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Abstract

We conduct linear and nonlinear stability analyses on a paradigmatic model of nanostructure self-

assembly. We focus on the spatio-temporal dynamics of the concentration field of deposition on a

substrate. The physical parameter of interest is the mean concentration C0 of the monolayer. Linear

stability analysis of the system shows that a homogeneous monolayer is unstable when C0 lies within

a band symmetric about C0 ¼
1
2
. On increasing C0 from zero, the homogeneous solution destabilizes

to a hexagonal array, which then transitions to stripes. Transitions to and from the hexagonal state

are subcritical. Square patterns are unstable for all values of C0 transitioning either to hexagons or

stripes. Further, we present stability maps for striped arrays by considering possible instabilities. The

analytical results are confirmed by numerical integrations of the Suo–Lu model. Our formalism

provides a theoretical framework to understand guided self-assembly of nanostructures.
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1. Introduction

Self-assembly, i.e., the spontaneous formation of patterns (Whitesides and Grzybowski,
2002), is emerging as a promising technique for epitaxial growth of regular nanoscale
arrays on a substrate. For example, Pohl et al. (1999) observed that when a monolayer of
silver deposited on a ruthenium (0 0 1) surface is exposed to sulfur, a regular array of
3.4 nm diameter (sulfur) disks is formed; Wahlström et al. (1999) showed that the
deposition of sulfur on Cu (1 1 1) substrate at low temperature leads to the formation of
honeycomb-like structures with a length scale of 1.67 nm; Umezawa et al. (2001) reported
the growth of a network of equilateral triangles of side 3 nm when a Ag monolayer of
fractional coverage 0.8 is deposited on Cu (1 1 1) substrate at room temperature.
At the scale of interest, each of the above experimental systems is (nearly) isotropic and

homogeneous and the epitaxial deposition is spatially homogeneous except for stochastic
effects. The destabilization of the homogeneous monolayer is caused by spontaneous
symmetry breaking giving energetically favorable patterned structures (Cross and
Hohenberg, 1993). Although detailed microscopic theories are needed to predict
quantitative features of surface structures for a given experimental configuration, general
characteristics of self-assembly can be studied using phenomenological field theoretic
models. Factors that need to be included in such models are: (i) a double-welled free energy
function of the epilayer to ensure phase separation; (ii) an interfacial energy between
distinct monolayer phases; and (iii) an elastic energy due to non-uniformity of the surface
stress (Ng and Vanderbilt, 1995; Glas, 1997; Guyer and Voorhees, 1998; Suo and Lu,
2000). The competition between (ii) and (iii) is responsible for size selection of self-
assembled domains. The relative simplicity of the phenomenological models allows one to
conduct a comprehensive theoretical analysis of self-assembled states, their stability
domains, and how they destabilize.
Our studies are conducted on a Cahn–Hilliard type model of self-assembly due to Suo

and Lu (2000) which is introduced briefly in Section 2. The physical variable of interest is
the mean fractional coverage C0 of the monolayer and the remaining parameters, such as
the elastic mismatch and temperature, are kept fixed. Stability boundaries for the
homogeneous solution are evaluated in Section 3 using linear stability analysis. Consistent
with previous variational calculations, the homogeneous solution is unstable for an
interval I symmetric about C0 ¼

1
2
. Section 4 shows examples of hexagonal, striped and

labyrinthine structures generated in numerical integrations of the model system while their
stability maps are calculated using nonlinear stability analysis in Section 5. In Sections 6–8,
we present the major new contributions of our work, namely nonlinear stability analyses of
striped, square and hexagonal arrays using multiple scales analysis (Newell and
Whitehead, 1969; Segel, 1969; Cross and Hohenberg, 1993). In particular, we show in
Section 7 that square arrays are never stable, and in Sections 6 and 8 calculate stability
boundaries for striped and hexagonal arrays. Theoretical results for striped arrays are
shown to agree very well with those from numerical integrations of the Suo–Lu model.
Agreement for the hexagonal case, although close, is imperfect. We argue that this
disagreement is due to the finite amplitude of the hexagonal structures for parameter
values considered in the paper. Section 9 discusses the merit of our work in providing a
theoretical framework for guiding self-assembly of nanostructures.
Linear and nonlinear stability analysis have several advantages over techniques based on

calculating the energy of a given collection of solutions. It does not require the underlying
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system to be variational. Further, the instability of a given solution can be determined
without prior knowledge of the state to which it destabilizes. These considerations are
important in calculating the stability boundaries of periodic arrays.

2. A thermodynamic model of self-assembly

The phenomenological model of Suo and Lu (2001) contain components that are
energetically most relevant for self-assembly in a two-species system: phase separation,
phase coarsening, and phase refining. Due to the mismatch in surface stress between
adjoining phases, both the monolayer and the substrate are elastically stressed. The spatio-
temporal dynamics for the concentration field Cðx; yÞ of the epilayer atoms (Lu and Suo,
2001) was shown to be

qC

qt
¼

M

L2
r2 qg

qC
� 2h0r

2C þ f�bb

� �
, (1)

where the parameters M, L, h0, and f represent, respectively, the atomic mobility in the
monolayer, the number of substrate atomic sites per unit area, the energy contribution due
to concentration gradients, and the rate of change of the surface stress with respect to
concentration.

The function g ¼ gðCÞ is the excess energy per unit area and depends on the presence
(represented by species B) or absence (represented by species A) of the epilayer atoms at a
substrate site. Its dependence on the concentration of the epilayer is

gðCÞ ¼ gAð1� CÞ þ gBC þ LkT ½C lnC þ ð1� CÞ lnð1� CÞ þ OCð1� CÞ�, (2)

where gA and gB are the excess energy of the fully occupied and the fully vacant epilayer. k

denotes Boltzmann’s constant and T the absolute temperature. The first two terms in
brackets give the entropy of mixing and the third term the energy of mixing. The
dimensionless parameter O measures the exchange energy relative to the thermal energy
kT. gðCÞ is of the form (2) as long as the epilayer obeys the regular solution theory (Cahn
and Hilliard, 1958). Phase separation occurs only if gðCÞ is non-convex, or equivalently if
O42 (Suo and Lu, 2001).

The second term on the right side of Eq. (1) represents energy associated with a phase
boundary. If h040, any nonuniformity in the concentration field increases the surface free
energy. Hence, the phase boundary energy is reduced by increasing domain sizes, i.e., by
phase coarsening.
�bb, the concentration-dependent elastic strain, is given by

�bb ¼ �
ð1� n2Þf

pE

ZZ
ðx� x1ÞqC=qx1 þ ðy� x2ÞqC=qx2
½ðx� x1Þ

2
þ ðy� x2Þ

2
�3=2

dx1 dx2, (3)

where E and n are the substrate’s Young’s modulus and Poisson’s ratio, and the integration
extends over the entire surface. �bb ¼ 0 for a homogeneous solution, but can be negative
for suitably chosen non-constant Cðx; yÞ. Thus, phase refining can reduce �bb. Note that
Eq. (3) assumes isotropic elasticity.

The first two terms in Eq. (1) are similar to those in spinodal decomposition (Cahn and
Hilliard, 1958). Numerical simulation confirms that, in the absence of phase refining, the
dynamics of the Suo–Lu model reproduces the classical spinodal decomposition (Lu and
Suo, 2002). In model (1), the surface strain saturates unbounded growth of domains.
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Eq. (1) can be rescaled into a dimensionless form by scaling the spatial coordinates byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0=LkT

p
and time by h0=MðkTÞ2, giving

qC

qt
¼ r2 PðCÞ � 2r2C �

Q

p
I0

� �
, (4)

where

PðCÞ ¼ ln
C

1� C

� �
þ Oð1� 2CÞ, ð5Þ

I0 ¼

ZZ
ðx� x1ÞqC=qx1 þ ðy� x2ÞqC=qx2
½ðx� x1Þ

2
þ ðy� x2Þ

2
�3=2

dx1 dx2, ð6Þ

and Q ¼ b=l is the ratio of the typical ‘‘width’’ b ¼ ðh0=LkTÞ1=2 of domains and the
characteristic thickness l ¼ Eh0=ð1� n2Þf2 of an interface between two phases. For most
epitaxial systems, both b and l are of order of 1 nm.

