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Abstract 

Full state revivals in a quantum walk can be viewed as returning of the walker to the initial 

quantum state in a periodic fashion during the propagation of the walk. In this paper we show 

that for any given number of spatial dimensions, a coin operator can be constructed to 

generate a quantum walk having full revivals with any desired period. From the point of view 

of quantum computation and simulations, these coin operators can be useful in implementing 

quantum walks which oscillate between any two states with a finite periodicity. 

 

1. Introduction 

Quantum walks have become a fruitful testing ground in various areas of science during the 

past few decades. Principally they contribute to theoretical and practical improvements in 

quantum algorithms [1-4] and quantum computing [5, 6]. In addition, quantum walks have 

been used to model transport in biological systems [7-9] and other physical phenomena such 

as Anderson localization [10-17] and topological phases [18-22]. 

 

Occurrence of full-revivals in the evolution of quantum walks is an interesting feature which 

has no direct analogue in classical random walks. Reappearance of an arbitrary state; (both 

position and coin states) with a finite time gap is recognized as full-revivals in a quantum 

walk. With regard to the above definition, a full state revival has no meaning in the context of 

classical random walks. Instead, one can ask about the probability that a walker engaged in a 

classical random walk returns to the starting point during the evolution. This is termed as the 

recurrence probability which is characterized by the P�́�lya number. An extensive work 

related to recurrence probability has been carried out in the context of quantum walks by 

defining a quantum version of classical P�́�lya number [23-26].  

 

In concurrent studies, occurrence of full states revivals, which is unique to quantum walks 

has also been investigated extensively. Ref [27] shows that four-state Grover walk results in 2 

step full-revival and further, it has been proved that periods more than 2 steps cannot be 

achieved for a four-state quantum walk in general. On the contrary, in our study we have 

observed a 4 step full-revivals in a four-state quantum walk. The study conducted in [28] is 

concerned with the conditions under which a quantum walker on cyclic path will returns to its 

initial quantum state in 𝑛 steps. In [29] it has been shown that Hardmard Walk in a cycle can 

have only 2, 4 and 8 steps periods for full-state revivals. Ref [30] provides an experimental 

realization of two periodic revivals in a single-photon one dimensional quantum walk with a 

linearly ramped time-dependent coin flip. By employing a spatial dependent coin rather than 

a time dependent coin, a theoretical explanation for the aforementioned experiment is given 

in [31]. 
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In this paper we show the existence of unitary operators which can give rise to periodic 

recurrence of initial wave function of any quantum system associated with a finite 

dimensional Hilbert space. In other words, we show that for a given orthonormal basis set of 

a finite dimensional Hilbert space one can always construct a unitary operator as a cyclic 

permutation of the basis vectors in such a way that the resultant operator leads to periodic 

recurrence of initial wave function during the time evolution of the system of interest. A 

unitary operator of the above type can be used to generate revival dynamics in any quantum 

system associated to a finite dimensional Hilbert space.  

 

Further, in the context of quantum walks we define a class of unitary operators that generate 

full state revivals. No time dependent coins or shift operators are used in this method. 

Periodicity in full-state revivals solely depends upon the coin dimension. Moreover, we show 

that for a given number of spatial dimensions, one can construct a quantum walk having any 

period. First we prove our result for the quantum walk on a line with 𝑛 coin states and later 

generalize it into higher spatial dimensions.  

 

2. Quantum walk on a line  
 

First let us recall the standard model of the quantum walk on a line that comprises a two-state 

coin and a walker. Evolution of the coin-walker system is governed by a unitary operator 

𝑈 defined on a tensor product of two Hilbert spaces, 𝐻𝑐⨂𝐻𝑥which are spanned by the coin 

basis {|𝑐⟩}𝑐∈{0,1} and the position basis {|𝑥⟩}𝑥∈𝑍. Single-step progression of the system is a 

sequential process in which the coin is tossed at first (transforming the coin state) and then 

the walker is moved either to the left or right conditional upon the outcome of the coin. 

Unitary operator that corresponds to a single-step evolution of the system is given by  

𝑈=𝑆. (𝕀⨂C)                                                                 (1) 

where 𝑆 and 𝐶 are Shift and Coin operators respectively. In this study we stick ourselves to 

the conventional shift operator 𝑆 given by  

𝑆=∑ |𝑐⟩⟨𝑐| ⊗ |𝑥 + (−1)𝑐+1⟩⟨𝑥|𝑥,𝑐=0,1                                                (2) 

General form of a unitary coin operator [32] that governs the 1D quantum walks can be 

written as 

𝐶 = (
𝑐𝑜𝑠(𝜃) 𝑒𝑖𝜙1𝑠𝑖𝑛(𝜃)

𝑒𝑖𝜙2𝑠𝑖𝑛(𝜃) −𝑒𝑖(𝜙1+𝜙2)𝑐𝑜𝑠(𝜃)
)                                             (3) 

where 𝜃 ∈ [0,2𝜋), and 𝜙1, 𝜙2 ∈ [0,𝜋). The general state vector of the coin-walker system is 

written as  

|𝜓(𝑥, 𝑡)⟩=∑ 𝑎𝑥(𝑡)|0⟩|𝑥⟩ +𝑥 𝑏𝑥(𝑡)|1⟩|𝑥⟩                                            (4) 

where ∑ |𝑎𝑥(𝑡)|
2 +𝑥 |𝑏𝑥(𝑡)|

2 = 1 and 𝑡 is the time step. Let the initial state of the system 

be |𝜓0⟩. Thus the final state of the system after 𝑡 steps is |𝜓(𝑥, 𝑡)⟩ = 𝑈𝑡|𝜓0⟩.  
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In general, coin Hilbert space of a quantum walk which has two coin states, is spanned by a 

basis set with two distinct elements. Since the Hilbert spaces of same dimensions are 

isomorphic, we can easily find a transformation from coin Hilbert space to a matrix Hilbert 

space. In other words we can find a one to one correspondence with coin states and n×1 

column vectors where n is the dimension of the Hilbert space. Such a correspondence allows 

us to represent all the coin states in terms of n×1 column vectors and all the operators in coin 

