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Semiclassical quantization of non-Hermitian 2-D systems: Classical 

(Lie transform) Perturbation theory

Abstract: Both real and complex semiclassical eigen energies 

of two dimensional non-Hermitian Hamiltonian systems 

are obtained by classical (Lie transform) perturbation theory 

requiring the action variables I
1
 and  I

2
 to satisfy the quantization 

condition I
1
=(n

1
+(1/2))ℏ and I

2
=(n

2
+(1/2))ℏ respectively 

where n
1
, n

2
 are integers. Classical perturbation theory with Lie 

transform makes classical trajectories, which are non-periodic 

or non-quasi-periodic, periodic. It was observed that this 

method produces accurate eigen energies even when classical 

trajectories are not periodic or quasi-periodic. Eigen energies 

obtained by classical perturbation theory are compared with 

the same, determined by Rayleigh-Schroedinger perturbation 

theory

Keywords: Lie transform, non-Hermitian systems, semiclassical 

quantization 

INTRODUCTION

Real non-separable multidimensional Harmonic 

Oscillator Systems have been widely used in the past 

for investigating classical chaos and its manifestation in 

quantum mechanics in Hamiltonian systems1-12. Further 

more, semiclassical investigations of these oscillators 

provide insight into the various experiments related to the 

intramolecular energy transfer and understanding of the 

nature and meaning of intramolecular randomization¹³. 

Although non-Hermitian multidimensional Harmonic 

oscillator systems do not provide such a practical 

insight yet, semiclassical investigations of non-

Hermitian complex Hamiltonian systems are important 

from both the fundamental and practical point of view. 

In the first place they may expose important clues 

hidden in the correspondence between classical and  

quantum mechanics, especially when classical motion 

becomes chaotic or PT symmetry of quantum states are 

spontaneously broken. Secondly, they provide powerful 

tools for calculations of highly excited energy spectra 

of the multidimensional complex systems. Particularly, 

when action variables or eigen energy expressions 

are available in analytic form, it is possible to have a 

better understanding on the classical behaviour, the 

semiclassical quantization and the semiclassical limit.

 Classical perturbation theory based on Lie 

transforms has been used to obtain constants of motion 

of 2-D coupled Harmonic oscillator systems14,15 and 

to determine semiclassical eigen energies and linking 

quantum avoided crossing with classical chaos in real 

Hermitian systems in the past16,17. Classical motion 

of 1-D non-Hermitian Hamiltonian systems has been 

studied in several investigations1-21. In this paper, we use 

Lie transforms to investigate the classical frequencies and 

real and complex semiclassical eigen values of 2-D non 

Hermitian Hamiltonian systems analytically. In particular, 

we study two Hamiltonians, H
a
 and H

b 
, which are non 

Hermitian and classical trajectories of H
b
 which do not 

have periodic or quasi periodic trajectories,

H
a
 = (1/2) [p

1

2 + p
2

2 + ω
1

2 x
1

2 + ω
2

2 x
2

2 ] + igx
1
x

2

2       ... (1)

and

               

H
b
 = (1/2) [p

1

2 + p
2

2 + ω
1

2 x
1

2 + ω
2

2 x
2

2 ] + igx
1

2 x
2

2  ... (2)

H
a
 is PT symmetric while H

b
 is neither PT symmetric nor 

pseudo-Hermitian. Using Lie transform, we find integrable 

Hamiltonians which are the integrable approximates to 

non-integrable Hamiltonians H
a
 and H

b
. Outline of the 

paper is as follows. In section I, we describe the classical 

perturbation theory (Lie transform) method and apply it 

for the above systems to obtain approximate integrable 

Hamiltonians. In section II, classical frequencies are 
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obtained by solving the equation of motion in transformed 

coordinates. In section III, the semiclassical eigen values 

are calculated using classical perturbation theory and 

compares them with exact and Rayleigh-Schroedinger 

perturbation energies. Concluding remarks are given in 

section IV.

I Classical Lie canonical transform

In this section, first we describe the classical perturbation 

theory based on Lie canonical transformations. (For 

further details, see reference 14 & 15). Consider the 

Hamiltonian of the form

        
10
HHH # !  

%
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... (3)

where H
0
 = (1/2) [p

1

2 + p
2

2 + ω
1

2 x
1

2 + ω
2

2 x
2

2 ] and 

H
1
 (x

1 
, x

2 
) makes the above Hamiltonian H non-separable 

and non-Hermitian. Hamilton’s equation of motion for 

the above Hamiltonian is
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(j=1,2).

