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Abstract

There is much confusion in the literature over Hurst exponents. Recently, we took a step in the direction of eliminating

some of the confusion. One purpose of this paper is to illustrate the difference between fractional Brownian motion (fBm)

on the one hand and Gaussian Markov processes where Ha1
2
on the other. The difference lies in the increments, which are

stationary and correlated in one case and nonstationary and uncorrelated in the other. The two- and one-point densities of

fBm are constructed explicitly. The two-point density does not scale. The one-point density for a semi-infinite time interval

is identical to that for a scaling Gaussian Markov process with Ha1
2
over a finite time interval. We conclude that both

Hurst exponents and one-point densities are inadequate for deducing the underlying dynamics from empirical data. We

apply these conclusions in the end to make a focused statement about ‘nonlinear diffusion’.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The necessity of stationary increments for fractional Brownian motion (fBm) has been emphasized in books
[1] and papers [2] by mathematicians, but also is sometimes not stated [3]. Books [4] and papers [5] by
physicists tend to ignore the question altogether and to assume, without justification and incorrectly, that
Ha1

2
always implies long-time correlations. In this paper, we emphasize that the essential point in long-time

correlations is stationarity of the increments, not scaling. Scaling makes life simpler, when it occurs, but is
irrelevant for correlations: classes of stochastic dynamical systems with long-time correlations exist without
scaling, while processes with no memory at all, Markov processes, can scale perfectly with a Hurst exponent
Ha1

2
[6]. Our point is that evidence for scaling, taken alone, tells us nothing whatsoever about the existence of

long-time correlations. The basic question to be answered first, in both data analysis and theory, is: are the
e front matter r 2007 Elsevier B.V. All rights reserved.
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increments stationary or nonstationary? To achieve both unity and clarity, we begin with the mathematicians’
usual definition of scaling of a stochastic process and then show how it leads naturally to the physicists’
definition.

2. Hurst exponent scaling

We define scaling (self-similar processes) starting from the mathematicians’ standpoint [1] and show that it
is equivalent to our definition [6] in terms of densities.

A stochastic process xðtÞ is said to scale with Hurst exponent H if [1]

xðtÞ ¼ tHxð1Þ, (1)

where by equality we mean equality ‘in distribution’. We next define what that means in practice.
The one-point distribution Pðx; tÞ reflects the statistics collected from many different runs of the time

evolution of xðtÞ from a specified initial condition xðt0Þ, but does not describe correlations or lack of same. The
(one-point) density f 1ðx; tÞ of the distribution is defined by f 1ðx; tÞ ¼ dP=dx. Given any dynamical variable
Aðx; tÞ, averages of A are calculated via

hAðtÞi ¼

Z 1
�1

Aðx; tÞf 1ðx; tÞdx. (2)

We restrict to x-independent drift coefficients. Let RðtÞ denote the drift coefficient in xðtÞ. Since the drift in

hxðtÞi ¼ xðt0Þ þ

Z t

t0

RðsÞds (3)

depends only on t, then it is trivial to remove it from the stochastic process by choosing instead of xðtÞ the
Martingale variable zðtÞ ¼ xðtÞ �

R
RðsÞds. In what follows we will write ‘xðtÞ’ with the assumption that the

drift has been removed, hxðtÞi ¼ xðt0Þ. We will also take xðt0Þ ¼ 0, so that more generally our xðtÞ must be
interpreted as xðtÞ � xðt0Þ if xðt0Þa0. i.e., we are generally using xðtÞ to mean the random variable
zðtÞ ¼ xðtÞ � xðt0Þ �

R
hRdti.