Hilbert space as n×n matrixes. In the same fashion, position Hilbert space can also be 

represented in the matrix form. However, the position space is spanned by a basis set with 

infinite number of elements and hence, the matrix representation contains infinite number of 

matrix elements. For a finite number of steps, position states can be represented as column 

vector with finite number of elements. Yet, as the time evolves the dimension of the column 

vectors that represent the positon tends to increase. Consequently, the unitary operator that 

governs the quantum walk cannot be represented as a block matrix in a convenient way for 

long time limits. In addressing this issue, momentum representation of the position space 

provides a viable solution by embedding all the information related to shift operation into 

coin operation. Propagator that governs a quantum walk on a line with two coin states can be 

represented in momentum space as follows  

𝑈𝑘 = 𝐶𝑘                                                                    (5) 

 

where 𝐶𝑘 = (𝑒
−𝑖𝑘𝑃𝑅 + 𝑒

𝑖𝑘𝑃𝐿)𝐶. Note that 𝑃𝑅 and 𝑃𝐿 are two orthogonal projectors on coin 

Hilbert space where 𝑃𝑅 + 𝑃𝐿 = 𝕀  and 𝐶 is the usual coin operator [33]. Further, note that the 

time evolution in the momentum representation is governed by the propagator 𝐶𝑘. Unlike in 

positon representation the dimension of the propagator 𝐶𝑘 does not increase with time. 

Hence, the behavior of the quantum walk can be determined by diagonalizing the unitary 

operator 𝐶𝑘. In addition, the quantum state in the position representation at any time t can be 

determined simply by taking the inverse Fourier transform of the corresponding state in the 

momentum representation after applying the unitary operator 𝐶𝑘 on the initial state t number 

of times.  

 

It is possible to define a quantum walk on a line by incorporating more than two coin states. 

Let us consider a set of orthonormal vectors {|𝜙𝑟⟩}𝑟=1
𝑛 . We can define a quantum walk on a 

line by assigning a separate shifting rule for each state |𝜙𝑟⟩. Coin space of such a quantum 

walk is spanned by the orthonormal set {|𝜙𝑟⟩}𝑟=1
𝑛  and the coin operator can be represented as 

a 𝑛 × 𝑛 unitary matrix with respect to the spanning set. In general, any operator of the 

following form represents a coin operator for a quantum walk on a line with 𝑛-coin states. 

 

𝐶(𝑛) = ∑ 𝜆𝑟,𝑠|𝜙𝑟⟩⟨𝜙𝑠|
𝑛
𝑟,𝑠=1                                                      (6) 

 

Since 𝐶(𝑛) satisfies the unitary condition, we have  𝜆𝑟,𝑣𝜆𝑤,𝑠
∗ = 𝛿𝑟,𝑤𝛿𝑣,𝑠. The generalized shift 

operator for a quantum walk on line that has more than two coin states can be written as 

 

   𝑆(𝑛) = ∑ ∑ |𝜙𝑟⟩⟨𝜙𝑟|⨂|𝑥 + 𝑑𝑟⟩⟨𝑥|
𝑛
𝑟=1𝑥                                        (7) 

Page 3 of 13 AUTHOR SUBMITTED MANUSCRIPT - PHYSSCR-107080.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



where 𝑑𝑟 ∈ ℤ is a function of  𝑟. Then the propagator that governs the quantum walk on a 

line with more than two coin states can be written as 𝑈(𝑛)=𝑆(𝑛). (𝕀⨂𝐶(𝑛)). Let {|𝜙𝑖⟩⟨𝜙𝑖|}𝑖=1
𝑛  

be a set of orthogonal projectors defined on the coin Hilbert space. Thus by following (5) we 

can define the propagator that governs the evolution of a quantum walk on a line with 𝑛-coin 

states in the momentum representation as  

 

𝑈𝑘
(𝑛)
= (∑ 𝑒𝑖𝑎𝑤𝑘|𝜙𝑤⟩⟨𝜙𝑤|

𝑛
𝑤=1  )(∑ 𝜆𝑟,𝑠|𝜙𝑟⟩⟨𝜙𝑠|

𝑛
𝑟,𝑠=1 )  

 

𝑈𝑘
(𝑛)
= ∑ 𝜆𝑟,𝑠𝑒

𝑖𝑎𝑟𝑘|𝜙𝑟⟩⟨𝜙𝑠|
𝑛
𝑟,𝑠=1                                                     (8) 

 

where 𝜆𝑟,𝑣𝜆𝑤,𝑠
∗ = 𝛿𝑟,𝑤𝛿𝑣,𝑠 , 𝑘 ∈ [−𝜋, 𝜋) and for each 𝑤 ∈ {1,… , 𝑛} , 𝑎𝑤 is an integer. Note 

that in momentum space the shifting operation is represented by the term 𝑒𝑖𝑎𝑤𝑘 in (8). Usual 

choice for integers 𝑎𝑤 is defined as follows: 

If 𝑛 is even: 𝑎𝑤 ∈ {(−
𝑛

2
) , (−

𝑛

2
+ 1) ,… . , −2,−1, 1, 2, … , (

𝑛

2
− 1) , (

𝑛

2
)}   

If 𝑛 is odd: 𝑎𝑤 ∈ {(−
𝑛−1

2
) , (−

𝑛−1

2
+ 1) , … . , −2,−1, 0, 1, 2, … , (

𝑛−1

2
− 1) , (

𝑛−1

2
)}  

E.g.: when 𝑛 = 2; possible shifts are ±1 while when 𝑛 = 3; possible shifts are zero and ±1 

 

3. Periodic unitary evolutions in Hilbert spaces 

 

In a finite dimensional Hilbert space, the necessary condition for a periodic unitary evolution, 

governed by a unitary operator 𝑊 is 𝑊𝑇 = 𝕀, for some 𝑇 ∈ ℕ  where 𝑇 is the period. In this 

section we show that for a given set of orthonormal vectors in a finite dimensional Hilbert 

space, one can always construct a unitary operator that can generate a periodic evolution.  