Now consider the transformation (p
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where { } represents the Poisson bracket and equations 

of motion become
        

j

j H

dt

d
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... (8)

        

j

j H

dt

d *               ... (9)

(j=1,2) and the new Hamiltonian H*(η,ξ)=H(p,x). The 

purpose for introducing this canonical transformation is, 

to eliminate, from Hamiltonian H*, the parameter τ which 

is introduced in (11) and (12). Now we expand H* in a 

power series of ε as

H* (η,ξ) = H
0

* (η,ξ) + εH
1

*(η,ξ ) +         ... (10)

 !t  

and parameter τ is introduced by the auxiliary equation
        

             
 ... (11)
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(j=1,2) and hence H
0

* = const. The H
k

*s in the power series 

(10) are obtained (details are given in reference 14,15) by
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where the subscript s stands for the average value which 

is defined for a function A as
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and for a periodic function with period T above equation 

becomes
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Now we obtain H
0

*, H* and equivalent constants of motion 

for two non-Hermitian systems given in equations (1) 

and (2). The Hamiltonian H
a
 in (1) is PT symmetric and 

known to have all eigen values real. Assuming ω
1
 is not 

commensurable with ω
2
, H

0

*(η,ξ) and H*(η,ξ) are found 

for the above system as
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This new system admits two first integrals, H
a0

*=const   

and H
a

*=const and they are equivalent to
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Above equations (16), (18) and (19) will be used to 

quantize this system in the section III. Now we find 

similar expressions of H
0
* and H* for the Hamiltonian 

systems H
b
.
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    The above Hamiltonians are functions of new variables 

ξ
1
, ξ

2
, η

1
, and η

2
 only in the form ξ

1
²+η

1
²/ω

1
² and ξ

2
²+η

2
²/

ω
2
². These transformed Hamiltonians are merely the 

Borkhoff normal forms1,22 of the original Hamiltonians.

    

II Classical frequencies

In the previous section we expressed the Hamiltonians of 

two non-Hermitian systems given by (1) and (2) in terms 

of constants of motion using classical Lie transform 

method. Constants of motion for these two dimensional 

potentials, are
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respectively. Using equation (8) and (9), we write the 

equations of motion for the above systems in terms of 

c
1 
and c

2
 as
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2

2

2

jjk
j

dt

d      

             
... (26)

where k={a,b}, j={1,2} and �
�

�

�

�
�

�

�

j

k

j

jk
c

H *2
, . Frequencies 

Ω 
k, j 

are independent of time as c
1 
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motion. Therefore, the solutions of equation motion (26) 
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It is important to note that Hamiltonians H
k
* (k={a,b}) are 

integrable, while corresponding original Hamiltonians 

H
k
 are not. H

k
* are the integrable approximates to H

k 
. It is 

evident from the above expressions for the frequencies of 

oscillations Ω
k, j 

, that the classical trajectories of the first 

Hamiltonian system is periodic with real frequencies. 

However, the frequencies of the second Hamiltonian H
b

* 

are complex and classical trajectories of that Hamiltonian 

are therefore non-periodic. Under the Lie transform, 

non-integrable Hamiltonians became integrable and 

quasi-periodic trajectories of the first pseudo Hermitian 

Hamiltonian became periodic. However, trajectories 

of the second non-pseudo Hermitian Hamiltonians did 

not become periodic. Then an important question to 

address is that whether the semiclassical quantization of 

the above complex non-Hermitian systems accurately 

produce the quantum eigen values as it does in the case 

of real Hermitian systems. This issue is addressed in the 

next section.
    

III Semiclassical eigen values

In order to find semiclassical energy eigen values of those 

three Hamiltonians, first we make the transformation to 

action variables as or I 
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Therefore, Hamiltonians in terms of action variable I
1
 

and I
2
 are given by
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Now we quantize the systems H
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 and H

b 
with the 

quantization conditions
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where n
1
 and n

2
 are the two quantum numbers. In this 

way, we can quantize both non-Hermitian Hamiltonians 

discussed above. Now we derive expressions for quantum 

mechanical eigen energies by applying aforementioned 

quantization conditions.