From (1), the moments of x must obey

hxnðtÞi ¼ tnHhxnð1Þi ¼ cntnH . (4)

Combining this with

hxnðtÞi ¼

Z
xnf 1ðx; tÞdx (5)

we obtain [6]

f 1ðx; tÞ ¼ t�HF ðuÞ, (6)

where the scaling variable is u ¼ x=tH . In particular, with no average drift, so that we can choose
hxðtÞi ¼ xðt0Þ ¼ 0, the variance is simply

s2 ¼ hx2ðtÞi ¼ hx2ð1Þit2H . (7)

This explains what is meant by Hurst exponent scaling, and also specifies what is meant that (1) holds ‘in
distribution’. In all that follows, equations in random variables xðtÞ like (1), solutions of stochastic differential
equations (sdes), and increment equations as we shall write down in part 3 below, are all to be understood as
holding ‘in distribution’.

We ignore Levy distributions here because they are not indicated by our recent financial data analysis [7].
That analysis suggests diffusive processes, Markov processes. For discussions of Levy distributions, see Scalas
et al. [8,9].

Empirically, the best evidence for scaling would be a data collapse of the form F ðuÞ ¼ tHf 1ðx; tÞ. Next best
but weaker is to look for scaling in a finite number of the moments hxnðtÞi. It is important to understand that
Hurst exponent scaling, taken alone, tells us nothing about the underlying stochastic dynamics. In particular,
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scaling, taken alone, implies neither the presence nor absence of autocorrelations increments/displacements
taken over nonoverlapping time intervals, as we will show next.

Self-similar processes (1) are strongly nonstationary: by (4), the moments do not approach constants,
rather, the one-point density necessarily spreads in width forever, reflecting the continual loss of information
about where xðtÞ lies [6]. But a nonstationary process may have either stationary or nonstationary increments.
3. Stationary vs. nonstationary increments

Stationary processes are often confused with stationary increments in the literature (see Ref. [6] for a
discussion). Stationary increments are assumed without prior justification in data analyses. We define
stationary and nonstationary increments and exhibit their implications for the question of long-time
autocorrelations, or complete lack of autocorrelations. We show that the question of stationary increments,
not scaling, is central for the existence of long-time correlations.

Stationary increments Dxðt;TÞ of a nonstationary process xðtÞ are defined by

xðtþ TÞ � xðtÞ ¼ xðTÞ, (8)

and by nonstationary increments [1,6,7] we mean that

xðtþ TÞ � xðtÞaxðTÞ. (9)

Again, such equations are to be understood as ‘equality in distribution’. The implications of this distinction
for data analysis, and for understanding Hurst exponents, are central. When (8) holds, then given the density
of ‘positions’ f 1ðx; tÞ, we also know the density f of increments f ðDxÞ,

f ðxðtþ TÞ � xðtÞÞ ¼ f 1ðx;TÞ, (10)

making it easy to construct what one means1 by ‘equality in distribution’. When the increments are
nonstationary then it is impossible to construct a t-independent one point density f of increments theoretically.
The reason for this is that in the latter case the discussion of the increments inherently requires a two-point
density, f 2ðxðtÞ; t; xðtþ TÞ; tþ TÞ. So while equations such as (8) and (9) must always be understood as
holding ‘in distribution’, in the case of Eq. (9) there is no way to construct a t-independent increment density.
This is particularly true for Markov processes where Ha1

2.
By the efficient market hypothesis (EMH), we mean that the market is impossible to beat, that there are no

correlations (no systematically repeated price/returns patterns) that can be exploited for profit. Such a market
is necessarily uncorrelated noise, albeit not simply uncorrelated Gaussian noise. Because real markets are very
hard to beat, models that generate no autocorrelations in increments are a good zeroth-order approximation
to real markets [7]. In such models, the autocorrelations in increments Dxðt;TÞ ¼ xðtþ TÞ � xðtÞ vanish

hðxðt1Þ � xðt1 � T1ÞÞðxðt2 þ T2Þ � xðt2ÞÞi ¼ 0, (11)

if there is no time interval overlap,

½t1 � T1; t1� \ ½t2; t2 þ T2� ¼ F, (12)

where F denotes the empty set on the line. This is a weaker condition than asserting that the increments are
statistically independent.

