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7 Abstract The human urinary microbiome, also termed

8 urobiome, has been overlooked due to the clinical dogma

9 of sterile urine, as reported by routine culture. However,

10 evolving sensitive tools such as expanded quantitative

11 urine culture, 16S ribosomal RNA gene sequencing, and

12 next-generation sequencing have discovered a vast number

13 of microorganisms present in urine, even in healthy indi-

14 viduals. Microbiome dysbiosis and its links to disease is a

15 heavily explored area in several microbial niches. Pre-

16 sently, urobiome dysbiosis and its correlation to urinary

17 system-related diseases is at its infancy but rapidly

18 emerging, as it provides potential therapeutic insights. This

19 review outlines the changes in the human urinary micro-

20 biome concerning globally prevalent diseases affecting

21 kidney function, such as chronic kidney disease (CKD),

22 diabetes mellitus (DM), hypertension (HT), and urinary

23 tract infection (UTI). Alterations to urine microbial diver-

24 sity, including differences in the abundance and species

25 richness of particular microbial genera, notably Lacto-

26 bacillus, Prevotella, Streptococcus, Staphylococcus, Kleb-

27 siella, Enterococcus, between diseased and healthy

28 samples are discussed utilising studies to date. Subsequent

29 research needs to move beyond correlation to understand

30 the roles of the urinary microbiota in diseases, thereby

31 clarifying whether urinary dysbiosis has causal contribu-

32 tions that may provide important insight for diagnostics,

33 pathophysiology, and therapy in renal pathologies.34

35Keywords Dysbiosis � Human urinary microbiome �

36Urinary system-related diseases

37Introduction

38The human body is loaded with approximately 38 trillion

39commensal and pathogenic microorganisms, similar in

40proportion to all the human cells put together [1]. These

41microorganisms in and on the body are called microbiota

42and range from bacteria and eukaryotic viruses to protozoa

43and fungi. They are found in several physical locations like

44the gastrointestinal tract, respiratory tract, nasal tract,

45urogenital tract, skin and play crucial roles to sustain

46human health [2–5]. The Human Microbiome Project

47(HMP) is an initiative by the United States National

48Institutes of Health (NIH) to uncover the microbial com-

49position of the human body and their roles in health and

50disease, such as the existence of a characteristic micro-

51biome associated with particular health status [6]. In 2008,

52the initial phase of this project (HMP1) characterised

53microbial communities in 300 healthy participants at five

54significant sites: nasal passageway, oral cavity, skin, gas-

55trointestinal tract, and urogenital tract. Various research

56has been done on these more common microbial niches

57[7–11], but it wasn’t until much recently the urinary

58microbiome; specifically, the bladder microbiome was

59studied because of the clinical dogma that urine (which

60represents the bladder microbiome) of healthy asymp-

61tomatic individuals is sterile until the urethra, as shown by

62routine culture [12, 13]. However, emerging research

63utilising more sensitive techniques such as enhanced

64quantitative urine culture and 16S ribosomal RNA (16S

65rRNA) gene sequencing identifies extensive microorgan-

66isms in urine, even in the bladder [13–17]. The urinary
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67 microbiota comprises microorganisms residing in the

68 bladder. Still, it may be contaminated with microorganisms

69 in the lower urinary tract or urogenital tract based on the

70 sampling method used to obtain urine (Fig. 1) [18].

71 A surprising outcome of HMP1 was that even among

72 healthy individuals, there were differences in the microbial

73 diversity in niches, including the gut, skin, and vagina,

74 potentially due to differences in environment, diet, and

75 medication [19]. Therefore, relying on the composition of

76 the human microbiome of healthy individuals as a defini-

77 tion for a ‘‘healthy status’’ is problematic. Another fasci-

78 nating discovery from other HMP human cohort studies

79 that examined subjects with diseases in the gastrointestinal

80 tract, oral cavity, or urogenital tract was that differences

81 existed in the microbiomes between these diseased partic-

82 ipants and healthy controls [20]. These differences were

83 based on the proportion of particular microorganisms and

84 microbial metabolism properties rather than the total

85 microbial composition. This fact led researchers to look

86 beyond microbiome composition to understand the role of

87 the human microbiome in health and disease. The concept

88 of ‘‘dysbiosis,’’ a change in abundance/ gain or loss of

89 microbes in a community, leading to an ‘‘imbalance,’’ has

90 gained a lot of attention due to its potential link to disease

91 [21–24]. Dysbiosis of the microbiome manifests with one

92 or more of the following characteristics: An increase in the

93 proportion of pathogenic microorganisms, a decrease in the

94 numbers of commensal microorganisms, and a reduction in

95 microbial diversity [22]. The onset of dysbiosis is governed

96 by environmental and host-related factors ranging from

97 diet, infection, inflammation, antibiotics use, and genetics

98 [22, 24, 25]. Association between dysbiosis and various

99 diseases, including inflammatory, autoimmune and neu-

100 rodegenerative diseases, have been established, but the

101question remains whether dysbiosis is a cause or conse-

102quence of disease [25].

