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Abstract: A new classification method, which is closely 

related to k nearest neighbour (kNN) classification method is 

introduced for identifying cognitive tasks in brain computer 

interface (BCI) systems. This new method is named fixed 

distance neighbour (FDN) classifier. Performance of the 

FDN method is tested with feature vectors derived from EEG 

datasets recorded for imagery motor movement mental tasks. 

For comparison purposes, performance of kNN classification 

method is also tested with the same feature vectors. It was 

found that FDN performed slightly better than kNN for most of 

the datasets used in this study, indicating that FDN is a viable 

classification method, which can be used in place of kNN in 

BCI systems.

Keywords: Brain computer interface (BCI), 

electroencephalography (EEG), fixed distance neighbour 
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INTRODUCTION

Brain computer interface (BCI) technology is an 

emerging technology, which enables people with motor 

disabilities to communicate with the external world. 

It does not require any peripheral muscular activity. 

The user of this technology can send commands to 

communicate or control electronic devices by means of 

brain activity alone.

 In order to control a BCI system, the user must produce 

different brain activity patterns, which could be identified 

by the system and translated into commands. In most 

current BCI systems this identification is carried out by a 

classification algorithm, which automatically recognizes 

the class from data as represented by a feature vector. 

Usually, in EEG based BCI systems, the EEG signal is 

first preconditioned to remove undesired frequencies. 

Even after preconditioning, the signal cannot be directly 

used as a feature vector for classification due to its high 

dimensionality. Therefore, low dimensional feature 

vectors are constructed using various feature vector 

construction techniques. Feature vector construction 

methods used in BCI systems include amplitude values 

of EEG signals (Kaper et al., 2004); band powers (BP) 

(Pfurtscheller et al., 1997); power spectral density (PSD) 

values (Millán & Mourino, 2003; Chiappa & Bengio, 

2004); autoregressive (AR) and adaptive autoregressive 

(AAR) parameters (Pfurtscheller et al., 1998; Penny 

et al., 2000); time frequency features (Wang et al., 

2004);  inverse model-based features (Qin et al., 2004; 

Kamousi et al., 2005; Congedo et al., 2006); Bi-scale 

wavelets (Mason & Birch, 2000) and PSD with Welch’s 

periodogram (Barreto et al., 2004). 

 After constructing feature vectors, suitable 

classification techniques are used to classify EEG 

signals. For EEG based BCI systems, commonly 

used classification algorithms are linear discriminant 

analysis (LDA), support vector machines (SVM), neural 

networks (NN), nonlinear Bayesian classifiers and 

nearest neighbour classifiers (Lotte et al., 2007). There 

are several versions of nearest neighbour classifiers for 

solving general classification problems (Domeniconi 

et al., 2002; Voulgaris & George, 2008).

 The efficiencies of these different classifiers are 

found to be strongly dependent on the kind of BCI used. 

As an example, Gaussian SVM, LDA, hidden Markov 

model (HMM), finite impulse response neural network 

(FIR NN) and Bayes quadratic integrated over time 

have shown good performances (83 % - 89 %) for pure 

motor imagery based BCI (Lotte et al., 2007). On the 

other hand, in movement intention based BCI, k nearest 

neighbours (kNN), multilayer perceptron (MLP), SVM 
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and LDA have shown better performance than other 

classifiers (Lotte et al., 2007). However, kNN algorithms 

have not shown very good performance for asynchronous 

BCI (Lotte et al., 2007). 

 For most of the BCI systems, the system has to be 

trained and parameters of feature vector construction 

and classification schemes have to be determined at the 

training stage.

 In this paper, a fixed distance neighbour (FDN) 

classifier, which is closely related to kNN is proposed for 

BCI systems. Its performance with motor imagery based 

BCI data and the performance of kNN classifier on the 

same dataset is also presented.

METHODS AND MATERIALS

Fixed distance neighbour classifier

In kNN classifier, a decision is made by examining the 

labels on the k nearest neighbours and taking the majority 

vote. In order to find the k nearest neighbours for a given 

test feature point, distances between the test feature point 

and all the training feature points are calculated and 

sorted. The metric used for determining distances will 

depend on the problem of interest. The most commonly 

used metrics are Euclidian distance metric, cityblock 

distance metric and correlation distance metric. In the 

FDN classifier introduced in this paper, a hypersphere of 

fixed radius (say r
c
) centered at the test point is considered 

and labels of the training points inside the hypersphere 

are examined. The decision is taken according to the 

majority vote. 

Let x
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Suppose that the distance between test vector a and ith 

training vector x
i
 is d

a,i
 i = 1, 2, …… M. Note that d

a,i 

can be calculated with any metric as mentioned above. In 

FDN feature vectors, which participate in classifying the 

test vector a belongs to the set S
a
.  
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where, d
a,k

 = (x
k
−a)T (x

k 
− a) for Euclidean metric. The 

class label of the test vector is predicted as the label of 

the class, which is having the highest number of feature 

vectors in S
a
.  