Consider a stochastic process xðtÞ where the increments are uncorrelated. From this condition, we easily
obtain the autocorrelation function for positions (returns). Let t4s, then

hxðtÞxðsÞi ¼ hðxðtÞ � xðsÞÞxðsÞi þ hx2ðsÞi ¼ hx2ðsÞi40, (13)

since xðsÞ � xðt0Þ ¼ xðsÞ, so that hxðsÞxðtÞi ¼ hx2ðsÞi ¼ s2 is simply the variance in x. All Markov processes will
be seen by construction to generate this autocorrelation. If, in addition, scaling holds, then (13) yields:

hxðtÞxðsÞi ¼ minðs2H ; t2HÞhx2ð1Þi. (14)
1With a nonconstructive definition or nonconstructive existence proof one is not quite sure what one is talking about.
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We next make a very important point. Combining

hðxðtþ TÞ � xðtÞÞ2i ¼ þhx2ðtþ TÞi þ hx2ðtÞi � 2hxðtþ TÞxðtÞi (15)

with (13), we get

hðxðtþ TÞ � xðtÞÞ2i ¼ hx2ðtþ TÞi � hx2ðtÞi, (16)

which depends on both t and T, excepting the rare case where hx2ðtÞi is linear in t. Uncorrelated increments are

generally nonstationary. E.g., if scaling holds, then (16) becomes

hðxðtþ TÞ � xðtÞÞ2i ¼ hx2ð1Þiððtþ TÞ2H
� t2H Þ. (17)

Here, the increments may be stationary iff H ¼ 1
2
, otherwise they are nonstationary. This class includes

Markov processes. Next, we describe the class of stochastic processes that includes fBm, stochastic processes
with arbitrarily long-time memory.

Consider the class of all stochastic processes with stationary increments. Here, we begin with

�2hxðtþ TÞxðtÞi ¼ hðxðtþ TÞ � xðtÞÞ2i � hx2ðtþ TÞi � hx2ðtÞi, (18)

then using (8) on the right-hand side of (18) we obtain

�2hxðtþ TÞxðtÞi ¼ hx2ðTÞi � hx2ðtþ TÞi � hx2ðtÞi, (19)

which differs from (13). For increments with nonoverlapping time intervals, the simplest autocorrelation
function is

2hðxðtÞ � xðt� TÞÞðxðtþ TÞ � xðtÞÞi

¼ hðxðtþ TÞ � xðt� TÞÞ2i � hðxðtÞ � xðt� TÞÞ2i � hðxðtþ TÞ � xðtÞÞ2i

¼ hx2ð2TÞi � 2hx2ðTÞi, ð20Þ

which generally does not vanish. Stationary increments are typically strongly correlated. E.g., if scaling (1)
holds then we obtain the prediction of infinitely long-time autocorrelations

hðxðtÞ � xðt� TÞÞðxðtþ TÞ � xðtÞÞi ¼ hx2ðTÞið22H�1 � 1Þ (21)

characteristic of fBm. This autocorrelation vanishes iff H ¼ 1
2
, otherwise the autocorrelations are strong for all

time scales T. Such fluctuations violate the EMH, especially if H cannot be approximated as H � 1
2
, and

therefore could at best occur as higher order effects in finance markets.
Summarizing, the Hurst exponent H, taken alone, tells us nothing whatsoever about the autocorrelations,

tells us nothing about the underlying dynamics. In the next two sections, we will sharpen the distinction
between scaling Markov processes and fBm where Ha1

2
.

4. Markov processes

We define Markov processes using densities and then show that the definition yields null autocorrelations
for increments over nonoverlapping time intervals, showing that nonstationary Markov processes typically
generate nonstationary increments.