103The urinary system consists of two kidneys, two ureters,

104a bladder, and a urethra, and collectively works to elimi-

105nate waste products present in the blood. Diseases that may

106hamper this process contributes to poor renal health as

107measured by a low estimated glomerular filtration rate and

108increased urinary albumin [26, 27]. Chronic kidney disease

109(CKD) is a highly prevalent maladaptive condition of the

110kidneys [26, 28], with diabetes mellitus (DM) and hyper-

111tension (HT) being the leading causes of it, hence com-

112plications of either DM or HT can pose a threat to the

113healthy functioning of the urinary system [27, 29]. CKD

114also weakens the immune system and puts patients at risk

115of infections like urinary tract infection (UTI), further

116exacerbating the urinary system’s functioning if not treated

117at the onset [30]. The global disease burden of CKD, DM,

118HT and UTI is high, presenting as serious public health

119problems [26–29, 31].

120Additionally, antimicrobial resistance limits antibiotic

121treatment options for UTI or UTI comorbid outcomes from

122these diseases, warranting alternative treatment options

123[32–36]. Dysbiosis of the urinary microbiome and its

124association to diseases implicating the urinary system is

125currently an emerging field [12, 37–41]. It offers potential

126insights on diagnostics, pathophysiology and microbiome-

127based treatment for urinary pathologies [42]. Given the

128significant burden of such diseases and the need for more

129therapeutic options to alleviate kidney infection-related

130morbidities, urinary microbiome dysbiosis and micro-

131biome-based treatment options may be worthy of

132investigating.

133This review focuses on human urinary microbiome

134dysbiosis concerning CKD, DM, HT, and UTI, all

Fig. 1 a. Three urine collection methods that are currently used to

sample urine for urinary microbiome analyses. A. Suprapubic aspi-

ration (SPA) utilizes a syringe placed perpendicular to the skin to

directly sample urine from the bladder, B. Midstream clean-catch

(CC) method involves thorough sanitation of the genital area to

aseptically collect the mid-portion of urine flow into a sterile urine

cup, C. Transurethral catheter (TUC) samples urine from the bladder

via the urethra. SPA suprapubic aspiration, CC midstream clean-

catch, TUC transurethral catheter. b Techniques that are employed to

study taxonomy and/or functional profile of the urinary microbiome.

Culture-based & OMICs, [metagenomics (16S rRNA gene sequenc-

ing and whole-genome sequencing), metaproteomics and

metabolomics]
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135 significant global public health concerns affecting the uri-

136 nary system. It presents the current links between urobiome

137 dysbiosis and disease and highlights lapses and how this

138 area may contribute to therapy. The keywords ‘‘chronic

139 kidney disease’’ OR ‘‘diabetes’’ OR ‘‘hypertension’’ OR

140 ‘‘urinary tract infection’’ AND ‘‘urinary microbiome’’ was

141 searched (Google Scholar and PubMed), and articles in the

142 past 20 years were chosen for this review.

143 The Healthy Microbiome

144 As previously mentioned, there is vast interpersonal

145 diversity in the microbiome of healthy individuals; thus,

146 any attempts to identify a so-called ‘‘healthy microbiome’’

147 in each site may be challenging [43]. As a result,

148 researchers moved on to an alternate concept: a ‘‘healthy

149 functional core’’ to define a healthy microbiome, which

150 corresponds to a microbiome capable of metabolic and

151 molecular functions needed for the healthy life of these

152 microbes: expresses housekeeping genes correctly, has

153 resilience against external and internal changes (e.g.,

154 medication and age), and can hold a mutually beneficial

155 relationship with the host [44]. The idea is that although the

156 composition of microbes may vary from healthy person to

157 person, a healthy microbiome has a healthy functional

158 profile that supports its survivability. Dysbiosis likely

159 happens when the external or internal perturbations are

160 more potent than the resilience capabilities of the micro-

161 biome [22].

162 The Healthy Urinary Microbiome

163 Interestingly, similar to the healthy lungs, the bladder was

164 considered sterile and free from bacteria not long ago.

165 These myths were debunked, and their associated micro-

166 biomes are thought to play essential roles in urinary and

167 respiratory health, respectively [13, 45, 46]. Colonisation

168 in urine by microorganisms seems counterintuitive as its

169 low pH of about 6 and high urea concentration makes it

170 inhabitable to many bacteria [47]. Host factors have been

171 suggested to play a role in the colonisation of these resident

172 microorganisms, such as the expression of receptors for the

173 adherence of bacteria to the uroepithelium; however, this

174 requires further scientific analysis [42]. The source of these

175 colonising microorganisms in the bladder microbiome is

176 hypothesised to be genital [49]. The resident gut microbiota

177 is implicated as the source of colonising uropathogens in

178 urinary tract infections [48, 49].

179 Healthy urine microbiota includes a range of bacterial

180 genera, predominantly, Lactobacillus, Corynebacterium,

181 Staphylococcus, Streptococcus, Veillonella, Prevotella

182with sex-specific differences: Lactobacillus found mainly

183in healthy women, and Corynebacterium or Streptococcus

184found mainly in healthy men [12, 50]. Healthy females

185tend to have a more diverse composition of bacterial genera

186than males [51]. Catheterized microbiomes, including

187urethral samples, have a higher abundance of Staphylo-

188coccus, Neisseria, and Veillonella, while midstream voided

189urine samples have Streptococcus, Lactobacillus, and

190Gardnerella [38] predominantly. The healthy lung micro-

191biome consists mainly of Streptococcus, Prevotella, Veil-

192lonella, Neisseria, and Fusobacterium [52]. Fusobacterium

193has also been detected in the urinary microbiome in

194abundance, but in bladder cancer patients, not in the

195healthy urobiome [53].

