is excellent. Since the asymptotic energy
expansion method is a semiclassical method, it produces very accurate results for higher excited states.
Similarly, the eigen values of the second system which is the non pseudo Hermitian version of (1)
are obtained with the first seven nonzero terms in (6) and the exact eigen energies are obtained by
diagonalizing the Hamiltonian in harmonic oscillator basis sets. The results are shown in Table 3. As in
the PT symmetric case, the agreement between the two methods is obvious.

Now, using the AEE expansion in (6), we investigate how the asymptotic level spacings of adjacent
states and the density of states change, with parameters a and b in the PT symmetric version of (1)

H = P 2

2
+ ix3 + ax2 + ibx (10)

where now a and b are real numbers. Here, we have taken µ = i and b −→ ib. Hence, the Hamiltonian
is PT symmetric and the eigenvalues become real and positive. Since the AEE method provides an
algebraic expression for the quantum action variable J (E) in terms of energy E as an asymptotic series,
the level spacing distribution of above system can be studied analytically. For small �E

�J(E) = ∂J (E)

∂E
�E (11)

Here, � refers to the difference in adjacent eigen energy levels and hence �J = 1 and �E is the
level spacing between two adjacent eigen energy levels. Therefore, the energy level spacing is given
approximately by

�E = 1
∂J (E)

∂E

(12)
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Table 2. System 1 is PT symmetric with µ = i,
a = 0.1, and b = 0.1i. Eigenvalues are calculated
using the first seven nonzero terms in the asymptotic
energy expansion (AEE) while exact eigen energies
are obtained by diagonalizing the Hamiltonian in
harmonic oscillator basis sets.

n AEE Exact

0 1.202 850 80 1.215 096 54
1 4.208 075 85 4.207 916 40
2 7.683 949 60 7.683 945 57
3 11.454 032 38 11.454 031 35
4 15.446 224 50 15.446 224 05
5 19.619 361 15 19.619 360 88
6 23.946 364 92 23.946 364 73
7 28.407 897 85 28.407 897 70
8 32.989 375 39 32.989 375 30
9 37.679 360 36 37.679 360 46

Table 3. System 2 is non pseudo-Hermitian with µ = i, a = 0.1, and b = 0.1.
Eigenvalues are calculated using the first seven nonzero terms in the asymptotic
energy expansion (AEE) while exact eigen energies are obtained by diagonalizing
the Hamiltonian in harmonic oscillator basis sets.

n AEE Exact

0 1.142 101 38 + i 0.058 8627 1.156 968 45 + i 0.055 7648
1 4.112 067 81 + i 0.094 8185 4.111 855 76 + i 0.094 9094
2 7.565 742 90 + i 0.117 2398 7.565 739 02 + i 0.117 2459
3 11.318 526 94 + i 0.134 6612 11.318 526 83 + i 0.134 6629
4 15.296 185 43 + i 0.149 2759 15.296 185 73 + i 0.149 2765
5 19.456 615 55 + i 0.162 0415 19.456 615 83 + i 0.162 0418
6 23.772 230 69 + i 0.173 4757 23.772 230 92 + i 0.173 4759
7 28.223 380 85 + i 0.183 8952 28.223 381 03 + i 0.183 8953
8 32.795 274 33 + i 0.193 5097 32.795 274 37 + i 0.193 5097
9 37.476 328 33 + i 0.202 4664 37.476 328 76 + i 0.202 4671

Hence, level spacing for the above system for large E is given by

�E � 6
√

π�[2/3]
�[1/6] E1/6

{
1 + E−2/3(a2 + 3b)

�[5/6]�[2/3]
�[1/6]�[1/3]

}
(13)

and for very large energies

�E ∼ n1/5 (14)

where n is the quantum number. Therefore, level spacing varies as one fifth power of the quantum
number for the highly excited states for very large energies. Now let us see how the eigen energy
changes with parameters a and b. The first-order approximation to the change in energy �E is given
by

�Ea = − ∂J (E)/∂a

∂J (E)/∂E
�a (15)
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and

�Eb = − ∂J (E)/∂b

∂J (E)/∂E
�b (16)

where �Ea and �Eb are the changes in energy due to small changes in a and b, respectively. Hence,

�Ea = a

[
4 �[5/6]�[2/3]
�[1/6]�[1/3]

]
E1/3�a (17)

and the sign of a determines how the level spacing between two adjacent states change with the parameter
a. When a is positive, the level spacing between two adjacent states increases as a increases. However,
when a is negative, level spacing between two adjacent states decreases as |a| increases. On the other
hand

�Eb =
[

6 �[5/6]�[2/3]
�[1/6]�[1/3]

]
E1/3�b (18)

and as b increases, level spacing between two adjacent states increases regardless of the sign of b.
Using the asymptotic expression J (E), the density of states can be calculated as well. The density

of states d(E) is defined such that
Eb∫
Ea

d(E) dE is the number of states with energy levels between Ea and

Eb. Thus, d(E) = ∑
i

δ(E − Ei) where Ei ≤ Ei+1. Since J (E) = n� is satisfied by all the eigenvalues

(i.e., it is satisfied by the nth eigen state for all n), the density of states is given by

d(E) = ∂J (E)

∂E
(19)

Hence, the density of states of the above system is calculated approximately as

d(E) � �[1/6]
6
√

π�[2/3]E
−1/6

{
1 + E−2/3(a2 + 3b)

�[5/6]�[2/3]
�[1/6]�[1/3]

}
(20)

and for very large energies, the density of states varies with quantum number n as

d(E) ∼ n−1/5 (21)

4. Concluding remarks

In this paper, we derived an analytic energy expansion of quantum action variable J (E) for the
general cubic system H = (P 2/2) + µx3 + ax2 + bx and obtained quantum eigen energies. The
accuracy of the method was demonstrated for two cases where in the first case the above system is
PT symmetric and the energy eigenvalues are real while in the second case the above system becomes
non pseudo-Hermitian and the eigenvalues are complex. One of the attractive features of the derived
formulae is that single expression (6) includes both PT symmetric and non pseudo-Hermitian cases
while formulae are independent of the complicated distribution of locations of branch points of the
momentum p = √

E − µx3 + ax2 + bx when µ, a, and b are complex. The analytic formula of level
spacing shows that the sign of a determines how the level spacing between two adjacent states change
with the parameter a. When a is positive, the level spacing between two adjacent states increases
as a increases. However, when a is negative, level spacing between two adjacent states decreases as
|a| increases. On the other hand, as b increases, level spacing between two adjacent states increases
regardless of the sign of b.
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