 Imposing conditions (34) and (35) on (32) and 

(33), we obtain the quantum eigen energy expressions 

for the Non-Hermitian systems defined in (1) and (2) 

respectively as
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where now   β
a
={(ω

2
²-3ω

1
²/8)(n

2
+1/2)2ω

1
²+(n

1
+1/2) 

(n
2
+1/2) ω

1
 ω

2  
and β

b
={(3ω

2
²-2ω

1
²)(n

1
+1/2)ω

2
+(3ω

1
²-

2ω
2
²)(n

2
+1/2)ω

1 
} and ℏ is taken as unity.

E 
a
n

1
n

2  
and  E bn

1
n

2 
in (36) and (37) are the quantum eigen 

energies of the systems (1) and (2) respectively and n
1
 

and n
2
 are non negative integers (quantum numbers). 

Tables 1 and 2 contain the eigen energies calculated 

using second order Lie transform method and the second 

order Rayleigh-Schroedinger perturbation theory. For 

comparison purposes, exact eigen energies which are 

obtained by diagonalizing the Hamiltonian in Harmonic 

oscillator basis set are also included in each table.

    

Table 1: First ten eigen energies of V(x ) = (1/2)[ω
1

2 x
1

2 + ω
2

2 x
2

2 + igx
1
x

2

2  

 where ω
1
=0.7, ω

2
=1.3 and g=0.08 are calculated using Lie 

transform method and the second order Rayleigh-Schroedinger 

(RS) perturbation theory. “Exact” eigen energies are obtained 

by diagonalizing the Hamiltonian in Harmonic oscillator basis 

set.

 Exact Lie transform 2nd order RS Perturb

 1.00137 1.00149 1.00138

 1.70247 1.70261 1.7025

 2.30981 2.31004 2.30992

 2.40355 2.40373 2.40362

 3.01305 3.0134 3.01329

 3.10462 3.10485 3.10474

 3.62548 3.62601 3.6259

 3.71624 3.71677 3.71665

 3.80567 3.80598 3.80586

 4.33079 4.33162 4.33151

Table 2:  First ten eigen energies V(x ) = (1/2)[ω
1

2 x
1

2  + ω
2

2 x
2

2 + igx
1
x

2

2  

  of where ω
1
=0.7, ω

2
=1.3 and g=0.05 are calculated using 

Lie transform method and Rayleigh-Schroedinger (RS) 

perturbation theory. “Exact” eigen energies are obtained by 

diagonalizing the Hamiltonian in Harmonic oscillator basis 

set.

  Exact  Lie Transform 2nd order RS Perturb
 

 1.0006 + 0.0137i 1.0005 + 0.0137i 1.0006 + 0.0137i

 1.7026 + 0.0408i 1.7029 + 0.0412i 1.7027 + 0.0412i

 2.3033 + 0.0406i 2.3027 + 0.0412i 2.3034 + 0.0412i

 2.4064 + 0.0674i 2.4073 + 0.0687i 2.4067 + 0.0687i

 3.0121 + 0.1210i 3.0125 + 0.1236i 3.0129 + 0.1236i

 3.1117 + 0.0930i 3.1136 + 0.0962i 3.1128 + 0.0962i

 3.6074 + 0.0669i 3.6066 + 0.0687i 3.6079 + 0.0687i

 3.7258 + 0.1992i 3.7282 + 0.2060i 3.7283 + 0.2060i

 3.8181 + 0.1174i 3.8219 + 0.1236i 3.8208 + 0.1236i

 4.3255  + 0.1993i 4.3272 + 0.2060i 4.3283 + 0.2060i

The above two tables clearly show that the semiclassical 

eigen energies are in good agreement with exact 

quantum eigen values regardless of the Hermiticity of the 

Hamiltonians and whether the periods of the trajectories 

}

}

}
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are real or not. For the Hamiltonian H
b
, the second 

order Rayleigh-Schroedinger (RS) perturbation theory 

produces same complex energies as the semiclassical 

energies calculated with Lie transform method.

    

IV Concluding remarks

In this paper, we studied two 2D non Hermitian complex 

Hamiltonians, H
a
 and H

b
 with Classical Lie transform 

method. The first Hamiltonian H
a
 is PT symmetric and 

the entire quantum energy spectrum is found to be real 

and positive. In this study it was found that classical 

phase space of H
a
 contains periodic trajectories and 

analytic expression for frequency of oscillations was 

obtained. Semiclassical energies are obtained as an 

algebraic expression and semiclassical eigen energies are 

found to be in very good agreement with exact quantum 

eigen energies.