196It is also noted that the ‘‘core’’ healthy urinary micro-

197biome exists in an age group-specific manner, where a

198change in the abundance of particular genera and new

199genera are seen with age: urobiome diversity decreases

200with age, and the genera Jonquetella, Parvimonas, Pro-

201teiniphilum, and Saccharofermentans are shown to have

202age-specific occurrences in those over 70 years [51, 54].

203Antibiotic Use and Urinary Microbiome Dysbiosis

204Microbiome dysbiosis has been correlated with the occur-

205rence of various diseases, but what is the onset of it?

206Antibiotics are likely to contribute to microbial dysbiosis,

207as they can affect microbial abundance [42]. The impact of

208antibiotics use on gut microbiome dysbiosis has been

209explored extensively [55] but not so much regarding uri-

210nary microbiome dysbiosis. The influence of antibiotics on

211the resident microorganisms occupying the urinary tract

212has been studied in older adults [56]. It was found that the

213microbiota before and after antibiotic therapy was differ-

214ent, with Escherichia coli being the most abundant species

215and Lactobacillus being the most reduced genera after

216antimicrobial drug use. A similar finding was obtained in a

217very recent study that monitored the urinary microbiota of

218a patient given oral Cephalexin over seven days, leading to

219the depletion of commensal Lactobacillus sp. and recurrent

220cystitis [57]. These studies suggest that antibiotics may

221contribute to urinary microbiome dysbiosis. Therefore,

222these therapies must be carefully controlled to deplete

223uropathogens but not commensal microorganisms associ-

224ated with healthy states. This control is also necessary to

225minimise antimicrobial resistance when treating urological

226diseases, especially with broad-spectrum antibiotics [58].
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227 Urinary Microbiome Analysis

228 Three primary urine collection methods are employed to

229 collect urine from individuals to study the urinary micro-

230 biome (Fig. 1) [59]. Suprapubic aspiration (SPA) is

231 excellent for explicitly sampling urine directly from the

232 bladder without contamination from local microbiota [18].

233 Nonetheless, it is very invasive, involving inserting a

234 needle at the suprapubic area directly above the bladder

235 [17]. The midstream clean-catch (CC) urine technique is a

236 commonly used non-invasive method to obtain urine

237 samples by avoiding the initial and final portions of urine

238 flow to reduce skin and urethral contamination [50]. The

239 urine travels the entire lower urinary tract (from the ureters,

240 bladder, and out of the urethra). It may risk skin, perineum,

241 and vagina contamination if these regions are not sterilised

242 with sterile wipes before [60]. The use of a transurethral

243 catheter (TUC) involves inserting a catheter into the

244 bladder through the urethra [18]. Although this method is

245 better at targeting the urinary microbiome than with CC, it

246 is invasive and may perturb the urethral microbiota [60].

247 Taking measures to minimise contamination effects, such

248 as ensuring participants sanitise their periurethral regions

249 sufficiently when providing a mid-stream urine sample and

250 taking urethral swabs with TUC samples to assess their

251 level of contamination [18].

252 Currently, the urine microbiome is commonly studied

253 using various culture, molecular, proteomics-based, and

254 bioinformatics techniques such as conventional culture,

255 enhanced quantitative urine culture, followed by metage-

256 nomic sequencing, and metaproteomics [12, 14, 50, 59].

257 Metagenomic amplicon-based 16S rRNA gene sequencing

258 is commonly used to identify the urinary microbiome

259 owing to their conserved primers and hypervariable regions

260 (V1–V9), providing species-specific identification

261 [15–17, 59]. Nevertheless, it does not provide functional

262 aspects of the bacteria as it does not sequence all the genes.

263 Therefore, shotgun metagenomic sequencing, metapro-

264 teomics, and, more recently, metabolomics are used to

265 understand urinary microbial functional properties, which

266 may be crucial to deciphering host-microbiome interac-

267 tions in disease [12, 18, 60, 88]. Metatranscriptomics has

268 not been used for urinary microbiome analyses till-date, to

269 our knowledge. Apart from the identification of microbiota,

270 studies also use species richness estimates such as Chao1

271 and ACE indices to assess the number of different species,

272 and diversity indices such as Shannon and Simpson indi-

273 ces, for the total number of species and the relative abun-

274 dance of each species, in the urobiome [37, 61]. The

275 presence of viable but nonculturable (VBNC) bacteria in

276 urine makes it difficult to culture all urine microbiota using

277 routine microbiological media [62]. The use of sensitive

278molecular techniques, such as 16S rRNA gene sequencing

279and enhanced quantitative urine culture that makes use of

280several culture media and incubation conditions, allows a

281wide variety of genitourinary bacteria to be identified,

282which may otherwise not be detected by standard urine

283culture alone [14, 37]. The main limitation of culture-based

284techniques as opposed to gene sequencing is that they are

285insufficient to identify the urine microbiome completely

286[51]. However, they benefit from verifying microbial via-

287bility, which is not as straightforward with sequencing

288experiments.