3. Linear stability analysis

The stability analysis for the homogeneous solution of the Suo–Lu model has been
conducted previously by considering changes in the surface free energy caused by small
sinusoidal perturbations (Lu and Suo, 1999; Suo and Lu, 2001). For completeness, we
outline a more general linear stability analysis that does not require the system to be
variational (Walgraef, 1997).
Consider a perturbation of the homogeneous solution Cðx; yÞ ¼ C0 of the form

Cðx; yÞ ¼ C0 þ zeiqxþst (7)

with z5C0. At the lowest order

r2PðCÞ ¼ �q2 1

C0ð1� C0Þ
� 2O

� �
zeiqxþst. (8)

As shown in Appendix A, I0 is the convolution of derivatives of r�1 ¼ ðx2 þ y2Þ
�1=2 and

Cðx; yÞ. Thus,

r2I0 ¼ � r
2 qr�1ðx; yÞ

qx
�
qzeiqxþst

qx

� �
¼ � q4r�1ðx; yÞ � zeiqxþst

¼ � q4

ZZ
r�1ðx1; x2Þ � zesteiqðx�x1Þ dx1 dx2

¼ � q4zeiqxþst

ZZ
r�1ðx1; x2Þe

�iqx1 dx1 dx2

¼ � 2pq3ziqxþst. ð9Þ

Note that the last step uses the Fourier–Bessel transform (Bracewell, 1999).
Denoting h1 ¼ 1=C0ð1� C0Þ � 2O, the growth rate becomes

s ¼ �2q2 h1

2
�Qqþ q2

� �
. (10)
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Unless sðqÞ is zero or negative for all q, the uniform state Cðx; yÞ ¼ C0 is unstable to small
perturbations. Clearly, h1, and hence C0, determines the threshold of the instability. The
critical concentration is hc ¼ Q2=2. At parameters used by Suo and Lu (2001) (Q ¼ 1:0 and
O ¼ 2:2), the homogeneous solution destabilizes for C0 2 ½0:29; 0:71� symmetric about
C0 ¼

1
2
. Self-assembly will be observed only within this interval (except for a small

parameter range where both the hexagonal state and the homogeneous solution are stable,
see Section 8). The dispersion relation is given by

s ¼ 2q2½r� ðq�Q=2Þ2�, (11)

where

r ¼ ðhc � h1Þ=2

¼
Q2

4
�

1

2C0ð1� C0Þ
þ O. ð12Þ

The results of the linear stability analysis are identical to those obtained from energy
minimization (Suo and Lu, 2001).

Near the onset of patterns, the critical wavenumber qc ¼ Q=2, and the corresponding
wavelength is 4p=Q. The marginal stability condition and the linear growth rates of
perturbations are shown in Fig. 1. From Eq. (10), the fastest growing mode is given by

qpeak ¼
3Qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9Q2 � 16h1

p
8

¼
3Qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32rþQ2

p
8

. (13)

Note that as r increases, so does qpeak, and the typical lengthscale associated with the
pattern decreases.

4. Patterns in the Suo–Lu model

It is clear from Eq. (13) that the length scale of patterns generated in the Suo–Lu system
depends on Q and h1. Fig. 2 shows hexagonal patterns formed at Q ¼ 0:8 and 1.1.
As discussed in the previous Section, increasing Q reduces the nearest neighbor distance.
Fig. 1. (a) The marginal stability curve, above which the homogeneous state is unstable to small perturbation.

The horizontal line on top is the peak value OþQ2=4� 2 of r. (b) The linear growth rates of small amplitude

Fourier modes. Note that the q ¼ 0 mode is marginal for all r. For ro0 all other modes decay, while for

0oroQ2=2 there is a band of Fourier modes about Q=2 that grow. For r4Q2=4 the band of growing modes

includes the q ¼ 0 mode.
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Fig. 2. Patterns at t ¼ 315 985 for systems with the same mean concentrations C0 ¼ 0:31 and O ¼ 2:2, but with
different values of Q. The increase of q where the peak of the dispersion relation is located is reflected in the

reduction of the lengthscale in the pattern as Q is increased. The broadening of the band of unstable Fourier

modes implies that, typically, the textures are more disordered for large Q. Integrations are implemented on a

square domain of 256� 256 lattice points with periodic boundary conditions. Each side of the domain is 256l.

S. Hu et al. / J. Mech. Phys. Solids 55 (2007) 1357–13841362
In addition, it is seen that the typical disorder in a pattern increases with Q. This behavior
is easily explained by noting that for fixed C0, r increases with Q. Near the onset, only a
narrow band of Fourier modes are excited, and hence the domain sizes are large (Cross
and Hohenberg, 1993). In contrast, for larger r the band of growing Fourier modes is
broader and, in addition, nonlinear terms in the model are larger; consequently, textures in
such systems are more disordered. This is a common feature of pattern formation
(Manneville, 1990).
Controlling the size and homogeneity of the droplets is extremely important in

fabricating nanostructures for electronic and optical devices since irregularities in textures
cause inhomogeneities in these physical properties. As discussed above, linear stability
analysis shows that the most ordered structures form close to the transition from the
homogeneous solution to the hexagonal phase, i.e., when r is only slightly above 0.
Using the semi-implicit spectral method, we numerically integrate Eq. (4) to determine

the self-assembled structures starting from random initial states (Fig. 3) for different C0’s.
Note that many qualitative features in these textures are reminiscent of those observed in
experiments on chemical vapor deposition (Pohl et al., 1999; Plass et al., 2001); in
particular, the order of appearance of various planforms with increasing C0 is identical to
that in the well-studied Pb/Cu surface alloy experiments (Plass et al., 2001). When
C0 2 ½0:29; 0:42�, only states with hexagonal droplets are observed; as C0 is increased,
coexisting structures of hexagons and stripes and then only striped labyrinthine patterns
are seen. Beyond C0 ¼ 0:5 droplets of the opposite phase (B-rich as opposed to A-rich)
begin to appear and their density increases with C0. This symmetry in the type of droplets
is observed in experiments as well (Plass et al., 2001).
Numerical integrations of the Suo–Lu model confirms the theoretically derived

expression for the growth rate s as a function of C0, Q, and O. We also verified that
self-assembly can occur only in system with positive r.

5. Nonlinear stability analysis

Linear stability analysis can provide instabilities only of the homogeneous solution.
Nonlinear stability analysis is needed theoretically to determine the types of structures
(e.g., hexagonal, square, striped or labyrinthine) that are expected beyond the transition,
and to calculate their stability maps. As shown below, our results can be used to explain
many features of textures seen in the Suo–Lu model.
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Fig. 3. The patterns at t ¼ 1 132 234 for systems with nine different fractional coverages (Q ¼ 1:0, and O ¼ 2:2).
The order in which these patterns appear is the same as that for several experiments on vapor deposition.

S. Hu et al. / J. Mech. Phys. Solids 55 (2007) 1357–1384 1363
The dispersion relation Eq. (11) has a marginal mode at q ¼ 0 reflecting the conservation
of the total number of particles on the monolayer (Matthews and Cox, 2000). As C0 is
increased a second mode crosses the s ¼ 0 axis (at q ¼ Q=2) giving birth to patterned
structures. Close to the onset all other modes have negative growth rates. The two
marginal modes will dominate the dynamics of the system (Haken, 1987) following the
adiabatic relaxation of decaying modes. It is possible to derive reduced amplitude
equations for the dynamics of the marginal modes. They can be analyzed to explain many
characteristics of the spatio-temporal dynamics.