 The major difference between kNN and FDN 

methods can be described as follows. In kNN, since the 

number of nearest neighbours are fixed, the radius of the 

hypersphere, which encloses the nearest neighbours can 

be very different from one test point to another  as shown 

in Figures 1(a) and 1(b). On the other hand, in FDN, 

since radius r
c
 of the hypersphere is fixed, the number of 

neighbours participating in voting can be different from 

one test point to another as shown in Figures 2(a) and 

2(b). 

Figure 1: Training feature vector points of a two class problem are represented as Δ and ●. Test point is represented 

as . (a) In kNN classification, when the concentration of points surrounding the test point is large, a sphere 

with small radius could enclose seven nearest neighbours. (b) When the concentration of the feature vectors 

is low, a sphere with larger radius is needed to enclose the seven nearest neighbour points.



Journal of the National Science Foundation of Sri Lanka 40 (3)                 September 2012

Fixed distance neighbour classifiers 197

The radius of the hypersphere, which encloses k nearest 

neighbours depends on the density of the training 

feature vectors in the neighbourhood of the test point. 

Consequently, this radius can vary considerably from 

one test point to another as mentioned earlier. When k is 

even, there is a possibility of getting a tie and in such a 

situation; tie-break is achieved by inclusion of a random 

point or the next nearest neighbour point for voting. With 

a sufficiently high value of k and enough training samples, 

kNN can approximate any function, which enables it to 

produce nonlinear decision boundaries. 

 In FDN, for an arbitrary radius centered at the test 

point, there is a possibility that hypersphere encloses 

no test feature vectors or encloses all the test feature 

vectors. Therefore, the radius r
c
 has to be determined 

at the training stage such that the radius is large enough 

to enclose at least the desired number of feature vectors 

of the training dataset and classification efficiency is 

maximal. In addition, there is also a possibility that the 

number of test feature vectors inside the hypersphere is 

even and can produce a tie for a given test vector. The tie 

break in FDN can also be carried out by a mechanism as 

described before for the kNN classifiers. Since optimal 

k in the kNN method and r
c
 in the FDN depend on the 

problem of interest, these parameters are determined 

empirically with the training dataset. 

 There are two standard techniques, which can be 

used for determining the parameters of the classification 

method. In both techniques, while varying the parameters 

of the classification method, the performance of the system 

is evaluated and the optimal values of the parameters are 

obtained. As described below, these two techniques differ 

in the way the performance is evaluated. 

In the first technique, evaluation of the performance of 

the classification method is carried out by choosing a 

single feature vector as a test vector from the training 

dataset and training the system with the remaining 

training feature vectors. Then the classification method 

is tested with this single test vector. This is continued 

by choosing a different feature vector from the training 

dataset at a time, until every vector in the training data 

set has participated. At the end, the total performance 

is calculated. The optimal parameters are determined 

by varying the parameter values and repeating the 

calculation. The parameters, which produce the best 

performance are taken as the optimal parameters.

 In the second technique, part of the training dataset 

is separated as testing data for determining the optimal 

parameters, while the remaining part of the training 

dataset is used for training the system. Performance of 

the classification method was evaluated for the testing 

dataset while changing the values of the parameters. 

The parameters, which produced the best performance 

are taken as the optimal parameters. These optimal 

parameters are then utilized for evaluating the overall 

performance of the classification method. 

Performance of the FDN

Performance of the FDN was evaluated by using the 

EEG dataset recorded while subjects were performing 

imagery motor movements (IMM) mental tasks (Zachary 

et al., 1990; Pfurtscheller et al., 1998; Birbaumer, 1999; 

Wang et al., 2004; Pfurtscheller et al., 2006; Lehtonen 

et al., 2008) and baseline (BL). The baseline signal 

represents the mental stage of the subject when he/she 

is not thinking of any specific mental task without eye 

Figure 2: Training feature vector points are as in Figure 1. (a) In FDN classification, when the concentration of points 

surrounding the test point is large, the sphere with radius d
c
 encloses large number of neighbours. (b) When 

the concentration of the feature vectors is low, the sphere encloses fewer numbers of neighbour points.
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blinks. The IMM mental tasks are the most popular 

mental tasks used in BCI due to their good performance. 

First the EEG data was filtered using bandpass filtering 

and feature vectors were constructed with band power. 

For comparison purposes, performance of kNN was also 

determined for the same feature vectors and shown in 

the Tables.

 IMM consists of two mental tasks, namely, imagery 

of Left middle finger movement (LFM) and imagery of 

Right middle finger movement (RFM). EEG recordings 

for IMM were carried out as follows. 

 The subjects were seated in an armchairs in front of 

a white blank screen, which was placed approximately 

one and a half meters away from them. The main reason 

for placing this white blank screen in front of the subject 

was to reduce distractions. They were asked not to pay 

any attention to the white board but to concentrate on 

mental task they are performing. During the recording of 

trials, they were instructed to avoid eye movements and 

to keep their arms and hands relaxed. If eye blinks or eye 

moments occurred during the recordings, recorded data 

in the trial was discarded and the trial was repeated to 

avoid artifacts in EEG data.