289Urinary Microbiome and Disease

290The term dysbiosis was first coined in the early twentieth

291century with the human gut microbiota [63]. This field has

292since quickly emerged into an active area of research in

293other microbiome locations [54]. Recently, studies have

294tried to correlate kidney-related diseases and comorbidities

295to dysbiosis of the urine microbiota. Following intestinal

296dysbiosis, these studies suggest changes in diversity and

297abundance of microorganisms in the urine microbiome

298associated with diseases, including CKD, DM, HT,

299hyperlipidemia (HL), and UTI [12, 37, 40, 64]. The fol-

300lowing sections will briefly explore the specific changes to

301the urinary microbiome in CKD, DM, HT, and UTI

302patients compared to their healthy counterparts and char-

303acterise diseased urobiomes (Table 1).

304Chronic Kidney Disease

305There are limited research governing associations between

306the urobiome and CKD, thus identifying any correlations

307between them proves to be challenging. Emerging research

308is necessary to explore this area to gain a reliable under-

309standing of the urobiome in chronic kidney pathologies. At

310the time of writing this review, only the work done by

311Kramer et al. is relevant to assessing the CKD urobiome in

312humans [37]. Their work used midstream urine samples of

313adults, covering stages 3 to 5 non-dialysis dependent

314chronic kidney disease. A majority of the specimens had

315particular genera that were more abundant than others:

316Corynebacterium, Staphylococcus, Streptococcus, Lacto-

317bacillus, Gardnerella, Prevotella, Escherichia Shigella,

318and Enterobacteriaceae. There were also high levels of

319diversity in the samples, where participants with higher

320estimated glomerular filtration rates and CKD at stage 3

321had more diverse urobiomes. More recently, bladder

322microbiome dysbiosis has been demonstrated in cats with

323CKD, where Escherichia Shigella was the dominant spe-

324cies [65]. As CKD is a risk factor for infections, close
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Table 1 Summary of literature on urinary microbiome dysbiosis in CKD, DM, HT, and UTI. CKD chronic kidney disease, DM diabetes

mellitus, UTI urinary tract infection, HT hypertension

Disease and reference

group/s (if relevant) (n)

Age (years

mean ± standard

deviation)

Method of

sample

collection

Study techniques Main findings Reference

Stage 3–5 non-dialysis
dependent CKDa: males
(36), females (41)

71.5 ± 7.9 CCb 16S rRNA sequencing (V4
region, Illumina), diversity
measures: inverse Simpson,
Chao, and Shannon indices

Most abundant bacterial
genera or family:
Corynebacterium,
Staphylococcus,
Streptococcus,
Lactobacillus, Gardnerella,
Prevotella, Escherichia
Shigella, and
Enterobacteriaceae

[37]

Females with type 2 DMc

(25),

DM ? HTd (24), DM ? HLe

(7), DM ? HT ? HL (11)

DM only: 56.28 ± 13.91

DM ? HT: 70.42 ± 9.00

DM ? HL:
54.43 ± 10.66

DM ? HT ? HLP:
69.81 ± 9.64

Modified
midstream
urine
collection

16S rRNA sequencing (V3–
V4 regions, Illumina),
diversity measures: number
of reads, OTUsf, Chao1,
ACE, Shannon and Simpson
indices

Number of bacterial genera
and most abundant genera:
DM: 320, Lactobacillus,
Prevotella, Acinetobacter.
DM ? HT: 303, Prevotella,
Streptococcus, Bacteroides.
DM ? HL: 236,
Lactobacillus, Prevotella,
Halomonas.
DM ? HT ? HL: 225,
Prevotella, Lactobacillus,
Bacillus

[40]

Females with type 2 DM (70)
and female controls (70)

all: 26–35, 36–45, 46–55,
56–65, 66–75, 76 and
above

CC 16S rRNA sequencing (V3–
V4 regions, Illumina),
diversity measures: number
of reads, OTUs, Chao1,
ACE, Shannon and Simpson
indices

Bacterial genera with
different relative
abundances between the
type 2 DM cohort and
controls:

Prevotella*, Lactobacillus*,
Shuttleworthia*,
Acinetobacter, Bacteroides,
Halmonas, Blautia,
Faecalibacterium,
Corynebacterium,
Klebsiella, Pseudomonas

[67]

Females with type 2 DM with
detectable and
undetectable urine IL-8 g

(70) and female controls
(70)

all: 26–85 Modified
midstream
urine
collection

16S rRNA sequencing (V3–
V4 regions, Illumina),
ELISAh, diversity
measures: OTUs, Chao1,
Shannon, and Simpson
indices

11 bacterial genera were more
abundant in the type 2 DM
with detectable IL-8 cohort
than the type 2 DM with
undetectable IL-8 cohort:

Shuttleworthia, Mobiluncus,

Peptoniphilus,

Corynebacterium, Thermus,

Gemella, Enterococcus,

Acinetobacter,

Akkermansia,

Aquaspirillum, and
Geobacillus

[66]

Females with type 2 DM (32)
and female controls (26)

DM: 56.97 ± 8.01

controls: 57.61 ± 9.24

CC Standard culture, 16S rRNA
sequencing (V3–V4
regions, Illumina), diversity
measures: Observed
Species, Chao1, ACE,
Shannon and Simpson
indices

Bacterial genera that were
over-represented in the type
2 DM cohort: Escherichia-
shigella, Klebsiella,
Aerococcus, Delftia,
Enterococcus, Alistipes,
Stenotrophomonas,
Micrococcus, Deinococcus,
Rubellimicrobium

[61]