 

Proposition 1: 

Let {|𝜙1⟩, … , |𝜙𝑛⟩} be a set of orthonormal vectors in a Hilbert space 𝐻 where 𝑛, ∈ ℕ and 

𝑑𝑖𝑚 (𝐻) ≥ 𝑛 > 1. Define an operator 𝑊 of the form 

 

 𝑊 = ∑ 𝜆𝑗|𝜙𝑗⟩⟨𝜙𝑗−1| + 𝜆1|𝜙1⟩⟨𝜙𝑛|
𝑛
𝑗=2                                              (9) 

 

where for each 𝑗 ∈ {1,… , 𝑛} 𝜆𝑗 ∈ ℂ such that ∏ 𝜆𝑗
𝑛
𝑗=1 = 1. Then 𝑊𝑛 = 𝕀 where 𝕀 is the 

identity operator of the subspace of 𝐻 spanned by {|𝜙1⟩, … , |𝜙𝑛⟩}.                                                

 

Proof: 

The 𝑚𝑡ℎ power of 𝑊 where 1 <  𝑚 <  𝑛  can be written as 

𝑊𝑚 = ∑ (∏ 𝜆𝑙
𝑘
𝑙=𝑘−(𝑚−1) )|𝜙

𝑘
⟩⟨𝜙

𝑘−𝑚
| +𝑛

𝑘=𝑚+1                                         

∑ (∏ 𝜆𝑢
𝑗
𝑢=1 )(∏ 𝜆𝑛−𝑣

𝑚−𝑗−1
𝑣=0 )|𝜙𝑗⟩⟨𝜙𝑛−(𝑚−𝑗)| + (∏ 𝜆𝑢𝑚

𝑢=1 )|𝜙𝑚⟩⟨𝜙𝑛|
𝑚−1
𝑗=1  (10) 

Using the method of induction it can be proved that (10) is valid for each 𝑚 where 

1 <  𝑚 <  𝑛. By substituting 𝑚 = 𝑛 − 1 we get: 
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𝑊𝑛−1 = (∏ 𝜆𝑙
𝑛
𝑙=2 )|𝜙𝑛⟩⟨𝜙1| +(∏ 𝜆𝑙

𝑛−1
𝑙=1 )|𝜙𝑛−1⟩⟨𝜙𝑛| + ∑ (∏ 𝜆𝑢

𝑗
𝑢=1 )(∏ 𝜆𝑛−𝑣

𝑛−𝑗−2
𝑣=0 )|𝜙𝑗⟩⟨𝜙𝑗+1|

𝑛−2
𝑗=1    (11)                                        

Multiplying (11) by (9), an expression for the operator 𝑊𝑛 can be written as follows: 

𝑊𝑛  = (∏ 𝜆𝑙
𝑛
𝑙=1 )|𝜙𝑛⟩⟨𝜙𝑛| +(∏ 𝜆𝑙

𝑛
𝑙=1 )|𝜙𝑛−1⟩⟨𝜙𝑛−1| + ∑ (∏ 𝜆𝑢

𝑗
𝑢=1 )(∏ 𝜆𝑛−𝑣

𝑛−𝑗−2
𝑣=0 )𝜆𝑗+1|𝜙𝑗⟩⟨𝜙𝑗|

𝑛−2
𝑗=1      (12)                                        

 

Note that for each 𝑗 the following relationship holds: 

(∏ 𝜆𝑢
𝑗
𝑢=1 )(∏ 𝜆𝑛−𝑣

𝑛−𝑗−2
𝑣=0 )𝜆𝑗+1 = (∏ 𝜆𝑙

𝑛
𝑙=1 )                                            (13) 

 

Thus we can write 𝑊𝑛 = (∏ 𝜆𝑗
𝑛
𝑗=1 )𝕀. Since (∏ 𝜆𝑗

𝑛
𝑗=1 ) = 1 and we have 𝑊𝑛 = 𝕀. This 

completes the proof. Note that for each 𝑗 we can always choose 𝜆𝑗 = 𝑒
𝑖𝜃𝑗  where 𝜃𝑗 ∈ (−𝜋, 𝜋] 

such that 𝑊 is unitary.  

 

Lemma: 

Let {|𝜙1⟩, … , |𝜙𝑟⟩, . . , |𝜙𝑛⟩} be a set of orthonormal vectors in a Hilbert space 𝐻 where 𝑛, 𝑟 ∈

ℕ and 𝑑𝑖𝑚 (𝐻) ≥ 𝑛 ≥ 𝑟 > 1. Define an operator 𝑊 of the form 

 

𝑊 = ∑ 𝜇𝑖,𝑗|𝜙𝑖⟩⟨𝜙𝑗|

𝑛

𝑖,𝑗=1

 

where  

𝜇𝑖,𝑗 = {
𝜆𝑖(𝛿𝑖,𝑗+1 + 𝛿𝑖,1𝛿𝑟,𝑗), 𝑖 ≤ 𝑟

𝛿𝑖,𝑗, 𝑖 > 𝑟
                                              (14) 

 

and for each 𝑖 ∈ {1,… , 𝑟}, ∏ 𝜆𝑖
𝑟
𝑖=1 = 1 where 𝜆𝑖 ∈ ℂ. Then (𝑊)𝑟 = 𝕀 where 𝕀 is the identity 

operator of the subspace of 𝐻 spanned by  {|𝜙1⟩, … , |𝜙𝑛⟩}.                                                

 

Proof: 

The equation (14) is written as  

 

𝑊 = ∑ ∑ 𝜆𝑖(𝛿𝑖,𝑗+1 + 𝛿𝑖,1𝛿𝑟,𝑗)|𝜙𝑖⟩⟨𝜙𝑗|
𝑟
𝑖=1

𝑛
𝑗=1 + ∑ |𝜙𝑖⟩⟨𝜙𝑖|

𝑛
𝑖=𝑟+1                   (15)  

 