A Markov process is a stochastic process without memory [10–12]: the conditional probability density for
xðtnÞ in a time series fxðt1Þ;xðt2Þ; . . . ; xðtnÞg depends only on xðtn�1Þ, and so is independent of all earlier
trajectory history x1; . . . ;xn�2. For finance markets, one best studies logarithmic returns [4,6] xðtÞ ¼ ln pðtÞ=pc,
where p is the price of a particular financial instrument. For Markov the two-point probability density
f 2ðxðt1Þ; t1; xðt2Þ; t2Þ is enough. We can then write

f 2ðxðtÞ; t; xðtþ TÞ; tþ TÞ ¼ gðxðtþ TÞ; tþ T ; xðtÞ; tÞf 1ðx; ðtÞ; tÞ, (22a)
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where f 1 is a one-point density of initial conditions and g is the transition density, or Green function. If we
integrate over the variable at the earlier time in f 2, then follows that

f 1ðx; tÞ ¼

Z 1
�1

dygðx; tþ T ; y; tÞf 1ðy; tÞ. (22b)

A necessary condition for a Markov process is

gðx; t; x0; t0Þ ¼

Z 1
�1

dx0gðx; t; x0; t0Þgðx0; t0; x0; t0Þ (23)

if t0ot0ot. Next, for drift-free motion, assuming that
R

RðtÞ has been subtracted from xðtÞ, we show how the
Markov property guarantees uncorrelated increments (11) over nonoverlapping time intervals.

First, note that if the increments are nonstationary, then even if we know the Green function g we do not
know the corresponding density for the increments. To prove that a Markov process guarantees uncorrelated
increments, we can formulate the problem as follows. We can prove lack of autocorrelations hðxðt1Þ � xðt1 �

TÞðxðt2 þ TÞ � xðt2ÞÞi for nonoverlapping time intervals t1ot2 with T40, if we can show that the
autocorrelations hxðtÞxðtþ TÞi reduce to the second moment at the shorter time (13). That is, with T40 in

hxðtÞxðtþ TÞi ¼

Z Z
dxdyxygðy; tþ T ; x; tÞf 1ðx; tÞ, (24)

we must show that hxðtÞxðtþ TÞi ¼ hx2ðtÞi if T40.
We see that this is true for a Martingale (see Durrett [12] for Martingales), because the conditional average

of xðtþ TÞ starting from a point xðtÞ is thenZ
dyygðy; tþ T ; x; tÞ ¼ x, (25)

which yields:

hxðtÞxðtþ TÞi ¼

Z Z
dxx2f 1ðx; tÞ ¼ hx

2ðtÞi (26)

for T40. So if we work with the Martingale variable zðtÞ ¼ xðtÞ �
R

RðsÞds instead of xðtÞ, then lack of
autocorrelations of increments is proven. The stochastic differential equation for a drift free Markov process
describes a Martingale.

The drift and diffusion coefficients are generally defined by

Rðx;T ; tÞ ¼
hxðtþ TÞ � xðtÞi

T
¼

1

T

Z
ðx� x0Þgðx; tþ T ; x0; tÞdx0 (27)

and

Dðx; tÞ ¼
hðxðtþ TÞ � xðtÞÞ2i

T
¼

1

T

Z
ðx� x0Þ

2gðx; tþ T ; x0; tÞdx0 (28)

as T vanishes. However, one never knows the Green function in advance. Rather, one typically writes down a
model diffusion coefficient Dðx; tÞ and then calculates the density f ðx; tÞ. Diffusion coefficients can be inferred
from Markov empirical data from a combination of the histograms (form of f as a function of x) and the
variance (giving the time dependence in f).

We conclude that Markov processes that scale with Ha1
2
will generate nonstationary, uncorrelated

increments.

5. Scaling Markov processes

We review scaling Markov processes [6] in order to contrast uncorrelated Gaussian Markov processes with
fBm, which is a strongly correlated Gaussian process.
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Here, we restrict to the density f 1ðx; tÞ ¼ gðx; t; 0; 0Þ because the full Green function gðx; t; x0; t0Þ does not
scale [6].

A Markov process is generated locally by the sde [6]

dx ¼ Rðx; tÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðx; tÞ

p
dBðtÞ, (29)

where BðtÞ is the Wiener process [12] and R and D are ordinary functions (not functionals) of the random
variable x and time t. A Wiener process is an uncorrelated Gaussian process scaling with H ¼ 1

2, so that the
increments are stationary and (from Ito’s theorem [4,12]) dB2 ¼ dt ¼ hdB2i.