5.1. Multiple scales analysis

According to Eq. (11), the uniform state of a system close to the onset of patterns is
unstable only to perturbations with wavenumbers near qc ¼ Q=2. Consequently, the field
Cðx; yÞ can be expanded as

Cðx; tÞ ¼ C0 þ
X

n

½Anðx; tÞe
iq�x þ c.c.� þ � � � , (14)

where jqj ¼ qc and C0 ¼ hCðx; yÞi. Note that the expansion only contains modes near q,
and hence the envelope functions Aiðx; tÞ consist only of modes with small wave-vectors; in
other words, the envelope functions change very slowly in space and time (Newell and
Whitehead, 1969; Segel, 1969). The standard technique to derive the spatio-temporal
dynamics of the envelope functions is to write

Cðx; tÞ ¼ C0 þ �C1 þ �
2C2 þ �

3C3 þ � � � , (15)



ARTICLE IN PRESS
S. Hu et al. / J. Mech. Phys. Solids 55 (2007) 1357–13841364
where the (small) parameter � is related to the distance r to the instability via the expansion

r ¼ �r1 þ �
2r2 þ �

3r3 þ � � � . (16)

Since variations in Aiðx; tÞ occur on a scale much larger than the basic scale ð2p=qcÞ, a set of
slow variables can be introduced and the spatial and temporal derivatives are expressed as

qt ! �qt1 þ �
2qt2 þ � � � , ð17Þ

r ! r0 þ �r1, ð18Þ

where r0 ¼ ðx̂qx þ ŷqyÞ operates on the ‘‘fast’’ variables eiq�x whereas r1 ¼ ðx̂qX þ ŷqY Þ

acts on the slowly varying envelope functions. Note that we have used the fact that aspects
of a pattern at different scales can evolve with distinct time scales. The expansion given for
qt is used to separate them (Newell and Whitehead, 1969; Segel, 1969).
Defining x̂ to be normal to the striped array and hence setting no fast variation in the ŷ

direction (Cross and Hohenberg, 1993, p. 1080), the linear terms in Eq. (4) can be expanded as

LC ¼ r2 �2r2C þ
Q

p
I0

� �
¼ r2 �2r2C þ

Q

p
Ia

� �
! ðr2

0 þ 2�r0r1 þ �
2r2

1Þ½�2ðr
2
0 þ 2�r0r1 þ �

2r2
1ÞC

þ
Q

p
ðr0 þ �r1Þr�1 � ðr0 þ �r1ÞC�. ð19Þ

A function of x and y, r�1 depends only on the fast variables. As the derivative of a
convolution is equal to the convolution of either function with the derivative of the other
(Thibos, 2003), we have

r0r�1 � ðr0 þ �r1ÞC ¼ r�1 � ðr2
0 þ �r0r1ÞC. (20)

Then

LC ¼ r2
0H0C þ �½r2

0H1C þ 2r0r1H0C�

þ �2ð�2r2
0r

2
1C þ 2r0r1H1C þr

2
1H0CÞ

þ �3ð�4r0r1r
2
1C þ r2

1H1CÞ þ � � � , ð21Þ

where

H0 ¼ �2r
2
0 þ

Q

p
r�1 � r2

0, ð22Þ

H1 ¼ �4r0r1 þ
Q

p
r�1 � r0r1. ð23Þ

The Taylor expansion of the nonlinear term is

r2PðCÞ ¼ ðr2
0 þ 2�r0r1 þ �

2r2
1ÞPðCÞ

¼ �ðr2
0h1C1Þ þ �

2½r2
0ðh1C2 þ h2C

2
1Þ þ 2r0r1h1C1�

þ �3½r2
0ðh1C3 þ 2h2C1C2 þ h3C3

1Þ þ 2r0r1ðh1C2 þ h2C
2
1Þ þ r

2
1h1C1�

þ �4½r2
0ðh1C4 þ h2ðC

2
2 þ 2C1C3Þ þ 3h3C

2
1C2 þ h4C

4
1Þ

þ 2r0r1ðh1C3 þ 2h2C1C2 þ h3C
3
1Þ þ r

2
1ðh1C2 þ h2C

2
1Þ� þ � � � , ð24Þ
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where

h1 ¼
1

C0ð1� C0Þ
� 2O, ð25Þ

h2 ¼ �
1

2C2
0

þ
1

2ð1� C0Þ
2
, ð26Þ

h3 ¼
1

3C3
0

þ
1

3ð1� C0Þ
3
, ð27Þ

h4 ¼ �
1

4C4
0

þ
1

4ð1� C0Þ
4
. ð28Þ

By substituting these expressions in Eq. (4) and separating different orders in �, one obtains
the spatio-temporal dynamics for striped, square and hexagonal arrays (Appendix B).

5.2. Newell– Whitehead– Segel equations

The multiple scales analysis described above provides equations to describe spatio-
temporal dynamics of the envelope functions for striped, square, and hexagonal structures.
Below, we denote the (complex) envelope functions for critical q-vectors by Aðx; tÞ. Since
the q ¼ 0 mode is a homogeneous state and hence translationally invariant, the phase of
the corresponding envelope function decouples from the dynamics of remaining
components (Matthews and Cox, 2000). Consequently, only the real component Bðx; tÞ
of this envelope function needs to be considered. The evolution equations for the envelop
functions are often referred to as the Landau–Ginzburg equations or the New-
ell–Whitehead–Segel equations (Newell and Whitehead, 1969; Segel, 1969).

Striped patterns: Require an expansion that contains one critical q-vector and the q ¼ 0
mode. The spatio-temporal dynamics of the corresponding envelope function Aðx; tÞ and
Bðx; tÞ are

qtA ¼ rAþ qx þ
1

2iqc

qy2

� �2

A� gjAj2A� h2BA, ð29Þ

qtB ¼ r
2Bþ

h2

q2
c

r2jAj2, ð30Þ

where g ¼ �2h2
2=Q2 þ ð3h3=2Þ.

Square patterns: Require an expansion with two orthogonal critical q-vectors and the
q ¼ 0 mode. The spatio-temporal dynamics of the two complex envelope functions A1ðx; tÞ
and A2ðx; tÞ and that of the real envelope function Bðx; tÞ are

qtAi ¼ rAi þ ðni � rÞ
2Ai � gjAij

2Ai � gsjA3�ij
2Ai � h2BAi; i; j ¼ 1; 2, ð31Þ

qtB ¼ r
2Bþ

h2

q2
c

r2ðjA1j
2 þ jA2j

2Þ, ð32Þ

where g is the same as above, gs ¼ 3h3 and ni is the unit vector along the direction of qi (see
Appendix B).

Hexagonal patterns: Require an expansion in three critical q-vectors oriented at 120�

with each other. The spatio-temporal dynamics of the envelope functions A1ðx; tÞ, A2ðx; tÞ,
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A3ðx; tÞ and Bðx; tÞ are given by

qtAi ¼ rAi þ ðni � rÞ
2Ai � h2A

�
iþ1A

�
i�1 �

2ih2

qc

½A�iþ1ðni�1 � rÞA
�
i�1 þ A�i�1ðniþ1 � rÞA

�
iþ1�

� gjAij
2Ai � ghðjAiþ1j

2 þ jAi�1j
2ÞAi � h2BAi ði ¼ 1; 2; 3Þ, ð33Þ

qtB ¼ r
2Bþ

h2

q2
c

r2ðjA1j
2 þ jA2j

2 þ jA3j
2Þ, ð34Þ

where g is the same as before, gh ¼ 3h3 � ð2h2
2=ð2�

ffiffiffi
3
p
ÞQ2Þ and ni; niþ1; ni�1 are unit

vectors along the directions of wave-vector qi; qiþ1 and qi�1, respectively (Appendix B). In
these expressions i � 1 and i þ 1 are used as a shorthand notation 1þ iðmod3Þ and
1þ ði þ 1Þðmod 3Þ, respectively.
We can use the Newell–Whitehead–Segel equations to determine, theoretically, the stability

domains for striped, square and hexagonal arrays, and to determine all allowed structures at a
given fractional coverage C0 of the monolayer. Since several prefactors of the Suo–Lu
equations depend on C0 (see Eqs. (12) and (26)–(28)), the application of multiple scales
analysis will be more complex than that for typical cases. For parameters used by Suo and Lu
(2000, 2001) the coefficient g is negative when the uniform state destabilizes. This corresponds
to a subcritical bifurcation. Consequently, a quintic term must be present to quench the
growth of the envelope functions. Rather than pursuing a full description of this system,
which requires an expansion to fifth order in � (a very laborious process), we illustrate
multiple scales analysis of the Suo–Lu model with Q ¼ 1:6 and O ¼ 1:6. Then, g is positive in
the entire range of concentrations beyond the onset of the instability, and hence r40. The
dependence of the coefficients of the Newell–Whitehead–Segel equations for the Suo–Lu
model as a function of C0 are shown in Fig. 4.
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Fig. 4. The values of the coefficients of the Suo–Lu equations at mean concentrations in the range