Define 𝑊′ = ∑ ∑ 𝜆𝑖(𝛿𝑖,𝑗+1 + 𝛿𝑖,1𝛿𝑟,𝑗)|𝜙𝑖⟩⟨𝜙𝑗|
𝑟
𝑖=1

𝑛
𝑗=1 . By re-indexing 𝑊′ we can write 

𝑊′ = ∑ 𝜆𝑖|𝜙𝑖⟩⟨𝜙𝑖−1| + 𝜆1|𝜙1⟩⟨𝜙𝑟|
𝑟
𝑖=2 . Since all the vectors in {|𝜙1⟩,… , |𝜙𝑟⟩, . . , |𝜙𝑛⟩} are 

orthonormal, 𝑟𝑡ℎ power of 𝑊 can be written as (𝑊)𝑟 = (𝑊′)𝑟 + ∑ |𝜙𝑖⟩⟨𝜙𝑖|
𝑛
𝑖=𝑟+1 . From the 

proposition 1, we have (𝑊′)𝑟 = ∑ |𝜙𝑖⟩⟨𝜙𝑖|
𝑟
𝑖=1 . Thus (𝑊)𝑟 = 𝕀 where 𝕀 is the identity 

operator of the subspace of 𝐻 spanned by {|𝜙1⟩, … , |𝜙𝑛⟩}. This completes the proof. Note that 

for each 𝑗 ∈ {1, … , 𝑟} we can always choose 𝜆𝑗 = 𝑒
𝑖𝜃𝑗  where 𝜃𝑗 ∈ (−𝜋, 𝜋] such that 𝑊 is 

unitary.                                               
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4. Full revivals in Quantum walk on a line  

Before moving in to higher spatial dimensions let us consider a case related to full-state 

reveals in quantum walk on a line. Without using the usual case of two coin sates, here we 

consider a quantum walk on a line with 𝑛-coin states. Being consistent with the known facts, 

in order to exhibit full-quantum states revivals during the propagation, the propagator of a 

quantum walk on a line with 𝑛-coin states given in (8) must satisfy the condition (𝑈𝑘
(𝑛)
)
𝑚

=

𝕀 where 𝑚 ∈ 𝑁. It is fairly difficult to determine an explicit form for the 𝑛 × 𝑛 unitary matrix 

𝑈𝑘
(𝑛)

 while satisfying the aforementioned condition for revivals. In handling that problem one 

can impose conditions on 𝑈𝑘
(𝑛)

 in such a way that each of the eigenvalue 𝜆 of 𝑈𝑘
(𝑛)

 satisfies 

the property 𝜆𝑚 = 1. Then by diogaonalizing the matrix 𝑈𝑘
(𝑛)

 we can easily show that the 

𝑚𝑡ℎpower of 𝑈𝑘
(𝑛)

 is equal to the unit operator. This approach is followed in [28] for a 

general quantum walk on a cycle. Intuitively, it can be stated that the recursive nature 

embedded in the cyclic walks makes it easy to find such conditions to generate revivals. 

However, determining revival condition for a quantum walk on non-cycles might be rather 

challenging. As a solution to this problem, we present a different approach by defining a 

specific form for 𝑈𝑘
(𝑛)

 in such a way that it always satisfies the condition for revival. We 

show that any propagator in this form can exhibit full quantum state revivals in quantum 

walks on non-cyclic paths.  

  

The operator given in (9) can be used to define a set of propagators that can produce quantum 

walks with full state revivals having periodicity equal to the dimension of coin space. Let 

{|𝜙1⟩, … , |𝜙𝑛⟩} be the basis set which spans a given coin Hilbert space where 𝑛 ∈ ℕ and 𝑛 >

1. Now let us define a new coin operator of the form 

 

𝑊(𝑛) = ∑ 𝑒𝑖𝜃𝑗|𝜙𝑗⟩⟨𝜙𝑗−1| + 𝑒
𝑖𝜃1|𝜙1⟩⟨𝜙𝑛|

𝑛
𝑗=2                                     (16) 

 

where for each 𝑗 ∈ {1,… , 𝑛} , 𝜃𝑗 ∈ (−𝜋, 𝜋] and ∑ 𝜃𝑗
𝑛
𝑗=1 = 2𝑔𝜋 , 𝑔 ∈ ℤ  . Note that 

𝑊(𝑛)(𝑊(𝑛))
†
= (𝑊(𝑛))

†
𝑊(𝑛) = 𝕀. Let {|𝜙𝑖⟩⟨𝜙𝑖|}𝑖=1

𝑛 be a set of orthogonal projectors 

defined on coin Hilbert space. Now we construct an operator of the form 

 

𝐷(𝑛) = ∑ 𝑒𝑖𝑎𝑗𝑘|𝜙𝑗⟩⟨𝜙𝑗|
𝑛
𝑗=1                                                     (17) 

 

where 𝑘 ∈ [−𝜋, 𝜋) and for each 𝑗 ∈ {1,… , 𝑛} , 𝑎𝑗 is an integer such that ∑ 𝑎𝑗
𝑛
𝑗=1 = 0. It is 

obvious that 𝐷(𝑛) is unitary. By combining (16) and (17) we can define a propagator 𝑉𝑘
(𝑛)

 in 

the momentum space which governs a quantum walk on a line with 𝑛-coin states as; 

 

𝑉𝑘
(𝑛)
= 𝐷(𝑛)𝑊(𝑛) = ∑ 𝑒𝑖𝑎𝑗𝑘𝑒𝑖𝜃𝑗|𝜙𝑗⟩⟨𝜙𝑗−1| + 𝑒

𝑖𝑎1𝑘𝑒𝑖𝜃1|𝜙1⟩⟨𝜙𝑛|
𝑛
𝑗=2                   (18) 
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Matrix form of  𝑉𝑘
(𝑛)

 with respective to orthonormal basis {|𝜙1⟩, … , |𝜙𝑛⟩} is given by 

 

𝑉𝑘
(𝑛)
=

(

 
 
 
 