RESULTS

In this investigation 24 feature vector datasets generated 

from two subjects were used. The parameters used 

in recordings of the two EEG datasets are as follows 

(Table 1).

 In order to compare the performance of FDN and 

kNN classifiers, twenty four different feature vector 

datasets were constructed from two subjects by changing 

the channels, bandpass filter frequencies and width of 

frequency bands as shown in Tables 2 and 3. 

The procedure for selecting parameters to get the best 

performance for FDN is as follows.

 

The sets of all the trials were grouped into two; one (a) 

group for training and the other for testing. 

In order to select optimal parameters, only a part of (b) 

the training group was used for training the system. 

With FDN as a classifier, the other part was used for (c) 

testing the performance while changing the values of 

the parameters (channels, bandpass filter frequencies 

and width of frequency bands). The parameters 

corresponding to the best performance were selected 

as the optimal parameters. 

Dataset Channels Filter frequencies Width of 

label  (low, high) frequency bands

  BL vs. LFM

D1 1, 8, 11 (1, 30) 40

D2 5, 10, 15 (1, 34) 40

D3 10, 15, 19 (1, 39) 41

D4 3, 7, 10 (1, 32) 42

D5 3, 7, 15 (1, 31) 41

D6 7, 10, 15 (1, 31) 40

  BL vs. RFM

D7 1, 8, 11 (1, 33) 36

D8 5, 10, 15 (1, 31) 39

D9 10, 15, 19 (1, 30) 36

D10 3, 7, 10 (1, 30) 40

D11 3, 7, 15 (1, 40) 38

D12 7, 10, 15 (1, 32) 40

Table 2: Parameters for datasets D1 - D12

Dataset Channels Filter frequencies Width of 

label  (low, high) frequency bands

  BL vs. LFM

D13 1, 8, 11 (1, 31) 41

D14 5, 10, 15 (1, 38) 40

D15 10, 15, 19 (1, 32) 40

D16 3, 7, 10 (1, 33) 32

D17 3, 7, 15 (1, 35) 38

D18 7, 10, 15 (1, 35) 38

  BL vs. RFM

D19 1, 8, 11 (1, 32) 40

D20 5, 10, 15 (1, 39) 39

D21 10, 15, 19 (1, 33) 39

D22 3, 7, 10 (1, 36) 40

D23 3, 7, 15 (1, 41) 38

D24 7, 10, 15 (1, 44) 31

Table 3: Parameters for datasets D13 – D24

Channels used for recording All 20 channels according to 10 −20  

 system

Sample rate 256 samples per second

Block size 768 bytes per block per channel

Recording duration 9 seconds

Table 1: Parameters and settings used in all the EEG recording 

sessions



Journal of the National Science Foundation of Sri Lanka 40 (3)                 September 2012

Fixed distance neighbour classifiers 199

The optimal parameters for kNN were found in a similar 

manner.

When creating the feature vector datasets D1 to D12, the 

parameters were chosen such that they produced the best 

performance for FDN classification method during the 

training period. 

 On the other hand, the feature vector datasets D13 

to D24 were constructed using, the optimal parameters 

found for kNN during the training period.

The performance of a given dataset was calculated using 

the formula given below.

  

N
s

N
P =  — × 100

  
…(1)

P  –   Performance 

N
s   

–   Number of successfully identified mental tasks

N  –   Total number of mental tasks

The performance of FDN and kNN are shown in Tables 

4 and 5. k values for kNN and d
c 
values for FDN given 

in the tables corresponding to the best performance that 

were obtained for each method. It is evident from Tables 

4 and 5 that FDN method performed better than kNN for 

most of the feature vector datasets used in the study. 

DISCUSSION AND CONCLUSION 

The performance of a new classification method, fixed 

distance neighbour classifier, which is closely related to 

the well known k nearest neighbour classifier is presented. 

The main difference between these two methods can be 

summarized as follows. kNN does not consider how 

far the training dataset points are located from the test 

point but considers only the number of neighbours. As 

a result some neighbours, which participated in voting 

can be far away from the test point due to lack of training 

data points in the neighbourhood of the test point. On 

the other hand FDN does consider how far the training 

data set points are located from the test point, but does 

not take into account the number of neighbours that 

participated in voting when classification decision was 

made. As a result, for different test points, different 

number of neighbours participated in voting. However, 

if the distribution of feature vectors in the feature space 

(i.e. density of feature vectors) is uniform, both methods 

should produce the same performance.

 For most of the twenty four feature vector data sets used 

in this study, FDN showed slightly better performance 

than the kNN, indicating FDN is a viable classification 

method, which can be used in place of kNN. Since we 

have tested FDN only for feature vectors derived from 

EEG data sets, which were specifically recorded for BCI, 

the true merit of FDN as a general classification method 

cannot be made and further studies have to be carried out 

with other type of data to determine its general validity.
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