C0 2 ½0:33; 0:67�. The other (fixed) control parameters are Q ¼ 1:6, and O ¼ 1:6. The relative ordering of these
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It should be noted that for a system with O ¼ 1:6, the function of free energy gðCÞ (Suo
and Lu, 2000, p. 339) is convex and hence, by itself, does not create conditions for phase
separation. However, phase separation is not the only determining factor for pattern
formation. Rather, the ordering of the monolayer is determined by minimizing the sum of
free energy, phase boundary energy, and elastic energy (Suo and Lu, 2000). In the system
we considered, r is positive when C0 2 ½0:34; 0:66� and negative otherwise. Although its
magnitude is much smaller than those of other coefficients, only a system with a positive r

can break the symmetry of the uniform state to create self-assembled structures. It should
be noted though, that specially prepared initial states with finite amplitude can be stable to
small perturbations (see below).

The coefficient h2, which couples the envelope functions Bðx; tÞ and Aiðx; tÞ, is negative
when C0o0:5 and positive when C040:5. As discussed below, it is related to the stability
of various planforms and the appearance of low-C0 and high-C0 droplets. Square patterns
are unstable for all fractional coverages of the monolayer because gs4g. gh is less than g

close to the onset of instability, but larger than g when C0 is close to 0:5. This relationship
determines the stability of striped arrays against the oblique-roll instability (see the next
section).
6. Instabilities of striped patterns

Instabilities of striped arrays, such as the Eckhaus and zigzag instabilities, have been
extensively studied over the past several decades (e.g., Cross and Hohenberg, 1993).
More recent studies have investigated them in conservative systems, i.e., in the presence
of a marginal mode at q ¼ 0 (Matthews and Cox, 2000; Golovin et al., 1994, 1997).
For models studied earlier, it was found that the inclusion of the marginal mode changes
the stability diagram significantly. We analyze the Newell–Whitehead–Segel equations
for the Suo–Lu model using the magnitude and phase of the envelope functions (Hoyle,
1998). We calculate, theoretically, instabilities of striped, square and hexagonal patterns,
and compare stability boundaries with those on numerical integrations of the Suo–Lu
model.
6.1. Perturbation analysis

The steady state striped solution of Eqs. (29)–(30) is

A ¼ R0e
ikx; B ¼ 0, (35)

where k ¼ q� qc, and R2
0 ¼ ðr� k2

Þ=g. Perturbations of amplitude and phase are written
as A ¼ R0ð1þ RÞeiðkxþfÞ and B ¼ b, where jRj51, jfj51, and jbj51 (Hoyle, 1998). They
evolve according to

Rt ¼ �2gR2
0R� 2kfx þ Rxx þ fxyy þ kRyy � ð1=4ÞRyyyy � h2b, ð36Þ

bt ¼ bxx þ byy þ
2R2

0h2

q2
c

ðRxx þ RyyÞ, ð37Þ

ft ¼ 2kRx þ fxx � Rxyy þ kfyy � ð1=4Þfyyyy. ð38Þ
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We write R ¼ R̂estþimxþily, b ¼ b̂estþimxþily with jmj51; jlj51, and find growth rate
eigenvalues

s1 ¼ �gR2
0 �m2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgR2

0Þ
2
þ

2R2
0h2

2m
2

q2
c

s
, ð39Þ

s2 ¼ �gR2
0 �m2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgR2

0Þ
2
þ

2R2
0h2

2m
2

q2
c

s
, ð40Þ

for perturbations in the x direction (l ¼ 0). Corresponding equations for perturbations in
the y-direction (m ¼ 0) can be derived.
The first eigenvalue is always negative and hence any perturbation will decay in time.

However, the second may be positive. If gR2
0 ¼ Oð1Þ (which is always true for the Suo–Lu

system) the second growth rate can be approximated as

s2 � �m2 1�
h2
2

gq2
c

� �
. (41)

We find that h2
2=gq2

co1 when the mean concentration C0 2 ½0:38; 0:62�, which contains
parameters for the stripe-hexagon transition (see below). Therefore, the coupling of the
large-scale mode will not be relevant for the transition. In other words, the stability
boundaries of the Suo–Lu system will not be altered significantly by inclusion of the q ¼ 0
mode. All conclusions stated above have been verified using numerical integrations of the
model.
Next we consider the instability caused by the phase perturbation. Taking

f ¼ f̂estþimxþily, with jmj51; jlj51 and assuming that the large-scale mode is stable, the
growth rate for the phase f̂ (Hoyle, 1998) is given by

s3 ¼ �m2 1�
2k2

R2
0

 !
� kl2 �

2km2l2

R2
0

�
l4

4
þOðm6Þ. (42)

For a perturbation in the x direction (l ¼ 0), the well-known Eckhaus instability results
when ro3k2. For a perturbation in the y direction (m ¼ 0), s3 is positive when ko0 and jlj
is small enough (l2o� 4k). This is the zigzag instability. The presence of both instabilities
have been confirmed by numerical integrations of the Suo–Lu model (see below).
Cross-roll and oblique-roll instabilities can also be studied (Hoyle, 1998). They are

caused by perturbation of a roll growing at an angle to the original stripes, i.e., they are
instabilities of amplitude. A straightforward way to investigate these effects is to adapt
amplitude equations for square and hexagonal patterns, respectively, in performing the
perturbation analysis. We use a set of coupled equations:

qtA1 ¼ rA1 þ qx1
þ

1

2iqc

q
y2
1

� �2

A1 � gjA1j
2A1 � gcjA2j

2A1, ð43Þ

qtA2 ¼ rA2 þ qx2
þ

1

2iqc

q
y2
2

� �2

A2 � gjA2j
2A2 � gcjA1j

2A2, ð44Þ

where gc ¼ gs (see Eq. (31)) if the angle between the two sets of stripes is p=2, and gc ¼ gh

(defined in Eq. (33)) if the angle is p=3. Initially, A1 ¼ R0e
ikx1 with R2

0 ¼ ðr� k2
Þ=g. For a
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small perturbation A2 ¼ a2e
ipx2 with ja2j51, one finds

qta2 ¼ r� p2 �
gc

g
ðr� k2

Þ

� �
a2. (45)

The fastest growing mode has p ¼ 0, and it is unstable when rð1� ðgc=gÞÞ4� ðgc=gÞk2.
For the perturbation from a perpendicular direction, gc is always larger than g (see Fig. 4),
and stripes are unstable for k24rð1� ðg=gcÞÞ. The stability boundaries of stripes to these
perturbations is found to be wider than that of the Eckhaus and zigzag instabilities. The
oblique-roll instability is different since, in the range of concentration we consider, gc can
be either larger or smaller than g (see Fig. 4). If gcog (i.e., C0o0:37), one finds r�

ðgc=gÞðr� k2
Þ is always positive, and hence stripes are always unstable to the perturbation

of an angle of p=3. In the range of concentration where gc4g, the condition for instability
is still rð1� ðgc=gÞÞ4� ðgc=gÞk2. Its boundary is narrower than that of the Eckhaus
instability if and only if gc=go2

3
.

In summary, striped patterns are stable in a region bounded by three curves
corresponding to Eckhaus (k4

ffiffiffiffiffiffiffi
r=3

p
), zigzag (ko0), and oblique-roll (k4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� g=gc

p
Þ)

instabilities. It is also bounded above by the peak value OþQ2=4� 2 of r. The schematic
diagram for the stability region of the striped patterns for the Suo–Lu model is shown in
Fig. 5.
6.2. Numerical integration of stability domains

Next, we obtain stability maps for striped arrays using numerical integrations of Eq. (4).
In particular, we search for the range of wave-vectors for which they are stable to small
perturbations. For each wave-vector q, we determine stability or instability by determining
whether the initial state evolves to a striped array of wave-vector q (stable) or to a different
structure (unstable).