0 0 0 ⋯ 0 0 𝑒𝑖𝑎1𝑘𝑒𝑖𝜃1

𝑒𝑖𝑎2𝑘𝑒𝑖𝜃2 0 0 ⋯ 0 0 0
0 𝑒𝑖𝑎3𝑘𝑒𝑖𝜃3 0 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ 0 0 0
0 0 0 ⋯ 0 0 0
0 0 0 ⋯ 0 𝑒𝑖𝑎𝑛𝑘𝑒𝑖𝜃𝑛 0 )

 
 
 
 

          (19) 

 

Then operator 𝑉𝑘
(𝑛)

 takes the form of the operator 𝑊 given in (9). Note that ∑ 𝜃𝑗
𝑛
𝑗=1 = 2𝑔𝜋 , 

𝑔 ∈ ℤ  and ∑ 𝑎𝑗
𝑛
𝑗=1 = 0. Hence we have        

           

(𝑉𝑘
(𝑛)
)
𝑛

= 𝕀                                                             (20) 

 

Thus indeed the propagator 𝑉𝑘
(𝑛)

 can give rise to full quantum state revivals. Therefore  𝑉𝑘
(𝑛)

 

represents a quantum walk on line with 𝑛-coin states, governed by the coin 𝑊(𝑛), that can 

exhibit full state revivals with a periodicity of 𝑛 time steps. Periodicity of revivals solely 

depends upon the dimension of the coin space. As a result, we can define different 

propagators simply by adding new coin degrees of freedom and can generate full revivals 

with different periods. For example, we can define a propagator for a quantum walk on a line 

with two coin states and it has a period of 2 steps. By adding a new state orthogonal to the 

existing coin states we can define a new propagator for a quantum walk on a line with three 

coin states. Thus latter quantum walk has a period of 3 steps. Let us see some examples. 

Consider a quantum walk on a line with two orthonormal coin states {|𝑐⟩}𝑐=1
2 . Define a coin 

operator of the form 𝐶(2) = 𝑒
4𝜋𝑖

3 |1⟩⟨2| + 𝑒
2𝜋𝑖

3 |2⟩⟨1|. Note that 𝐶(2) has the form of one-

dimensional Grover coin. Let the shift operator be 𝑆(2)=∑ |𝑐⟩⟨𝑐| ⊗ |𝑥 + (−1)𝑐⟩⟨𝑥|𝑥,𝑐=1,2 . 

Table 1 shows the first three states of the quantum walk which is governed by the unitary 

operator 𝑈(2) = 𝑆(2)(𝕀⨂𝐶(2)) 

 

Time State 

Unbiased Biased 

t=0  1

√2
(|1𝑐, 1𝑥⟩ + |2𝑐 , 1𝑥⟩)   

1

2
|1𝑐, 1𝑥⟩ +

√3

2
|2𝑐, 0𝑥⟩   

t=1 1

√2
𝑒
−2𝜋𝑖

3 |1𝑐 , 0𝑥⟩ +
1

√2
𝑒
2𝜋𝑖

3 |2𝑐, 2𝑥⟩  
√3

2
𝑒
−2𝜋𝑖

3 |1𝑐, −1𝑥⟩ +
1

2
𝑒
2𝜋𝑖

3 |2𝑐, 2𝑥⟩  

t=2 1

√2
(|1𝑐, 1𝑥⟩ + |2𝑐 , 1𝑥⟩)   

1

2
|1𝑐, 1𝑥⟩ +

√3

2
|2𝑐, 0𝑥⟩   

Table1: Full revivals of quantum states with a period of 2 steps (𝑈(2) = 𝑆(2)(𝕀⨂𝐶(2))) 
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Now consider a quantum walk on a line with three orthonormal coin states {|𝑐⟩}𝑐=1
3 . Define a 

coin operator of the form 𝐶(3) = |1⟩⟨3| + 𝑒
2𝜋𝑖

3 |2⟩⟨1| +𝑒
4𝜋𝑖

3 |3⟩⟨2|. Let the shift operator be 

𝑆(3)=|1⟩⟨1| ⊗ |𝑥 − 5⟩⟨𝑥| + |2⟩⟨2| ⊗ |𝑥 + 3⟩⟨𝑥| + |3⟩⟨3| ⊗ |𝑥 + 2⟩⟨𝑥|. Note that the total 

shift (-5, 3, and 2) is chosen to be zero. Table 2 shows the first four states of the quantum 

walk which is governed by the unitary operator 𝑈(3) = 𝑆(3)(𝕀⨂𝐶(3)) 

 

Properties of a given quantum walk are attributed by the eigen spectrum of the propagator 

that governs the walk. Hence it is worth analyzing the spectrum of the class of operators 

given in (18). Since 𝑉𝑘
(𝑛)

 is unitary, all the eigen values must lie on a unite circle in the 

complex plane. Most of the elements of the matrix given in (19) are zeros and hence the 

determinant of (𝑉𝑘
(𝑛)
− 𝜆𝕀) can easily be calculated. The expression for the determinant of 

(𝑉𝑘
(𝑛)
− 𝜆𝕀)  is given by; 

 

det(𝑉𝑘
(𝑛)
− 𝜆𝕀 ) = 𝜆𝑛 − (∏ 𝑒𝑖𝑎𝑗𝑘𝑒𝑖𝜃𝑗𝑛

𝑗=1 )                                    (21) 

 

Since ∏ 𝑒𝑖𝑎𝑗𝑘𝑒𝑖𝜃𝑗𝑛
𝑗=1 = 1 we can determine the eigenvalues of 𝑉𝑘

(𝑛)
 by solving 𝜆𝑛 − 1 = 0. In 

other words, 𝑛𝑡ℎ roots of unity become the eigenvalues of the operator 𝑉𝑘
(𝑛)

. The significant 

feature of this is that all of the eigen values of 𝑉𝑘
(𝑛)

 are independent of 𝑘. Hence the 

corresponding propagator in the positon representation has a point spectrum with the same 

eigen values. In addition, the corresponding eigen vectors characterize the stationary states in 

the position space.  