Kidney stone disease with HT
(50) and controls (12)

Kidney
stone ? normotension:
47.33 ± 14.95,
prehypertension:
54.09 ± 13.03,

HT: 54.74 ± 12.36,

controls: 58 ± 18.97

SPAi and
TUCj

Expanded quantitative urine
culture, 16S rRNA
sequencing (V3–V4
regions, Illumina), diversity
measures: Observed
Species, Chao1, Shannon,
Simpson indices

Bacterial genera that were
significantly different
between the kidney stone
cohorts and controls:

Comamonas, Enterococcus,
Bifidobacterium,
Lactobacillus

[39]
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Table 1 continued

Disease and reference group/s
(if relevant) (n)

Age (years
mean ± standard
deviation)

Method of
sample
collection

Study techniques Main findings Reference

Females with DOSk (pelvic
floor surgery) positive urine
culture (13), postoperative
UTIl (4) and DOS negative
urine culture with
postoperative no-UTI/
negative (37)

DOS positive urine
culture: 67,

postoperative UTI: 60,

negative: 56

TUC Urine culture, 16S rRNA
sequencing (Life
Technologies, RDP
classifier), ELISA, protease
assay

Lactobacillus was abundant in
all three cohorts

Most abundant bacterial
genera in postoperative UTI
cohort versus postoperative
no-UTI (negative) cohort:

Dyella, Fulvimonas,

Klebsiella, and
Lactobacillus

[77]

Catheter-associated UTI:
males (8), females (2)

70.9 TUC Urine culture, 16S rRNA
sequencing (V4 region,
Illumina), diversity
measures: observed OTUs,
and Shannon index

Study subjects that developed
catheter-associated UTI had
a low diverse urinary
microbiome

[75]

Females with UTI-like
symptoms (75) and females
without UTI-like symptoms
(75)

all: 62.3 ± 14.9 TUC Standard culture, modified
standard culture, expanded
quantitative urine culture,
diversity measure: species
accumulation curves and
Shannon index

Bacterial species that had
substantially higher average
CFU/ml in the UTI-cohort
than no-UTI cohort:
Escherichia coli, Klebsiella

pneumoniae, Streptococcus

agalactiae, Aerococcus

urinae, Enterococcus

faecalis, Staphylococcus

aureus, Streptococcus

anginosus

[14]

Females with urogynaecology
surgery (pelvic organ
prolapse and/or urinary
incontinence) (104)

57 TUC 16S rRNA sequencing (V4
region, Illumina), diversity
measures: Chao 1, ACE,
Shannon, and Simpson
indices

Postoperative UTI risk was
associated with an
abundance of diverse
pathogens in the
preoperative bladder
microbiome:

Enterobacteriaceae,

Pseudomonas,

Staphylococcus, the species

Lactobacillus delbrueckii,

Actinotignum schaalii,

Anaerococcus obesiensis,

Corynebacterium

tuberculostearicum,

Streptococcus anginosus,

Aerococcus christensenii

and Anaerococcus

murdochii

Increased Lactobacillus iners

was protective against
postoperative UTI risk

[76]

UTI: males (149), females
(234)

56 CC Urinalysis, urine culture, 16S
rRNA sequencing (broad
range archaeal primers,
mcrA gene, Technelysium)

The archaeal methanogen
methanobrevibacter smithii

was present in 54% of the
patients diagnosed with UTI

[64]

Indian J Microbiol

123
Journal : Large 12088 Dispatch : 13-11-2021 Pages : 14

Article No. : 991
h LE h TYPESET

MS Code : INJM-D-21-00629R1 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

325 attention must be paid to the abundance of uropathogens in

326 the CKD urobiome.

327 Diabetes Mellitus

328 Although much research has been exploring links between

329 DM (type 1 and 2) and the gut microbiome, there is a

330 limited body of knowledge analysing the urinary micro-

331 biome regarding DM. The urobiome of DM patients has

332 been studied more than that of CKD patients. A significant

333 study that utilised urine samples from women with type 2

334 DM only and comorbidities of HT and HL is currently the

335 only study that assessed whether these comorbidities might

336 alter the urinary microbiome in DM patients [40]. DM

337 patients with different comorbidities had differences in the

338 predominant bacterial genera present in their urine: for the

339 DM cohort, it was Lactobacillus, Prevotella, and Acine-

340 tobacter. For the DM and HL cohort, it was Lactobacillus,

341 Prevotella, and Halomonas. For DM and HT, it was

342 Streptococcus, Prevotella, and Bacteroides. This suggests

343 that specific changes in the urine microbiome may be

344 associated with disease and the kind of comorbidities.

345 Interestingly, some cohorts had completely absent species

346 in other cohorts: Deinococcus aquatilis was found in the

347 DM-only cohort but was not found in the DM and HT

348 cohort. Such disease-specific microbiome species have also

349been found in the lung microbiome, where lung cancer

350patients showed bacterial species such as Corynebacterium

351tuberculostearicum and Keratinibaculum paraultunense,

352not in bronchiectasis patients [45].