Most of our studies are conducted for critical wavenumber qc ¼ 0:8. Due to symmetry of
textures about C0 ¼ 0:5, only the range C0 2 ½0:34; 0:50� is analyzed. The zigzag instability
is seen when qoqc. Fig. 6(a) shows some snapshots of the evolution with C0 ¼ 0:5 and
q ¼ 0:7. The modulations normal to the initial striped array become noticeable at t	446.
0

zigzag

oblique-roll

Eckhausr

k

Fig. 5. Stability boundaries of striped patterns for the Suo–Lu model. The hatched region, where striped arrays

are stable to small perturbations, is bounded on the left by the zigzag instability and on the right by the Eckhaus

and oblique-roll instabilities. The horizontal line on top is the peak value of r ¼ OþQ2=4� 2 (see Eq. (12)).
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Fig. 6. (a) Snapshots of the spatiotemporal dynamics from an initially striped state (C0 ¼ 0:5;R ¼ 0:01; q ¼ 0:7)
under Eq. (4). The parameters used for the integration are Q ¼ 1:6;O ¼ 1:6. The zigzag instability is clearly seen

after t	446. (b) The variation of the mean wavenumber, calculated using disorder function methods, during the

evolution.
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The final state is a regular wavy pattern with wavenumber close to qc. We can use the
recently developed disorder function analysis (Gunaratne et al., 1999) to find how the mean
wavenumber changes during evolution of the texture. It is shown in Fig. 6(b). Similar
behavior is observed for all q within ½0:65; 0:75�. Initial states with qo0:65 lose their
symmetry immediately and evolve to disordered labyrinthine patterns, which are similar to
asymptotic structures generated from random initial states.
Striped initial states with small amplitude destabilize to hexagonal patterns when

C0o0:41. For C0 2 ð0:41; 0:47Þ both striped and hexagonal arrays can be stable to small
perturbations; i.e., there is bistability. We also note that the asymptotic wavenumbers in
systems with C0 � 0:41 can fall below the zigzag boundary qc ¼ 0:8. As an example, if a
system at C0 ¼ 0:41 is initiated with a striped state of q ¼ 0:75, it appears to evolve to a
final striped state with the same wave-vector. At this point, we are unable to explain this
phenomenon. Finally, the boundary of the stability domain for C0o0:47 is consistent with
that for the oblique roll instability. Fig. 7 compares the theoretical and numerical stability
maps.
7. Instabilities of square patterns

A perfect square array of slightly off-critical wavenumber q ¼ qc þ k is given by
A1 ¼ R0e

ikx;A2 ¼ R0e
iky, and B ¼ 0. According to the Newell–Whitehead–Segel equations

(31)–(32)

R2
0 ¼

r� k2

gþ gs

. (46)

Once again, we consider perturbations in the forms A1 ¼ R0ð1þ a1Þe
ikxþf;

A2 ¼ R0ð1þ a2Þe
ikyþc;B ¼ b, where ja1j; ja2j; jfj; jcj; jbj51. They are found to evolve
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Fig. 7. Numerically computed stability boundaries for striped solutions of Eq. (4), with parameters

Q ¼ 1:6;O ¼ 1:6. Filled squares show the minimum and maximum wavenumbers of striped arrays that are

stable at a given value of C0. These results should be compared with theoretical calculations, shown in Fig. 5.
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according to

qta1 ¼ �2gR2
0a1 � 2gsR

2
0a2 � q2xa1 � 2kqxf� h2b, ð47Þ

qta2 ¼ �2gR2
0a2 � 2gsR

2
0a1 � q2ya2 � 2kqyc� h2b, ð48Þ

qtb ¼ ðq
2
x þ q2yÞbþ

2R2
0h2

q2
c

ððq2x þ q2yÞða1 þ a2ÞÞ, ð49Þ

qtf ¼ 2kqxa1 þ q2xf, ð50Þ

qtc ¼ 2kqya2 þ q2yc. ð51Þ

Consider amplitude perturbations with fixed phases f and c. Let a1 ¼ â1e
stþimxþily;

a2 ¼ â2e
stþimxþily; b ¼ b̂estþimxþily, with jmj51; jlj51. The growth rates of eigenvalues for

the amplitude modes (â1+â2) and (â1-â2) are

s1 ¼ �2ðgþ gsÞR
2
0 þOðm2; l2Þ, ð52Þ

s2 ¼ �2ðg� gsÞR
2
0 þOðm2; l2Þ, ð53Þ

respectively (Hoyle, 1998). Since gs4g for all C0, the second mode is always unstable to
amplitude perturbation. This conclusion has been confirmed by numerical integration of
the Suo–Lu model. Any initially square array destabilizes to either a hexagonal or a striped
pattern depending on the initial conditions and C0.
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8. Instabilities of hexagonal patterns

Many studies have been performed to investigate the formation and destabilization of
hexagonal patterns (Palm, 1960; Busse, 1967). We first follow the analysis presented by
Hoyle (1998) to discuss characteristics of hexagonal arrays in the absence of a conserved
quantity, and subsequently consider effects of the q ¼ 0 mode.

8.1. Hexagonal states

Hexagonal patterns observed in both A-rich and B-rich substrates can be analyzed using
the Newell–Whitehead–Segel equations (33). The envelope functions for a steady
hexagonal pattern at a slightly off-critical wavenumber q ¼ qc þ jkj can be written as

Ai ¼ R0e
iki �x with k1 ¼ k x

_
; k2 ¼ k �

1

2
x
_
þ

ffiffiffi
3
p

2
y
_

� �
; k3 ¼ k �

1

2
x
_
�

ffiffiffi
3
p

2
y
_

� �
,

(54)

Small perturbations in amplitude ð1þ aiÞ and phase fi, evolve according to

qta1 ¼ ðr� k2
Þa1 � h2R0ða2 þ a3Þ þ

2h2R0

qc

kða2 þ a3Þ þ qx2
f2 þ qx3

f3

	 
� �
cosF

þ
2h2R0

qc

qx2
a2 þ qx3

a3

	 

sinF� 3gR2

0a1 � 2ghR2
0ða1 þ a2 þ a3Þ

� 2kqx1
f1 þ q2x1a1, ð55Þ

qtf1 ¼ h2R0ða2 þ a3Þ þ
2h2R0

qc

kða2 þ a3Þ þ qx2
f2 þ qx3

f3

	 
� �
sinF

þ
2h2R0

qc

ðqx2
a2 þ qx3

a3Þ cosFþ 2kqx1
a1 þ q2x1f1, ð56Þ

and four additional equations obtained by permuting subscripts. Here F ¼
P

i fi. In the
absence of spatial modulation the total phase evolves according to

Ft ¼ 2h2R0ða1 þ a2 þ a3Þ sinF. (57)

Therefore, at the stable steady state, F takes the values p or 0 according to the sign of h2

(h2o0! F ¼ 0; h240! F ¼ p). In systems with F ¼ 0, the center of each hexagonal cell
has the highest magnitude, while in systems with F ¼ p, it has the lowest magnitude. In
Rayleigh–Bénard convection, these are known as ‘‘l-hexagons’’ and ‘‘g-hexagons’’,
respectively (Palm, 1960). Thus, the description of spatio-temporal dynamics via the
Newell–Whitehead–Segel equations is consistent with results of numerical simulations
(compare Figs. 3 and 4).