    

 The second Hamiltonian H
b
 is not even pseudo 

Hermitian. The entire quantum energy spectrum is 

complex. The classical frequencies are found to be 

complex and hence all the classical trajectories are 

non periodic. Since an action variable is intrinsically a 

concept associated with periodic motion, existence of 

action variable is directly linked with that of the periodic 

motion. However, semiclassical eigen energies based on 

quantization of the action variables in this system are 

found to be quite accurate although no trajectories of this 

system is periodic.

    

References

1.  Siegel C.L. & Moser J.K. (1971). Lectures on Celestial 

Mechanics, Springer-Verlag, Berlin, Germany.

2. Arnold V.I. & Avez A. (1968). Ergodic Problems of 

Classical Mechanics. 1st Edition, pp. 286. W.A. Benjamin 

Company, New York, USA.

3.  Noid D., Koszykowski M., Tabor M. & Marcus R. (1980). 

Properties of vibrational energy levels in the quasi periodic 

and stochastic regimes. Journal of Chemical Physics 

72: 6169.

4.  Noid D., Koszykowski M. & Marcus R.A. (1983).    

Comparison of quantal, classical, and semiclassical 

behaviour at an isolated avoided crossing. Journal of 

Chemical Physics 78: 4018.

5.  Uzer T., Noid D. & Marcus R. (1983). Uniform 

semiclassical theory of avoided crossings. Journal of 

Chemical Physics 79: 4412.

6  Farrelly D. & Uzer T. (1986). Semiclassical quantization 

of slightly nonresonant systems: avoided crossings, 

dynamical tunneling and molecular spectra. Journal of 

Chemical Physics 85: 308.

7.  Takami T. (1995). Semiclassical study of avoided crossings. 

Physical Review E 52(3): 2434.

8.  Brumer P. & Duff J. (1976). A variational equations 

approach to the onset of statistical intramolecular energy 

transfer. Journal of Chemical Physics 65: 3566.

9.  Cejan C. & Reinhardt W.  (1979). Critical point analysis of 

instabilities in Hamiltonian systems: classical mechanics 

of stochastic intramolecular energy transfer. Journal of 

Chemical Physics 71: 1819.

10.  Stratt R., Handy N. & Miller W. (1979). On the quantum 

mechanical implications of classical ergodicity. Journal of 

Chemical Physics 71: 3311.

11.  Weissman Y.  & Jortner J. (1982). Quantum manifestations 

of classical stochasticity: I. energetics of some nonlinear 

systems. Journal of Chemical Physics 77: 1469.

12.  Weissman Y. & Jortner J. (1982). Quantum manifestations 

of classical stochasticity: II. dynamics of wave packets of 

bound states. Journal of Chemical Physics 77: 1486.

13.  Noid D., Koszykowski M. & Marcus R. (1981).  

Quasiperiodic and stochastic behavior in molecules. 

Annual Review of Physical Chemistry 32: 267.

14.  Hori G. (1966). Theory of general perturbations with 

unspecified cannonical variables. Publications of the 

Astronomical Society of Japan 18(4): 287.

15.  Hori G. (1967). Non-linear couplings of two harmonic 

oscillations. Publications of the Astronomical Society of 

Japan 19(2): 229.

16.  Ramaswamy R. & Marcus R. (1981). On the onset of 

chaotic motion in deterministic systems. Journal of 

Chemical Physics 74(2): 1385.

17.  Ramaswamy R., Siders P. & Marcus R. (1980). 

Semiclassical quantization of multidimensional systems.  

Journal of Chemical Physics 73(10): 5400.

18.  Nanayakkara A. (2004). Classical trajectories of 1D 

complex non-Hermitian Hamiltonian systems. Journal of 

Physics A: Mathematics and General 37: 4321.

19.  Bender C.M., Boettcher S. & Meisinger P.N.  (1999). 

PT-symmetric quantum mechanics. Journal of 

Mathematical Physics 40: 2201.

20.  Bender C.M., Chen J., Darg D.W. &. Milton K.A. (2006). 

Classical trajectories for complex Hamiltonians. Journal 

of Physics A: Mathematics and General 39: 4219.

21.  Bender C.M.  & Darg D.W.  (2007). Spontaneous breaking 

of classical PT symmetry. Journal of Mathematical 

Physics 48: 042703.

22.  Birkhoff G.D. (1922). Surface transformations and their 

dynamical applications. Acta Mathematica 43: 1.