353The study by Ling et al. used 16S rRNA gene

354sequencing to assess urinary microbiota in female type 2

355DM [66]. They went a step further to check for links

356between dysbiosis of urinary microbiota and proinflam-

357matory chemokine interleukin-8 levels (IL-8) for the first

358time. They showed IL-8 level-dependent differences in the

359abundance of specific urinary microbes, shedding light on

360possible interactions between the urobiome and inflam-

361mation, which is significant as type 2 DM has been

362established as an inflammatory disease [66]. This uncovers

363possibilities for urinary microbiome-based therapy in type

3642 DM.

365Chen et al. recruited female type 2 DM patients and

366healthy controls to find urinary dysbiosis linked to dia-

367betes: there were higher abundances in the pathogens

368Escherichia-Shigella, Klebsiella, and Enterococcus in type

3692 DM patients compared to controls [61]. Another study

370that investigated links between urinary microbiota and type

3712 DM found reduced bacterial diversity and richness in

372Chinese type 2 DM patients compared to healthy controls,

373associated with decreased carbohydrate and amino acid

374metabolism [67]. These findings suggest that therapy

375focused on altering urinary microbiome dysbiosis may

Table 1 continued

Disease and reference group/s
(if relevant) (n)

Age (years
mean ± standard
deviation)

Method of
sample
collection

Study techniques Main findings Reference

Cystitis: males (12), females
(16)

66 CC, TUC Standard culture, 16S rRNA
sequencing (V3–V4
regions, Illumina), diversity
measures: observed OTUs

15 distinct phyla were
detected in all cystitis
patients. The most abundant

phyla:

Proteobacteria, Firmicutes,

Bacteroidetes, and
Actinobacteria

[57]

aChronic kidney disease
bMidstream clean-catch method
cDiabetes mellitus
dHypertension
eHyperlipidemia
fOperational taxonomic units
gInterleukin-8
hEnzyme-linked immunosorbent assay
iSuprapubic aspiration
jTransurethral catheter
kDay of Surgery
lUrinary tract infection
*most abundant genera in type 2 DM
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376 modulate metabolism in type 2 DM patients, a hypothesis

377 that needs to be assessed in future studies. Additionally, the

378 phyla Actinobacteria was more abundant in type 2 DM

379 patients than healthy controls (Fig. 2) and served as a

380 biomarker to differentiate between them. A lapse in

381 research in all these studies is an imbalance of gender.

382 Most DM participants were female and not male, high-

383 lighting the need for more studies with male DM partici-

384 pants so that sex hormone influence on urine microbiota

385 can be discerned.

386 Hypertension

387 Similarly, with CKD and DM, there has been relatively

388 little research exploring the urobiome of HT patients,

389 although there is extensive work that links the gut micro-

390 biome to HT. Apart from the work of Liu et al. on DM and

391 comorbidities of HT and HL [40], there is one other

392 research characterising the urinary microbiome of HT

393 patients with kidney stone disease [39]. There isn’t any

394 literature that explores the urobiome of patients suffering

395 only from HT (without co-occurring diseases).

396 Of the work currently done, Liu et al. found that patients

397 with kidney stone disease and HT had a higher abundance

398 of the phyla Firmicutes associated with the genus Lacto-

399 bacillus than healthy controls (Fig. 2) [39]. Whether this

400 abundance of commensal Lactobacillus is part of a host

401 inflammatory response or related to disease pathology is

402 worth investigating. Interestingly, the urobiome profile

403 changes based on the extent of hypertension (normoten-

404 sion, prehypertension, and hypertension) in kidney stone

405 disease patients, indicating microbiome-based tools for

406 monitoring kidney stone disease progression and treatment

407 response in those complicated with hypertension.

408 Urinary Tract Infection

409 There are recent studies that observed the urinary micro-

410 biome and its influence on UTI. Additionally, antimicrobial

411 resistance has been implicated in bacteria in UTI, signi-

412 fying the necessity to study the urobiome of UTI to inform

413 and assess antibiotic use [57, 68–70].

414 The study titled ‘‘Microbial metagenome of urinary tract

415 infection’’ employed 16S ribosomal DNA (16S rDNA) and

416 metagenome sequencing of the microbiome in 121 mid-

417 stream clean-catch samples [71]. They found that the two

418 clusters that showed infectiousness of the urinary tract had

419 proteobacteria as the most abundant phylum. Additionally,

420 uropathogens like Escherichia, Klebsiella, Pseudomonas,

421 Enterobacter, and Citrobacter and less known genera in

422 infection like Acidovorax, Rhodanobacter, Oligella were

423uncovered. These findings may indicate urobiome dysbio-

424sis in UTI, owing to a microbial imbalance with an abun-

425dant presence of uropathogens. It is interesting to

426understand the roles of the other genera present in UTI,

427which are usually less common in infection [71], as they

428may provide additional insight into UTI pathogenicity.

429This presence of several uropathogens uncovers the pos-

430sibility for polymicrobial/ microbe-microbe interactions

431and how this influences disease, which has been reviewed

432[72].

433Recently, potential bacterial microbiome dysbiosis in

434lower male urinary tract symptoms (LUTS) was studied

435[73]. Streptococcus and Enterococcus spp. were abun-

436dantly represented in the LUTS cohort in comparison to the

437controls. Additionally, recurrent UTI is a cause for con-

438cern, and this has been explored concerning the urinary

439microbiome in a study by Burnett et al. [74]. Forty-three

440women with recurrent UTIs were included in this study,

441and their urine was obtained via catheterisation and void-

442ing. These samples underwent standard and expanded

443quantitative urine culture. Culture results were associated

444with five clinical profile clusters for the subjects based on

445patient-reported symptoms like frequency, urgency, pain,

446cloudiness. Interestingly, one clinical profile group that

447used vaginal estrogen showed a significantly higher pro-

448portion of Lactobacillus, which is commonly associated

449with a healthy status, suggesting that perhaps for recurrent

450diseases, restoring commensal microbiota alone is insuffi-

451cient for complete recovery [74]. Nevertheless, this study

452had small numbers of subjects in each clinical profile, thus

453the findings need additional data for validation.