The variance can be calculated from (29) as

s2 ¼
Z t

0

ds

Z 1
�1

dxf 1ðx; sÞDðx; sÞ, (30)

so that scaling of the density and the variance imply that the diffusion coefficient scales as well [6]:

Dðx; tÞ ¼ t2H�1DðuÞ; u ¼ x=tH . (31)

Hurst exponent scaling for Markov processes is possible with RðtÞ independent of x, but not with arbitrary
drift Rðx; tÞ. One can derive a scaling requirement for a general drift Rðx; tÞ, but such scaling is generally not
satisfied. In the remainder of the paper we will assume a time dependent drift RðtÞ that has been removed, so
that by xðtÞ we mean xðtÞ �

R
RðtÞdt. This means that we work with the drift free Fokker–Planck pde

qf 1

qt
¼

1

2

q2

qx2
ðDf 1Þ. (32)

Scaling solutions for Markov processes are easily calculated [6,13,14]. With

f 1ðx; tÞ ¼ t�HF ðuÞ; u ¼ x=tH (33)

and

Dðx; tÞ ¼ t2H�1DðuÞ; u ¼ x=tH (34)

the Fokker–Planck pde (32) yields

2HðuF ðuÞÞ0 þ ðDðuÞF ðuÞÞ00 ¼ 0, (35)

which we integrate to obtain

F ðuÞ ¼
C

DðuÞ
e
�2H

R
u du=DðuÞ

. (36)

For Ha1
2
all of these processes generate nonstationary increments.

In particular, the choice DðuÞ ¼ D ¼ constant yields the Gaussian returns model F ðuÞ ¼

ðH=DpÞ1=2 expð�Hu2=DÞ ¼ ð2phx2ð1ÞiÞ1=2 expð�u2=2hx2ð1ÞiÞ with 0oHo1. This is second main point of this
section, and is all that we need for this paper: Gaussian Markov processes with Ha1

2
generate nonstationary

increments. But there are Gaussian processes that are not Markovian.

6. Fractional Brownian motion

We construct what is difficult (or impossible) to find written down explicitly in the literature, namely, the
one- and two-point Gaussian densities of fBm. The two-point density, where the long-time autocorrelations
are built in, does not scale with Hurst exponent H.

We can obtain scaling (1) from integrals of the type [2]Z T

�1

kðT ; sÞdBðsÞ ¼ xH ðTÞ (37)

if the kernel scales, kðt; sÞ ¼ tH�1=2kð1; s=tÞ, and if the lower limit of integration is, as shown, at s ¼ �1. Long-
time correlations for increments over nonoverlapping time intervals (21) follow if the increments of (37) are
stationary. This can only be checked for a specific kernel. Mandelbrot and van Ness [2] have provided us with
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a scaling model with stationary increments,

xH ðtÞ ¼

Z 0

�1

½ðt� sÞH�1=2 � ð�sÞH�1=2�dBðsÞ þ

Z t

0

½ðt� sÞH�1=2�dBðsÞ, (38)

a model of fBm with s2ðtÞ ¼ hx2ð1Þit2H . Deleting the first integral in (38) would yield a scaling process with
nonstationary increments. We can also use the shorthand notation of the Ito product [4,15], xðtÞ ¼ k.DB for
(38), where t0 ¼ �1.

Here is where confusion may arise: if one calculates the ‘one-point density’ (which in reality is in this case a
propagator from a single initial condition, xð�1Þ ¼ 0 to a present position xðtÞ) using

f 1ðx; tÞ ¼ hdðx� k.DBÞi ¼
1

2p

Z 1
¼1

eipxhe�ipxk.DBidp (39)

then one obtains a scaling Gaussian f ðx; tÞ ¼ t�HF ðuÞ;F ðuÞ ¼ ð2phx2ð1ÞiÞ1=2 expð�u2=2hx2ð1ÞiÞ with u ¼ x=tH ,
which is identical with the one-point density of a scaling Gaussian Markov process. However, if one instead
assumes an initial time t04�1, xðt0Þ ¼ 0, in (39) , then one obtains a one-point density that does not scale
with H: it is necessary that xð�1Þ ¼ 0 in (38), otherwise the increments are not stationary. The two-point
transition density cannot be used to construct a time evolution operator, the time evolution is described
instead via the hierarchy of memory-dependent transition densities, which reduce to a single two-point
transition density iff a process is Markovian.