8.2. Transition from the homogeneous solution to hexagons

The presence of a set of C0’s where the Suo–Lu system supports both hexagons and the
homogeneous solution can be demonstrated using the Newell–Whitehead–Segel Eq. (33)
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with no q ¼ 0 mode. It can be inferred from (55) that (Hoyle, 1998)

qtða1 þ a2 þ a3Þ ¼ �vða1 þ a2 þ a3Þ, ð58Þ

qtðai � ajÞ ¼ �2uðai � ajÞ; iaj, ð59Þ

where

u ¼ R2
0ðg� ghÞ þ jh2j 1þ

2k

qc

� �
R0, ð60Þ

v ¼ 2R2
0ðgþ 2ghÞ � jh2j 1þ

2k

qc

� �
R0. ð61Þ

Notice that the hexagonal state is unstable when vo0 (since a1 þ a2 þ a3 grows) or when
uo0 (since ai � aj grows). From Eq. (54) it is obvious that there are always two branches
of steady hexagonal solutions,

Rþ0 ¼
1

2ðgþ 2ghÞ
jh2j 1þ

2k

qc

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
2 1þ

2k

qc

� �2

þ 4ðgþ 2ghÞðr� k2
Þ

s24 35, (62)

and

R�0 ¼
1

2ðgþ 2ghÞ
jh2j 1þ

2k

qc

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
2 1þ

2k

qc

� �2

þ 4ðgþ 2ghÞðr� k2
Þ

s24 35. (63)

Growth rates u and v of these two branches for C0 2 ½0:34; 0:66� are shown in Fig. 8. R�0 is
unstable in the entire range because vo0. On the other hand, Rþ0 is unstable when
C0 2 ½0:47; 0:53�. Inclusion of spatial modulations alters the stability boundaries slightly.

The transition from the homogeneous solution to hexagonal states is a subcritical
bifurcation, see Fig. 10. Hexagons with k ¼ 0 exist if h2

2 þ 4ðgþ 2ghÞr40. We find that
gþ 2gh40 if and only if C040:33. Hence the condition for hexagons to exist is trivially
satisfied for C040:3. In general, it is found that this condition holds when C040:30, and
hence hexagonal arrays given by Eqs. (62) and (63) exist for C040:30. Consequently, the
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Fig. 8. The growth rates u and v when spatial modulations are ignored: branches with (a) R0 ¼ Rþ0 and (b)

R0 ¼ R�0 . The hexagonal state is unstable if either u or v is negative.



ARTICLE IN PRESS
S. Hu et al. / J. Mech. Phys. Solids 55 (2007) 1357–13841374
bistable region where both the uniform solution and a hexagonal array can be stable is
C0 2 ð0:30; 0:34Þ.
This assertion is confirmed by numerical integrations of the Suo–Lu equation. We find

that initial hexagon states with sufficiently small amplitude (e.g., 0:01) gradually degrades
to the homogeneous state. In contrast, for large initial amplitudes (e.g., Ri ¼ 0:1) the
system evolves to a steady hexagonal array. In addition, numerical integration validates
theoretical estimates for the domain of bistability.

8.3. Transition from hexagonal to striped arrays

Next we analyze the stripe-hexagon transition. Numerically, we find by using the
Suo–Lu model with Q ¼ 1:6;O ¼ 1:6 and C0 2 ½0:46; 0:54�, that an initially prepared
hexagonal state of any wavenumber destabilizes to stripes; systems with C0 outside of this
range can support suitably prepared hexagonal and striped states whose wavenumbers are
sufficiently close to qc.
We can use the Newell–Whitehead–Segel equations to analyze the transition

theoretically. A stripe-like perturbation of the hexagonal state can be expressed as
A1 ¼ R0ð1þ a1Þe

ik1�xþf1 ;A2 ¼ a2e
ik2�xþf2 ;A3 ¼ a3e

ik3�xþf3 , where jkj ¼ q� qc and R2
0 ¼

ðr� k2
Þ=g; they evolve according to

qta1 ¼ �2gR2
0a1, ð64Þ

qta2 ¼ R2
0ðg� ghÞa2 þ jh2jR0a3, ð65Þ

qta3 ¼ R2
0ðg� ghÞa3 þ jh2jR0a2, ð66Þ

The growth rates are �2gR2
0;R

2
0ðg� ghÞ 
 jh2jR0. At the critical wavenumber (k ¼ 0), the

largest growth rate is positive for C0o0:44 (and symmetrically at C040:56) (see Fig. 9).
Consequently, the range of concentrations for stable stripes is narrower than that due to
the oblique-roll instability (which is C0 2 ½0:37; 0:63�). When spatial modulations are
allowed and ka0, it is seen that the stability domain increases and is closer to that
evaluated from numerical integration (i.e., C0 2 ½0:41; 0:59�, see Fig. 10). Stability domains
for striped and hexagonal patterns are summarized in Fig. 10.

8.4. Effect of the q ¼ 0 mode on the hexagonal state

Coupling of the large scale mode to hexagonal patterns can be analyzed in a manner
similar to that for striped arrays. If phase variables are kept constant, hexagonal
amplitudes multiplied by ð1þ aiÞ, and a large scale mode of magnitude b is introduced, the
spatio-temporal dynamics reduces to

qtða1 þ a2 þ a3Þ ¼ �vða1 þ a2 þ a3Þ þ
X3
i¼1

q2xi
ai � 3h2b,

qtb ¼ r
2bþ

2R2
0h2

q2
c

r2
X

i

ai; i ¼ 1; 2; 3. ð67Þ

Because, F ¼
P

fi takes a fixed value in the absence of spatial modulations, the fastest
growing modes are those along the directions of the hexagonal modes (Hoyle, 1998), and
the perturbations are ai ¼ âie

ilxi , and b ¼ b̂eil ~x where ~x can be an arbitrary direction. It is
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Fig. 10. Bifurcation diagram for the striped and hexagonal patterns in the Suo–Lu model. Stable and unstable

solution branches are indicated by solid and dotted lines, respectively.
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found that the growth rates s satisfies

ðvþ l2 þ sÞðl2 þ sÞ �
6h2

2R
2
0l

2

q2
c

¼ 0, (68)
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with v defined in Eq. (61). Since the most dangerous disturbance occurs in the limit l ! 0,
the growth rate of the large scale mode can be approximated as

s ¼ �l2 1�
6h2

2R
2
0

q2
cv

� �
, (69)

which is positive if 1� ð6h2
2R

2
0=q2

cvÞo0. The values of 1� ð6h2
2R2

0=q2
cvÞ for C0 2 ½0:34; 0:50�

are plotted in Fig. 11. According to this analysis, perfect hexagonal patterns will lose
stability when C0 2 ½0:34; 0:38�. The instability can develop either through a supercritical
or a saddle-node bifurcation, with amplitudes suppressed in some regions and enhanced in
others (Matthews and Cox, 2000). In one dimensional systems it was found that the
instability can only be observed in sufficiently large domains and with sufficiently small
driving parameters (Matthews and Cox, 2000). For the two dimensional Suo–Lu model
system, we have not found such modulated structures, even for very large systems. It is
possible that the large amplitude of the hexagonal state (due to the subcritical transition)
plays a role in this disagreement. Further investigation is needed to address this issue.
9. Concluding discussions

We conducted a theoretical analysis of nano-scale self-assembly by using techniques
from pattern formation (Cross and Hohenberg, 1993) to study a paradigmatic model (1)
which describes spatio-temporal dynamics of the (coarse-grained) concentration field
Cðx; yÞ of epilayer atoms on a substrate. The model system which incorporates phase
separation, coarsening, and refining exhibits many features observed in experiments on
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vapor deposition (Pohl et al., 1999; Plass et al., 2001). The linear and nonlinear stability
analyses reported here were conducted on Eq. (1) with the parameters Q and O, each fixed
at 1.6, and using the mean coverage C0 ¼ hCðx; yÞi as the control parameter.

There is a symmetry in self-assembly between the deposit-rich (C041
2) and the deposit-

poor (C0o1
2
) phases of the monolayer; consequently, we limit our studies to the range

C0 2 ð0; 12Þ. Due to conservation of the total number of particles on the monolayer, Eq. (1)
has a marginal mode at zero wave-vector. The homogeneous solution is the only stable
state for low concentrations of the deposition. As C0 is increased, it is destabilized by
Fourier modes with non-zero wave-vectors. Nonlinear terms in Eq. (1) determine the type
of structures that can result beyond this stage.