 

It is worth mentioning that by using the operator in (14), one can define a coin for a quantum 

walk on a line having a period less than the dimension of the coin space. For this purpose, 

zero shifting rule (particle is allowed stay at the same position) must be assigned to certain 

coin degrees of freedom ({|𝜙𝑖⟩}𝑖=𝑟+1
𝑛 ). Even though such a walk exhibits full-state revivals it 

will always have some localized position states.  

 

Time State 

Unbiased Biased 
t=0  

 

1

√3
(|1𝑐 , 3𝑥⟩ + |2𝑐 , 2𝑥⟩ + |3𝑐 , 1𝑥⟩)   

4

5
|1𝑐 , −1𝑥⟩ +

1

√5
|2𝑐 , 0𝑥⟩ +

2

5
|3𝑐 , 2𝑥⟩  

t=1 1

√3
|1𝑐 , −4𝑥⟩ +

1

√3
𝑒
2𝜋𝑖

3 |2𝑐 , 6𝑥⟩ +

1

√3
𝑒
−2𝜋𝑖

3 |3𝑐 , 4𝑥⟩  

2

5
|1𝑐 , −3𝑥⟩ +

4

5
𝑒
2𝜋𝑖

3 |2𝑐, 2𝑥⟩ +

1

√5
𝑒
−2𝜋𝑖

3 |3𝑐 , 2𝑥⟩  

 

t=2 1

√3
𝑒
−2𝜋𝑖

3 |1𝑐 , −1𝑥⟩ +
1

√3
𝑒
2𝜋𝑖

3 |2𝑐, −1𝑥⟩ +
1

√3
|3𝑐 , 8𝑥⟩    

1

√5
𝑒
−2𝜋𝑖

3 |1𝑐 , −3𝑥⟩ +
2

5
𝑒
2𝜋𝑖

3 |2𝑐 , 0𝑥⟩ +
1

√3
|3𝑐 , 4𝑥⟩   

  

t=3 1

√3
(|1𝑐 , 3𝑥⟩ + |2𝑐 , 2𝑥⟩ + |3𝑐 , 1𝑥⟩)    

4

5
|1𝑐 , −1𝑥⟩ +

1

√5
|2𝑐 , 0𝑥⟩ +

2

5
|3𝑐 , 2𝑥⟩  

Table2: Full revivals of quantum states with a period of 3 steps (𝑈(3) = 𝑆(3)(𝕀⨂𝐶(3)))  

Page 8 of 13AUTHOR SUBMITTED MANUSCRIPT - PHYSSCR-107080.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



5. Full revivals in higher spatial dimensions 

An interesting question that one could ask regarding the full-state revivals is, for a given 𝑛- 

spatial dimensions whether we can construct a coin and a shift operator that can generate a 

quantum walk having a revival of period 𝑇. The method given below provides one possible 

solution to this question. First we show the existence of such a solution and later give a 

concrete example.   

 

Proposition 2: 

Given a spatial dimension 𝑛 ∈ ℕ\{0} and a positive integer 𝑇 there exist a quantum coin 

which drives a quantum walk that exhibit full-state revivals with a period 𝑇. 

 

Proof:  

Let 𝐵 = {|𝜙1⟩,… , |𝜙𝑇⟩} be an orthonormal basis for a 𝑇-dimensional coin Hilbert space 𝐻𝑇. 

Define a coin operator of the form 𝑊(𝑇) = ∑ 𝑒𝑖𝜃𝑗|𝜙𝑗⟩⟨𝜙𝑗−1| + 𝑒
𝑖𝜃1|𝜙1⟩⟨𝜙𝑇|

𝑇
𝑗=2  where for 

each 𝑗 ∈ {1,… , 𝑇} we have 𝜃𝑗 ∈ (−𝜋, 𝜋] such that ∑ 𝜃𝑗
𝑇
𝑗=1 = 2𝑔𝜋 , 𝑔 ∈ ℤ. It can be easily 

proved that 𝑊(𝑇) is unitary. Define a subset 𝐵𝑟 of 𝐵 for each 𝑟𝑡ℎ spatial dimension where 𝑟 ∈

{1,… , 𝑛} such that |𝐵𝑟| ≥ 2. Now let us define the shifting rule in each spatial dimension. 

Consider a function of the form 

 

𝑎𝑟,𝑗 = {
𝑎𝑟,𝑗 ∈ ℤ, 𝑖𝑓 |𝜙𝑗⟩ ∈ 𝐵𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                     (21) 

 

where 𝑗 ∈ {1,… , 𝑇} such that ∑ 𝑎𝑟,𝑗
𝑇
𝑗=1 = 0. Define an operator 𝐷(𝑇) such that  

 

𝐷(𝑇) = ∑ 𝑒−𝑖(∑ 𝑎𝑟,𝑗𝑘𝑟
𝑛
𝑟=1 )|𝜙𝑗⟩⟨𝜙𝑗|

𝑇
𝑗=1                                             (22) 

 

where for each 𝑟 ∈ {1,… , 𝑛}, 𝑘𝑟 ∈ [−𝜋, 𝜋). Note that 𝐷(𝑇) is unitary. By combing 𝑊(𝑇) and 

𝐷(𝑇) we can construct a propagator 𝑉𝑘
(𝑇)

 in the momentum space which governs a quantum 

walk on 𝑛- spatial dimensional lattice as; 

 

𝑉𝑘
(𝑇)
= 𝐷(𝑇)𝑊(𝑇) = ∑ 𝑒−𝑖(∑ 𝑎𝑟,𝑗𝑘𝑟

𝑛
𝑟=1 )𝑒𝑖𝜃𝑗|𝜙𝑗⟩⟨𝜙𝑗−1| + 𝑒

−𝑖(∑ 𝑎𝑟,1𝑘𝑟
𝑛
𝑟=1 )𝑒𝑖𝜃1|𝜙1⟩⟨𝜙𝑇|

𝑇
𝑗=2  (23) 

 

Note that 𝑉𝑘
(𝑇)

 takes the form of the operator given in (18). Thus we can write  

 