So a Markov process cannot be distinguished from fBm on the basis of histograms for the (one-point
density) alone, it is necessary to ask if the increments are stationary or nonstationary when Ha1

2
, and that is a

question requiring two-point densities (for H ¼ 1
2
(38) is Markovian, is the Wiener process).

We can construct the two-point density that defines fBm. One needs a Gaussian process where scaling (1)
holds, but with stationary increments [1]. Any two-point Gaussian density [11] is given by

f 2ðx; tÞ ¼
1

2p det B
e�xþB�1x, (40)

where

Bkl ¼ hxkxli (41)

defines the autocorrelation matrix. Without specifying the autocorrelations (41), one cannot say whether the
process xðtÞ is Markovian or not. The autocorrelation

hxðsÞxðtÞi ¼
hx2ð1Þi

2
ðjsj2H þ jtj2H � js� tj2H Þ (42)

enforces stationary increments, where scaling with H is also assumed in agreement with (38), and therefore will
enforce the long-time autocorrelations of fBm in the increments. The resulting two-point density of fBm can
be written as2

f 2ðxðsÞ; s; xðtÞ; tÞ ¼
1

2ps1s2ð1� r2Þ1=2
e�ðx

2ðsÞ=s2
1
þx2ðtÞ=s2

2
�2rxðsÞxsðtÞ=s1s2Þ=2ð1�r2Þ, (43)

where s1s2r ¼ hxðsÞxðtÞi, s21 ¼ hx
2ð1ÞiðabsðsÞÞ2H and s22 ¼ hx

2ð1ÞiðabsðtÞÞ2H and

r ¼ ðjsj2H þ jtj2H � jt� sj2H Þ=2jstjH .

If we integrate (43) over the earlier variable xðsÞ, taking sot, then we obtain the one-point density f 1,

f 1ðx; t;�1Þ ¼
t�Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2phx2ð1Þi
p e�x2=2hx2ð1Þit2H

, (44)

which scales with H, is identical with the density for a Markov process, but where the initial condition must be
understood to be xð�1Þ ¼ 0. For a Markov process, in contrast, we can generally take xð0Þ ¼ 0.
2This corrects misstatements about fBm in Ref. [4,6].
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Using (43) to construct the two-point transition density, p2ðy; s; x; tÞ ¼ f 2ðx; t; y; sÞ=f 1ðx; tÞ, one can show
that fBm is not a Martingale: we obtain the conditional average hyðsÞi ¼

R
dyyp2ðy; s; x; tÞ ¼ Cðt; sÞx, where

Ca1 unless H ¼ 1
2
. In fact, C is either positive or negative according to whether H is above or below 1=2 in

value.
The implication of this paper for the analysis of time series should be clear: the two central questions are

those of nonstationary vs. stationary increments, and correlated vs. uncorrelated increments. Scaling makes
modelling easier but cannot be counted on to exist in empirical data. All of this is illustrated in our recent
finance data analysis [7]. We emphasize that (i) a Hurst exponent H, taken alone, tells us nothing about the
dynamics, and (even worse) (b), a one-point density, taken alone, tells us little or nothing about the dynamics.
It is absolutely necessary to study the autocorrelations of increments in order to obtain any idea what sort of
dynamics are generated by financial (or any other) data.
7. Linear vs. nonlinear diffusion revisited