454Price et al. used enhanced quantitative urine culture to

455identify uropathogens in female urogynaecology patients

456with UTI-like symptoms and no-UTI-like symptoms [14].

457It was found that the no-UTI cohort had more diverse and

458richer species than the UTI cohort, which is in line with the

459findings of Horwitz et al., who also demonstrated a lower

460urobiome diversity in those with UTI [75]. The uropatho-

461gens Escherichia coli, Klebsiella pneumoniae, Enterococ-

462cus faecalis, among others, were more abundant in the UTI

463cohort [14].

464Apart from bacterial dysbiosis in the urinary microbiota,

465the archaeal role in UTI has also been studied [64]. It was

466shown that the archaeal methanogen Methanobrevibacter

467smithii might be a constituent of the urinary microbiome. It

468was co-cultured every single time with enterobacteria,

469including Escherichia coli, Klebsiella pneumoniae, Enter-

470obacter sp. 19/34 patients diagnosed with UTI had M.

471smithii present in their urine samples. This may suggest a

472potential mutually beneficial relationship between M.

473smithii and enterobacteria, which may contribute to UTI in

474some patients, as enterobacteria are known uropathogens in

475this regard. Further research exploring the contribution of
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476 M. smithii to UTI, such as its influence on enterobacteria

477 dysbiosis and pathogenesis in UTI, is necessary.

478 Postoperative UTI is a common complication that may

479 occur after urogynecology surgery. Studies have assessed

480 microbiome-based markers and host antimicrobial peptide

481 profiles to identify patients at risk for postoperative UTI

482 [76, 77]. These studies found that the urinary microbiota

483 composition present on the day of surgery was associated

484 with postoperative UTI risk, where an increased presence

485 of Lactobacillus iners (Fig. 3) and urinary HBD1 may

486 reduce the risk of postoperative UTI after surgery for

487 pelvic floor disorders such as pelvic organ prolapse

488 [76, 77].

489 Cystitis is the most common form of UTI, which may be

490 complicated by antimicrobial resistance. The very recent

491 work done by Ceprnja et al., investigated changes in the

492 urinary microbiome of cystitis patients and its dynamics

493 when prescribed with antimicrobial therapy [57]. 16S

494 rRNA gene sequencing data of 28 patients suspected of

495 cystitis was used to infer models about urine microbial

496 interactions and dynamics: Actinobacteria and Bacilli

497 demonstrated protective roles against pathogens, such as

498 bacterial cystitis indicating Gammaproteobacteria, which

499 was the class pathogen associated with a majority of cases

500 in this study. Notably, a single female patient’s microbiota

501was monitored during the entire 7-day period of oral

502Cephalexin therapy, and it was found that the national

503guidelines on antimicrobial treatment duration for UTI

504used should be altered, as the 7-day treatment led to the

505depletion of commensal Lactobacillus sp. contributing to

506Candida and recurring cystitis [57]. The study found that

507two days of therapy was sufficient to reduce the relative

508abundance of the uropathogen in question from 94% to

5091.04%. The need for more studies with larger cohorts that

510monitor urobiome dynamics during antimicrobial therapy

511may provide essential insights for the rational use of

512antibiotics.

513Future Perspectives: Host-Urobiome Interactions,

514Biomarkers, Microbiome and Metabolome-Based

515Therapy

516The question remains, is dysbiosis a cause or result of

517disease? Current research has established links between

518urinary microbiome dysbiosis and urinary system diseases,

519paving the way for additional work that needs to assess

520whether there are disease-specific causal attributes of

521imbalanced urobiomes, thereby identifying targets for

522therapy. This is an essential future perspective as merely

Fig. 2 Composition of bacterial phyla in the urinary microbiome

present in type 2 diabetes mellitus (T2DM) patients [67], and kidney

stone disease co-occurring with hypertension (KSD ? HT) patients

[39], as compared to their healthy counterparts. A. Relative

abundance of phyla present in matched healthy controls and B.

T2DM patients [67]. C. Relative abundance of phyla present in

healthy controls with neither kidney stones nor hypertension and D.

KSD ? HT patients [39]. T2DM type 2 diabetes mellitus, KSD ? HT

kidney stone disease co-occurring with hypertension
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523 having information about microbial community changes

524 does not specify whether those changes are functionally

525 detrimental to the host, secondary outcomes from diseases

526 or individual host-related factors [22, 25]. It is therefore

527 suggested that future research focuses not only on corre-

528 lating urinary microbiome changes to diseases but also on

529 interactions between the host and microbiome, such as the

530 impact of imbalanced urobiomes to host functions (e.g., the

531 immune system, glomerular filtration), and on host factors

532 that influence the microbiome. For instance, Rudick et al.