(𝑉𝑘
(𝑇)
)
𝑇

= ∏ (𝑒−𝑖(∑ 𝑎𝑟,𝑗𝑘𝑟
𝑛
𝑟=1 )𝑒𝑖𝜃𝑗)𝑇

𝑗=1 𝕀                                      (24) 

 

Note that ∏ (𝑒−𝑖(∑ 𝑎𝑟,𝑗𝑘𝑟
𝑛
𝑟=1 )𝑒𝑖𝜃𝑗)𝑇

𝑗=1 = 𝑒−𝑖(
∑ (𝑘𝑟∑ 𝑎𝑟,𝑗

𝑇
𝑗=1 )𝑛

𝑟=1 )𝑒𝑖 ∑ 𝜃𝑗
𝑇
𝑗=1 = 1. Hence we have  

 

(𝑉𝑘
(𝑇)
)
𝑇

= 𝕀                                                             (25) 
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This completes the proof. For further clarification let us consider some examples in 2, 3 and 4 

spatial dimensions. Consider an orthonormal coin basis {|𝑐⟩}𝑐=1
3 . Let |𝑎|2 + |𝑏|2 + |𝑐|2 = 1 

where 𝑎, 𝑏, 𝑐 ∈ ℂ. Define a coin operator of the form 𝐶1 = 𝑒
2𝜋𝑖

3 |2⟩⟨1| + 𝑒
4𝜋𝑖

3 |3⟩⟨2| + |1⟩⟨3|. 

Let the shift operator be  𝑆1=|1⟩⟨1| ⊗ |𝑥 + 1, 𝑦 − 1⟩⟨𝑥, 𝑦| + |2⟩⟨2| ⊗ |𝑥 + 1, 𝑦 − 1⟩⟨𝑥, 𝑦| +

|3⟩⟨3| ⊗ |𝑥 − 2, 𝑦 + 2⟩⟨𝑥, 𝑦|. Table 3 shows the first four states of the quantum walk in 2D 

which is governed by the unitary operator  𝑈1 =  𝑆1(𝕀⨂ 𝐶1).  

 

Now consider an orthonormal coin basis {|𝑐⟩}𝑐=1
4 . Let |𝑎|2 + |𝑏|2 + |𝑐|2 + |𝑑|2 = 1 where 

𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ. Define a coin operator of the form 𝐶2 = 𝑒
𝜋𝑖

5 |1⟩⟨4| + 𝑒
2𝜋𝑖

5 |2⟩⟨1| + 𝑒
3𝜋𝑖

5 |3⟩⟨2| +

𝑒
4𝜋𝑖

5 |4⟩⟨3|. Let the shift operator be 𝑆2=|1⟩⟨1| ⊗ |𝑥 + 1, 𝑦 + 1, 𝑧 − 2⟩⟨𝑥, 𝑦, 𝑧| + |2⟩⟨2| ⊗

|𝑥 + 1, 𝑦 − 2, 𝑧 + 1⟩⟨𝑥, 𝑦, 𝑧| + |3⟩⟨3| ⊗ |𝑥 − 3, 𝑦 + 2, 𝑧 − 1⟩⟨𝑥, 𝑦, 𝑧| + |4⟩⟨4| ⊗

|𝑥 + 1, 𝑦 − 1, 𝑧 + 2⟩⟨𝑥, 𝑦, 𝑧|. Table 4 shows the first five states of the quantum walk in 3D 

which is governed by the unitary operator  𝑈2 =  𝑆2(𝕀⨂ 𝐶2).  

 

Let |𝑎|2 + |𝑏|2 + |𝑐|2 + |𝑑|2 + |𝑓|2 = 1 where 𝑎, 𝑏, 𝑐, 𝑑, 𝑓 ∈ ℂ. Define a shift operator of the 

form 𝑆3=|1⟩⟨1| ⊗ |𝑤 + 1, 𝑥 + 1, 𝑦 + 4, 𝑧 − 2⟩⟨𝑤, 𝑥, 𝑦, 𝑧| + |2⟩⟨2| ⊗ |𝑤 − 1, 𝑥 + 1, 𝑦 −

2, 𝑧 − 1⟩⟨𝑤, 𝑥, 𝑦, 𝑧| + |3⟩⟨3| ⊗ |𝑤 + 1, 𝑥 − 3, 𝑦 − 1, 𝑧 + 1⟩⟨𝑤, 𝑥, 𝑦, 𝑧| + |4⟩⟨4| ⊗

|𝑤 − 1, 𝑥 + 1, 𝑦 − 1, 𝑧 + 2⟩ ⟨𝑤, 𝑥, 𝑦, 𝑧|. Table 5 shows the first five states of the quantum 

walk in 4D which is governed by the unitary operator  𝑈3 =  𝑆3(𝕀⨂ 𝐶2) 

 

Time State 

 

t=0 𝑎|1𝑐 , 0𝑥 , 0𝑦⟩ + 𝑏|2𝑐 , 0𝑥 , 0𝑦⟩ + 𝑐|3𝑐 , 0𝑥 , 0𝑦⟩ 

t=1 𝑐|1𝑐 , 1𝑥, −1𝑦⟩ + 𝑎𝑒
2𝑖𝜋
3 |2𝑐 , 1𝑥 , −1𝑦⟩ + 𝑏𝑒

−2𝑖𝜋
3 |3𝑐 , −2𝑥, 2𝑦⟩ 

t=2 𝑏𝑒
−2𝑖𝜋
3 |1𝑐, −1𝑥 , 1𝑦⟩ + 𝑐𝑒

2𝑖𝜋
3 |2𝑐 , 2𝑥, −2𝑦⟩ + 𝑎|3𝑐 , −1𝑥, 1𝑦⟩ 

t=3 𝑎|1𝑐 , 0𝑥 , 0𝑦⟩ + 𝑏|2𝑐 , 0𝑥 , 0𝑦⟩ + 𝑐|3𝑐 , 0𝑥 , 0𝑦⟩ 

Table 3: Full revivals of quantum states with a period of 3 steps ( 𝑈1 =  𝑆1(𝕀⨂ 𝐶1)) 

 