Here is a clear description of Borland’s scaling version [6,16] of Tsallis dynamics. Consider scaling Markov
processes defined by (36), i.e., by linear diffusion. Ask for the class of diffusive scaling processes [6]
f ðx; tÞ ¼ t�HF ðuÞ;Dðx; tÞ ¼ t2H�1DðuÞ, where f is a power of D, f ðx; tÞ ¼ Dðx; tÞ1=ð1�qÞ. The choice of the
exponent in the form 1=ð1� qÞ has no special significance other than it agrees with the notation of Ref. [16]. It
follows that ð2H � 1Þ=ð1� qÞ ¼ �H or H ¼ 1=ð3� qÞ. Much more generally, we know that F ðuÞ is a power of
DðuÞ when the diffusion coefficient is quadratic in the scaling variable u [6], so that F is student t-like: with

DðuÞ ¼ dð�Þð1þ �u2Þ (45)

we obtain the general class of scaling student t like densities f ðx; tÞ, whereby

F ðuÞ ¼ Cð1þ �u2Þ
�1�H=�dð�Þ (46)

H ¼ 1=ð3� qÞ is only a special case. In general, H and e are independent parameters. In the Borland–Tsallis
model the Hurst exponent fixes both e and the fat tail exponent m. With H ¼ 1=ð3� qÞ we therefore obtain
exactly the scaling density derived by Borland, who instead of the above derivation self-consistently solved the
superficially nonlinear looking pde

qf

qt
�

1

2

q2

qx2
ðDf Þ ¼

qf

qt
�

1

2

q2

qx2
ðf 2�q
Þ ¼ 0 (47)

by assuming (45) and f ðx; tÞ ¼ Dðx; tÞ1=ð1�qÞ with H ¼ 1=ð3� qÞ.
Clearly, there is no evidence for any specific ‘nonlinear’ behavior here, but the reader may ask: Is it possible

that the density f ðx; tÞ derived from linear diffusion (45,47) with H ¼ 1=ð3� qÞ can also represent a truly
nonlinear solution derived from

qf

qt
�

1

2

q2

qx2
ðf 2�q
Þ ¼ 0? (48)

Yes, the same density may represent entirely different stochastic processes, as we have shown above in the
context of fBm, because a one-point density tells us nothing about the underlying dynamics of a time series
xðtÞ. One point is that even truly nonlinear solutions of (48) will tell us nothing about memory in the form of
increment autocorrelations. A more difficult point is that there is no way to identify a class of time series fxðtÞg
to which (48), without our linear interpretation, applies.

To answer questions about memory in the form of increment autocorrelations one would need to derive a
two point or higher order density from a more general theory, a theory yielding (48) as the exact one-point
pde. Such theories may or may not exist, and if they do they may be nonunique. The main point here is that
one would have to derive correlations from a pde other than (48). No such calculation has been produced in
the literature. To date, all published results on Tsallis dynamics can be described as simple linear diffusion, no
evidence for any specific nonlinear behavior has ever been produced. It is, therefore, completely empty to
argue that a student t like density represents the solution of a nonlinear system or describes ‘nonlinear
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feedback’. Every sde with drift and diffusion coefficients not linear in x is a nonlinear sde, while a truly
nonlinear pde has no underlying sde.

A nonlinear diffusion pde for a one-point density f ðx; tÞ tells us nothing about the dynamics of any possible
underlying time series xðtÞ. A Langevin equation cannot be used to define the class of time series because
nonlinear diffusion (48) admits no Green function, whereas every Langevin equation with ordinary functions
as drift and diffusion coefficients (D ¼ f 1�q is an ordinary function of ðx; tÞ, not a functional) describes a
Markov process [6], and therefore generates a Green function (the transition probability density). The point is
that we have no way to know what, if any, class of time series a more specific nonlinear system with the one-
point diffusion pde (48) might describe.

Finally, (46) yields the range of fat tail exponents 2omo1. For m43, the variance is finite and scales with
Hurst exponent H [6], whereas for 2omo3 we obtain the Levy range of exponents and infinite variance but
from a diffusive model. Again, the data indicate diffusive models with finite variance [7], ruling out Levy
processes.
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