The rest of our analysis focuses on periodic textures that cover the surface, namely,
striped, square, and hexagonal arrays. Their existence and properties are calculated using
nonlinear stability analysis. The analysis requires a real envelope function associated with
the zero wave-vector mode and one, two or three complex envelope functions for striped,
square, and hexagonal arrays, respectively. These calculations were done using the spatio-
temporal dynamics for the magnitude and phase of these envelope functions.

The homogeneous solution was shown to destabilize at C0 � 0:34 via a subcritical (or
backward) bifurcation to a hexagonal array. Suitably prepared steady homogeneous
solutions and hexagonal arrays can be found within the bistable region C0 2 ½0:30; 0:34�.
As C0 is increased further, the hexagonal state destabilizes to a striped array at C0 ¼ 0:47
via a second subcritical bifurcation. Depending on the initial structure, both hexagonal
and striped arrays can stabilize for C0 2 ð0:41; 0:47Þ. These assertions were validated in
numerical integrations of Eq. (1). Within C0 2 ð0:41; 0:47Þ it is possible to form
(apparently) steady complex structures that have locally hexagonal and locally striped
domains. Similarly, except for specially prepared initial systems, patterns seen for C040:47
are labyrinthine, consisting of multiple patches of locally striped domains.

We calculated the stability map for striped arrays by considering perturbations that give
Eckhaus, zigzag, and cross-roll instabilities. Numerical analysis validated these theoretical
assertions, except in a very small set of parameters where the predicted zigzag instability
was not observed. It is possible that the time scale for the instability to set in is longer than
the time interval for which Eq. (1) was integrated. We also presented analogous
calculations for the square and hexagonal arrays. One point worth noting is that, for the
control parameters Q and O that were used, square arrays are unstable in the entire range
of coverages, destabilizing either to striped or hexagonal arrays.

Our analytical studies on the formation and stability of nanostructures can help address
many issues that may be important in self-assembly. As an example, identifying systems
that generate self-assembled square arrays is of interest in developing high-density
magnetic storage. Can such states form in the Suo–Lu system for a suitable choice of
system parameters? If not, can the system be modified in order for it to form self-assembled
square arrays? Analyses presented in the paper, coupled with the thermodynamic models
such as that introduced by Suo and Lu, can provide a theoretical framework for addressing
such questions, and in general, for studying guided self-assembly of nanostructures.

The availability of a theoretical framework can also be used in an inverse approach to
extract material properties of self-assembled nanostructures that may otherwise be hard to
estimate. This suggestion is inspired by recently developed approaches to measure elastic
moduli experimentally through wrinkling of thin films (e.g. Huang, 2005 and references
therein). Here, a soft polymer substrate is deformed in tension along one direction. The
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thin film is then deposited on the deformed substrate. Upon release of the substrate
constraint, the film experiences compressive strains and is seen to form a wavy pattern. If
no delamination takes place, the material is isotropic, and it remains linear and elastic, it
can be shown that the buckling wavelength is related to the film thickness, as well as the
elastic moduli and Poisson ratio of the film and substrate (Huang, 2005). The wavelength
of a 30 nm thick metallic film on a polymer substrate (	1000 : 1 ratio in elastic moduli) is
	1mm and is thus easily measured using optical microscopy. Consequently, it is possible to
deduce (say) the elastic modulus of the film. In an exact analogy with the wrinkling based
approach, one may take advantage of the numerous self-assembled patterns to find elusive
properties such as surface stress or energy cost of concentration gradients (h0 in Eq. (1))
through the use of theoretical analysis on models of monolayer growth.
The work reported in this paper was conducted as a part of the doctoral research of

Hu (2006). The authors would like to acknowledge the Texas Learning and Computation
Center for usage of computers for the project. They would also like to thank Professor
Wei Lu for encouraging comments. This research was partially supported by the
Welch Foundation through grant E-0608 (SH and DJK), the Office of Naval Research
Young Investigator Award N000140510662 (PS), the National Science Foundation
through grant DMS-0607345 (GHG), and the Texas Center for Superconductivity (GN,
FH and GHG).

Appendix A. Fourier transform of I0 in the Suo–Lu equation

The surface strain in Eq. (4) has the form

I0 ¼

ZZ ðx� x1Þ
qC

qx1

� �
þ ðy� x2Þ

qC

qx2

� �
½ðx� x1Þ

2
þ ðy� x2Þ

2
�3=2

dx1 dx2. (70)

Its form in Fourier space can be obtained by transforming the boundary conditions and
solving the elasticity problem in reciprocal space (Lu and Suo, 2002).
Writing I0 as Ia þ Ib, with

Ia ¼

ZZ ðx� x1Þ
qC

qx1
½ðx� x1Þ

2
þ ðy� x2Þ

2
�3=2

dx1 dx2, (71)

and

Ib ¼

ZZ ðy� x2Þ
qC

qx2
½ðx� x1Þ

2
þ ðy� x2Þ

2
�3=2

dx1 dx2, (72)

and denoting ~r ¼ ½ðx� x1Þ
2
þ ðy� x2Þ

2
�1=2, we have

q ~r�1

qx1
¼ � ~r�2

q ~r
qx1

¼
ðx� x1Þ
~r3

. ð73Þ



ARTICLE IN PRESS
S. Hu et al. / J. Mech. Phys. Solids 55 (2007) 1357–1384 1379
Hence

Ia ¼

ZZ
q ~r�1

qx1

qC

qx1
dx1 dx2. (74)

Eq. (74) is a convolution of r�1 ¼ ðx2 þ y2Þ
�1=2 and Cðx; yÞ, i.e.,

Ia ¼ �
qr�1

qx
�
qC

qx
. (75)

Similarly,

Ib ¼ �
qr�1

qy
�
qC

qy
. (76)

Using the fact that the Fourier transform of a convolution is the product of the Fourier
transform of the two functions, we have

bIa ¼ � 2p
dqr�1
qx

cqC

qx

¼ 2pq2
x
dr�1 bC, ð77Þ

and similarly for Ib. ThereforebI0 ¼ 2pðq2
x þ q2

yÞ
dr�1 bC

¼ 2pq2dr�1 bC. ð78Þ

The Fourier transform of the radially symmetric function r�1 can be shown to be 1=q using
the Fourier–Bessel transform (Bracewell, 1999), Finally, we havebI0 ¼ 2pq bC. (79)

Appendix B. Derivation of amplitude equations for patterns

B.1. Striped patterns

A locally striped pattern can be expanded as

C1 ¼W 1e
iq�x þW �

1e
�iq�x, (80)

where the envelope function W 1 depends only upon slow variables.
1. At order of �1, we have

r2
0ðhc þH0ÞC1 ¼ 0, (81)

where h1 ¼ hc � 2r. As hc ¼ Q2=2, the critical modes jqj ¼ qc ¼ Q=2 are the eigenvectors
with zero eigenvalue.

2. At order of �2,

qt1C1 ¼ r
2
0½ðhc þH0ÞC2 þ h2C

2
1 � 2r1C1 þH1C1� þ 2r0r1ðhc þH0ÞC1. (82)

Since H1C1 and ðhc þH0ÞC1 vanish identically for the critical modes, and C2
1 has no

contribution to the resonant term, the solvability condition requires (Newell and
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Whitehead, 1969; Segel, 1969)

r1 ¼ 0; qt1W 1 ¼ 0. (83)

As a result, � /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhc � h1Þ=2

p
.