Time State 

 

t=0 
 

𝑎|1𝑐 , 0𝑥 , 0𝑦 , 0𝑧⟩ + 𝑏|2𝑐 , 0𝑥, 0𝑦 , 0𝑧⟩ + 𝑐|3𝑐 , 0𝑥, 0𝑦 , 0𝑧⟩ + 𝑑|4𝑐 , 0𝑥 , 0𝑦 , 0𝑧⟩ 

 

t=1 
𝑑𝑒

𝜋𝑖
5 |1𝑐 , 1𝑥 , 1𝑦 , −2𝑧⟩ + 𝑎𝑒

2𝜋𝑖
5 |2𝑐 , 1𝑥, −2𝑦 , 1𝑧⟩ + 𝑏𝑒

3𝜋𝑖
5 |3𝑐 , −3𝑥, 2𝑦 , −1𝑧⟩

+ 𝑐𝑒
4𝜋𝑖
5 |4𝑐 , 1𝑥, −1𝑦 , 2𝑧⟩ 

t=2 −𝑐|1𝑐 , 2𝑥 , 0𝑦 , 0𝑧⟩ + 𝑑𝑒
3𝜋𝑖
5 |2𝑐 , 2𝑥 , −1𝑦 , −1𝑧⟩ − 𝑎|3𝑐 , −2𝑥 , 0𝑦 , 0𝑧⟩ + 𝑏𝑒

−3𝜋𝑖
5 |4𝑐 , −2𝑥 , 1𝑦 , 1𝑧⟩ 

 

t=3 
𝑏𝑒

−2𝜋𝑖
5 |1𝑐 , −1𝑥, 2𝑦 , −1𝑧⟩ − 𝑐𝑒

2𝜋𝑖
5 |2𝑐 , 3𝑥, −2𝑦 , 1𝑧⟩ + 𝑑𝑒

−4𝜋𝑖
5 |3𝑐 , −1𝑥, 1𝑦 , −2𝑧⟩

− 𝑎𝑒
4𝜋𝑖
5 |4𝑐 , −1𝑥, −1𝑦 , 2𝑧⟩ 

t=4 
𝑎|1𝑐 , 0𝑥 , 0𝑦 , 0𝑧⟩ + 𝑏|2𝑐 , 0𝑥, 0𝑦 , 0𝑧⟩ + 𝑐|3𝑐 , 0𝑥, 0𝑦 , 0𝑧⟩ + 𝑑|3𝑐 , 0𝑥 , 0𝑦 , 0𝑧⟩ 

 

Table 4: Full revivals of quantum states with a period of 4 steps ( 𝑈2 =  𝑆2(𝕀⨂ 𝐶2)) 
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Time State 

 

t=0 
 

𝑎|1𝑐 , 0𝑤, 0𝑥 , 0𝑦 , 0𝑧⟩ + 𝑏|2𝑐 , 0𝑤 , 0𝑥, 0𝑦 , 0𝑧⟩ + 𝑐|3𝑐 , 0𝑤, 0𝑥 , 0𝑦 , 0𝑧⟩ + 𝑑|4𝑐 , 0𝑤 , 0𝑥 , 0𝑦 , 0𝑧⟩ 

 

t=1 

𝑑𝑒
𝜋𝑖
5 |1𝑐 , 1𝑤 , 1𝑥 , 4𝑦 , −2𝑧⟩ + 𝑎𝑒

2𝜋𝑖
5 |2𝑐 , −1𝑤 , 1𝑥, −2𝑦, −1𝑧⟩ + 𝑏𝑒

3𝜋𝑖
5 |3𝑐 , 1𝑤 , −3𝑥, −1𝑦 , 1𝑧⟩

+ 𝑐𝑒
4𝜋𝑖
5 |4𝑐 , −1𝑤 , 1𝑥 , −1𝑦 , 2𝑧⟩ 

 

t=2 

−𝑐|1𝑐 , 0𝑤, 2𝑥 , 3𝑦 , 0𝑧⟩ + 𝑑𝑒
3𝜋𝑖
5 |2𝑐 , 0𝑤 , 2𝑥 , 2𝑦 , −3𝑧⟩ − 𝑎|3𝑐, 0𝑤 , −2𝑥, −3𝑦 , 0𝑧⟩

+ 𝑏𝑒
−3𝜋𝑖
5 |4𝑐 , 0𝑤 , −2𝑥 , −2𝑦 , 0𝑧⟩ 

 

t=3 

𝑏𝑒
−2𝜋𝑖
5 |1𝑐 , 1𝑤 , −1𝑥 , 2𝑦, 1𝑧⟩ − 𝑐𝑒

2𝜋𝑖
5 |2𝑐 , −1𝑤 , 3𝑥, 1𝑦 , −1𝑧⟩ + 𝑑𝑒

−4𝜋𝑖
5 |3𝑐 , 1𝑤 , −1𝑥 , 1𝑦 , −2𝑧⟩

− 𝑎𝑒
4𝜋𝑖
5 |4𝑐 , −1𝑤 , −1𝑥 , −4𝑦 , 2𝑧⟩ 

 

t=4 
𝑎|1𝑐 , 0𝑤, 0𝑥 , 0𝑦 , 0𝑧⟩ + 𝑏|2𝑐 , 0𝑤 , 0𝑥, 0𝑦 , 0𝑧⟩ + 𝑐|3𝑐 , 0𝑤, 0𝑥 , 0𝑦 , 0𝑧⟩ + 𝑑|4𝑐 , 0𝑤 , 0𝑥 , 0𝑦 , 0𝑧⟩ 

 

Table 5: Full revivals of quantum states with a period of 4 steps ( 𝑈3 =  𝑆3(𝕀⨂ 𝐶2)) 

 

6. Conclusion 

In this paper we showed that for any given number of spatial dimensions we can construct a 

coin operator that generates a quantum walk having full revivals with any desired period. One 

of the possible applications of revival dynamics in quantum walks is generating oscillatory 

motions between two given states. From the point of view of quantum computation and 

simulations, the above mentioned coin operators can be useful in implementing quantum 

walks which toggle between given states with a finite periodicity.  
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