533 utilised asymptomatic bacteriuria Escherichia coli (ASB

534 E. coli) to treat UTI and suggested that ASB E. coli

535 exhibits its anti-infective effects by improving the host

536 immune response to uropathogens thereby reducing their

537 abundance [79]. This highlights the need also to consider

538 host factors such as immunity that may affect the micro-

539 biota balance [25]. Similarly, it is necessary to investigate

540 whether urinary dysbiosis has measurable, maladaptive

541 functional implications to the host [22]. Studying the

542 microbiome in the host context provides insights that are

543 paramount to understanding how urinary dysbiosis con-

544 tributes to diagnostics, aetiology and discovery of thera-

545 peutic targets.

546Biomarkers can serve as valuable diagnostic tools,

547helping to identify the extent of disease (high-risk versus

548low-risk patients) and explain pathophysiology

549[77, 80, 81]. Biomarker identification based on microbiota

550signatures for diseased urinary microbiomes is an impor-

551tant direction for future studies. Currently, urine biomark-

552ers have been explored with community-acquired

553pneumonia, where they were used in predictive models to

554identify two cytokines, thirteen microbial taxa, and

555metabolites that can be used to differentiate between bac-

556terial and viral pneumonia [80]. A recent review identifies

557urine microbial extracellular vesicles as novel biomarkers

558for allergic diseases [82]. Extracellular vesicles are

559involved in host and microbiome interactions; therefore, it

560is interesting to study whether urinary microbial-derived

561extracellular vesicles in disease provide insights into uri-

562nary system-related pathologies [83]. Future studies can

563also explore urinary microbial signatures, metabolites,

564among others, as potential biomarkers for diseases impli-

565cating the urinary system such as CKD, HT, DM and UTIs.

566Understanding cause-effect relationships of urinary

567microbiome dysbiosis facilitate research on urinary

568microbiome-based therapy. The use of live biotherapeutic

Fig. 3 Comparison between

two clusters of pre-operative

bladder microbiomes associated

with differential post-operative

urinary tract infection (UTI)

statuses [76]. Pre-operative

bladder microbiomes were

divided into two clusters: A.

Less Dispersed Cluster (LDC)

has an abundance of

Lactobacillus iners and all

women in this cluster did not

develop post-operative UTI

[76]. B. More Dispersed Cluster

(MDC) has more diversity in

uropathogens and included

more women who developed

post-operative UTIs later on

[76]. UTI urinary tract infection,

LDC less dispersed cluster,

MDC more dispersed cluster
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569 products (LBPs), such as using microorganisms as part of

570 vaccines and probiotics, prebiotics and faecal microbiota

571 transplantation, are explored to alleviate disease symptoms

572 potentially by reconstituting the healthy, protective

573 microbiome in various gastrointestinal and non-gastroin-

574 testinal diseases [24, 78, 79, 84–86]. Future studies can

575 explore such microbiome-based therapies with diseases

576 affecting the urinary system. Horwitz et al. demonstrated

577 that bladder inoculation with benign E. coli HU2117 as an

578 LBP did not prevent colonisation by uropathogens and the

579 incidence of symptomatic UTI; however, a limitation of

580 this study was the smaller sample size [75]. In contrast, in

581 another study, ASB E. coli exerts anti-infective effects in

582 UTI [79]. The need for future studies with sufficient sam-

583 ples that examine the use of LBPs in urological diseases is

584 necessary for a consensus. A recent study by Aragón et al.

585 also reviews the effectiveness of probiotics, prebiotics, and

586 diet as ways to regulate an imbalanced microbiome [87].

587 The use of probiotics such as Lactobacillus casei in bladder

588 cancer and Oxalobacter formigenes in kidney stone cases

589 has shown promising disease management results. How-

590 ever, the latter example has had contradictory findings [87].

591 Future studies can clarify existing contradictions and

592 explore probiotic use in other kidney-related diseases like

593 CKD, DM, UTI, and HT. In addition to microbiome-based

594 therapy, metabolite-based therapy is suggested to be a

595 potential area for future translational research on urinary

596 system diseases, given that dysbiosis of the urinary

597 microbiome is also reflected in changes at the metabolite

598 level [85, 88]. A combination of urine microbiome analy-

599 ses and urine metabolomics would provide a reliable means

600 to identify therapeutic targets and biomarkers [88].

601 Conclusion

602 The human urinary microbiome has implications for health

603 and disease. Studying urobiome dysbiosis, such as changes

604 to species richness and diversity, in kidney pathologies

605 may provide new insights into disease pathogenesis and

606 treatment interventions. As urobiome dysbiosis is a rela-

607 tively understudied area, it is recommended that future

608 studies continue to explore this field. This is necessary to

609 form reliable and sound scientific conclusions. It is essen-

610 tial to look beyond solely correlating urinary microbiome

611 dysbiosis with diseases and to investigate host-microbe

612 interactions and potential microbial-derived biomarkers

613 that may allow predictions to be made about disease

614 diagnosis, mechanisms, and targets for therapy. Future

615 studies can also explore ways of modifying urobiome

616 dysbiosis and alleviating disease symptoms, such as

617 introducing suitable LBPs to suppress uropathogens, util-

618 ising prebiotics, and diet modifications.
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830 (2018) The urinary microbiome associated with bladder cancer.
831 Sci Rep 8:12157. https://doi.org/10.1038/s41598-018-29054-w
832 54. Wojciuk B, Salabura A, Grygorcewicz B, Kędzierska K, Cie-
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