Since a large-scale mode (q ¼ 0) evolves on a long timescale, it is necessary to include it
in the reduced dynamics. Following the examples of Matthews and Cox (2000)
and Golovin et al. (1994), we consider a real amplitude U of large-scale at order of �2,
write C2 as

C2 ¼W 2e
i2q�x þ c.cþU . (84)

It is easy to deduce from Eq. (82)

W 2 ¼ �
2h2

Q2
W 2

1. (85)

3. At order of �3, one obtains

qt2C1 ¼ r
2
0½ðhc þH0ÞC3 � 2r2C1 þ 2h2C1C2 þ h3C

3
1 þH1C2 � 2r1C2 � 2r2

1C1�

þ 2r0r1½ðhc þH0ÞC2 � 2r1C1 þ h2C
2
1 þH1C1� þ r

2
1½ðhc þH0ÞC1�. ð86Þ

The solvability condition requires

�qt1C1 þ r
2
0ð2h2C1C2 þ h3C3

1Þ � r
2
0ð2r2C1Þ � 2r2

0r
2
1C1 ¼ 0. (87)

The resonant terms in C1C2 are W �
1W 2 þW 1U , and that in C3

1 is 3jW 1j
2W 1. Since the

slow scales of a striped structure in x and y direction scale differently, r2
0r

2
1 need to be

written as q2
cðqX þ ð1=2iqcÞqY2 Þ

2 (Manneville, 1990, p. 327). Then the amplitude equation
for W 1 is

qt2W 1 ¼ 2q2
c r2W 1 þ qX þ

1

2iqc

qY2

� �2

W 1 � gjW 1j
2W 1 � h2UW 1

 !
, (88)

where g ¼ ð�2h2
2=Q2 þ ð3h3=2ÞÞ.

4. At order of �4, collecting the terms independent of the fast variables, one obtains:

qt2U ¼ hcr
2
1U þ 2h2r

2
1jW 1j

2. (89)

Unlike for critical modes (which have a chosen direction), dynamics of the envelope of the
q ¼ 0 mode should be isotropic. Thus, the spatio-temporal dynamics for the corresponding
envelope function is

qt2U ¼ hcðqX2 þ qY2 ÞU þ 2h2ðqX2 þ qY2 ÞjW 1j
2. (90)

Rewriting the equation in unscaled units

Aðx; tÞ ¼ �W 1ðX ;Y ; t2Þ; Bðx; tÞ ¼ �2UðX ;Y ; t2Þ;

�2r2 ¼ r; �2qt2 ¼ qt,

and rescaling t! t=2q2
c , we obtain Eqs. (29)–(30).
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B.2. Square patterns

In this case, one has

C1 ¼W 11e
iq1�x þW 12e

iq2�x þ c.c., (91)

where q1 and q2 are normal to each other.
1. At order of �, Eq. (81) is obtained. Therefore jq1j ¼ jq2j ¼ qc.
2. At order of �2, one has Eq. (82). Since C2

1 still does not contribute to the resonant
term, the amplitudes are independent of t1 and r1 ¼ 0. Writing

C2 ¼W 21e
i2q1�x þW 22e

i2q2�x þ c.c.þU , (92)

we find that W 2n ¼ �ð2h2=Q2ÞW 2
1nðn ¼ 1; 2Þ.

3. At order of �3, Eq. (87) should be satisfied. The resonant terms in C1C2 are the same
as for the striped structure, but in C3

1, they should include 3jW 11j
2W 11 þ 6jW 12j

2W 11.
Furthermore, for a square structure, the slow scales in x and y directions need not to be
different (Pomeau and Manneville, 1980). Consequently, the equations for W 11 and W 12

are

qt2W 11 ¼ 2q2
cðr2W 11 þ ðn1 � r1Þ

2W 11 � gjW 11j
2W 11 � 3h3jW 12j

2W 11 � h2UW 11Þ,

ð93Þ

qt2W 12 ¼ 2q2
cðr2W 12 þ ðn2 � r1Þ

2W 12 � gjW 12j
2W 12 � 3h3jW 11j

2W 12 � h2UW 12Þ,

ð94Þ

where n1; n2 are the unit vectors along the direction of q1 and q2, and g ¼

ð�2h2
2=Q2 þ ð3h3=2ÞÞ.

4. At order of �4, collecting terms independent of rapid variables, one obtains

qt2U ¼ hcr
2
1U þ 2h2r

2
1ðjW 11j

2 þ jW 12j
2Þ. (95)

Returning to the unscaled variables and rescaling t! t=2q2
c , we obtain Eqs. (31)–(32).

B.3. Hexagonal patterns

Perturbed hexagonal states can be expanded as

C1 ¼
X3
n¼1

W 1ne
iqn�x þ c.c., (96)

where the three vectors q1, q2, and q3 bear angles 2p=3 with each other.
1. At order of �, one has Eq. (81). Therefore jqnj ¼ qc.
2. At order of �2, one has Eq. (82). However, C2

1 has a term 2W �
12W �

13 that is resonant to
W 11. Consequently, the solvability condition gives

qt1W 11 ¼ 2q2
cðr1W 11 � h2W

�
12W �

13Þ. (97)

Since the coefficient of the quadratic term (i.e., h2) is not small, we consider Eqs. (97)
as explicit description of the dynamics of the system on the time scale t1. A combination
with the dynamics on scale t2 will give the complete description of the system. We can
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write C2 as

C2 ¼
X
1

W 2ne
i2qn�x þ

X
2

V nme
iðqn�qmÞ�x þ c.c.þU , (98)

where
P

1 is the summation over n ¼ 1; 2; 3 and
P

2 is the summation over n;m ¼ 1; 2; 3
with nam. Note that wavevectors of types ðqn � qmÞ have been added to the excited modes

at the second order, since the interactions of these modes with the basic lowest modes can
also give resonant terms. These additional terms in a hexagonal basis were suggested by
Gunaratne et al. (1994) and are needed for a complete description of instabilities of
hexagonal arrays.
The relations between the amplitudes of the first harmonics and the second are

W 2n ¼ �
2h2

Q2
W 2

1n, ð99Þ

V nm ¼ �
2h2

ð2�
ffiffiffi
3
p
ÞQ2

W 1nW �
1m. ð100Þ

3. At order of �3, we once again have Eq. (87). The resonant terms to W 11 in C1C2 are
W �

11W 21 þW 11U þW 12V12 þW 13V 13, and in C3
1 are 3jW 11j

2W 11 þ 6ðjW 12j
2þ

jW 13j
2ÞW 11. Therefore the coefficients of the self-interacting terms are the same as those

of the two planforms above, but the coefficients of cross-interaction terms such as
jW 12j

2W 11 are different. In addition, since C2
1 has contributions at order of �2, quadratic

terms with the amplitude gradients should appear in the spatio-temporal dynamics of
amplitude W 11:

qt2W 11 ¼ 2q2
c ½r2W 11 þ ðn1 � r1Þ

2W 11 � gjW 11j
2W 11

� ghðjW 12j
2 þ jW 13j

2ÞW 11 � h2UW 11�

� 4iqch2½W
�
13ðn2 � r1ÞW

�
12 þW �

12ðn3 � r1ÞW
�
13�, ð101Þ

where n1; n2, and n3 are the unit vectors along the direction of q1, q2, and q3, respectively,
g ¼ ð�2h2

2=Q2 þ ð3h3=2ÞÞ, and gh ¼ 3h3 � ð2h2
2=ð2�

ffiffiffi
3
p
ÞQ2Þ. Combining the dynamics on

scales t1 and t2 by �2�(97)þ�3�(101), we have

ð�qt1 þ �
2qt2 Þ�W 11 ¼ 2q2

c ½ð�r1 þ �
2r2Þ�W 11 � �

2h2W
�
12W �

13 þ �
3ðn1 � r1Þ

2W 11

� �3gjW 11j
2W 11 � �

3ghðjW 12j
2 þ jW 13j

2ÞW 11 � h2UW 11�

� 4iqch2�
3½W �

13ðn2 � r1ÞW
�
12 þW �

12ðn3 � r1ÞW
�
13�. ð102Þ

Using relations (15)–(17), Eq. (102) can be rescaled to an equation of original variables.
Equations for W 12 and W 13 are obtained by permuting subscripts. Similar amplitude

equations for hexagonal planforms have been investigated by Brand (1989), Gunaratne
et al. (1994), Kuznetsov et al. (1995) in different contexts.
4. At order of �4, collecting terms independent of rapid variables, one obtains

qt2U ¼ hcr
2
1U þ 2h2r

2
1ðjW 11j

2 þ jW 12j
2 þ jW 13j

2Þ. (103)

Since no such terms can be collected on time scale t1, Eq. (103) alone gives the complete
dynamics of the large scale mode. Returning to the unscaled variables and rescaling
t! t=2q2

c , we obtain Eqs. (33)–(34).
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