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a b s t r a c t 

Nano zerovalent iron is used to destruct a wide range of organic and inorganic contaminants in water. However, 

its performance is limited due to rapid aggregation and surface passivation. To minimise aggregation, we fabri- 

cated nano zerovalent iron on the reduced graphene oxide sheets using green tea derived polyphenols (hereafter 

rGO-nZVI-P) or borohydride ions (hereafter rGO-nZVI-B). Both rGO-nZVI-P and rGO-nZVI-B composites were 

characterised by electron microscopic, molecular spectroscopic and electrochemical methods. The spherical nZVI 

particulates (e.g. ~4–15 mm diameter) are well dispersed among rGO sheets. Polyphenols act as a capping agent 

for Fe (0) to prevent its aggregation. The X-ray diffraction and X-ray photon spectroscopic results show an ad- 

mixture of Fe (0) with rGO and Fe oxides (e.g. FeOOH, Fe 2 O 3 , and Fe 3 O 4 phases). The association of Fe (0) on 

the reduced graphene oxide matrix is believed to occur via 𝜋–𝜋 framework thus minimising surface passivation. 

The reduction efficiency of the nano zerovalent iron composites was determined using nitrate as index ion. When 

compared with rGO-nZVI-B, the rGO-nZVI-P reduces 70% of 0.8064 mM nitrate within an hour. Although traces 

of NO and NO 2 
− are observed, ammonia is the dominant product that accounts for 95% nitrogen mass balance. 

The nitrate reduction by the rGO-nZVI composites follows pseudo-second-order kinetics. Fe (0) or its oxidation 

products are environmentally benign. The rGO-nZVI-P also has the potential to destruct excess nitrate in water 

remediation. 
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. Introduction 

Nano zerovalent iron (nZVI) readily agglomerates and undergoes

apid oxidisation upon exposure to ambient environmental conditions.

owever, the mechanistic steps of Fe (0) oxidation by various lig-

nds are debated ( Gu et al., 2017 ; Shi et al., 2011 ). Irrespective of

he synthesised method used, bare nZVI particulates inevitably pos-

ess core-shells, and they agglomerate into chain-like structures, which

ventually result in surface passivation ( Guo et al., 2012 ; Wang et al.,

009a , 2009b ). The surface passivation and agglomeration of Fe (0)

epends on the nZVI synthesis method. Strong toxic chemical reduc-

ants as BH 4 
− are frequently used for nZVI fabrication. The nZVI fab-

ication was also made with natural reductants, which are not only
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nvironmentally benign but also inexpensive. Further, the polyphenols

erived from green tea holds a great promise as a natural reductant

 Khan and Adil, 2018 ). Polyphenols contain epicatechin, epicatechin

allate, epigallocatechin, and epigallocatechin gallate (EGCG) which are

iodegradable. The EGCG makes up about 50–60% of the total polyphe-

ols. Pyrogallol and catechol groups in polyphenols render them hy-

rophilic antioxidants ( Botten et al., 2015 ). In nZVI particulates fabri-

ation, polyphenols act as a stabiliser, reductant, and a capping agent.

owever, the nZVI prepared by polyphenols shows surface heterogene-

ty due to shape, size, and reactivity ( Huang et al., 2014 ; Wang et al.,

014 , 2014b ). Enhanced agglomeration and rapid oxidation decrease

he reactivity of nZVI. Several methods are used to reduce agglomer-

tion. In one way, the surface of the nZVI was modified with surfac-
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3  
ants, cellulose, or starch ( Dong et al., 2016 ; Lefevre et al., 2016 ). Al-

ernatively, the nZVI particulates were fabricated onto solid substrates

uch as silica, resins, non-woven fabrics, clays, or membranes to en-

ance dispersibility ( Huang et al., 2014 ; Wang et al., 2014 , 2014b ;

ou et al., 2016 ). In the latter case, most of the chosen substrates were

nsulators that limit electron transfer. However, graphene or reduced

raphene (rGO) transfer electrons via conjugated sp 2 orbitals network.

herefore, the nano zerovalent iron particulates decorated on graphene

xhibit enhanced conductivity, high electrolyte contact area, and struc-

ural stability, all of which are useful for their applications as a reductant

 Kumar et al., 2014 ; Wang et al., 2010 ). 

This research is aimed at fabricating stable and well-dispersed nZVI

n rGO using polyphenols extracted from the green tea (hereafter rGO-

ZVI-P). As a control, the Fe (II) and graphene oxide reduction were

lso achieved using BH 4 
− method (rGO-nZVI-B). We used rGO substrate

or the production of nZVI by polyphenol reduction method. The nZVI

an disperse readily onto the rGO due to its porous layering which min-

mises particulates agglomeration. The rGO-nZVI composites were char-

cterised by spectroscopic and electrochemical methods to probe reac-

ivity sites. The reduction efficiency of rGO-nZVI-P against rGO-nZVI-B

as determined using aqueous nitrate as an index ion. 

. Material and methods 

.1. Materials 

Analytical grade chemicals received from Sigma-Aldrich (USA),

amely H 2 SO 4 (98%), H 2 O 2 (30%, v/v), KMnO 4 (99.5%), NaNO 3 

99.5%), HCl (37 %), NaBH 4 (99.0%) and FeSO 4 .7H 2 O (99.0%) was

sed. Vein graphite and green tea samples were obtained from Sri Lanka

support documentation for details, S-1). All solutions were prepared

ith ultrapure water (0.055 𝜇S/cm at 25 °C). 

.2. Synthesis of graphene oxide (GO) 

The GO samples were synthesised according to modified Hummers

ethod ( Chen et al., 2013 ) using 2 g of vein graphite flakes at a given

ime (S-1.1). The GO particulates were washed with 5 % (v/v) HCl to

emove metallic contaminants ( Kumar et al., 2017 ). The acid-washed

amples were further washed repeatedly with ultrapure water (0.055

S/cm at 25 °C) until the resultant solution pH was neutral. The solid

nd solution separation was carried out by centrifugation at 5000 rpm.

raphite has converted into graphite oxide by Hummers treatment. As

hown in S-1.1, after successive ultrasonication and centrifugation, the

raphite oxide converted into graphene oxide. Accordingly, the presence

f GO was determined by XRD and UV-spectroscopic measurements and

alculation using Raman spectral data using the constant force model

 𝐺 = 1581 . 6 + 

11 
1+ 𝑛 1 . 6 when no coupling between phonon and electrons

s assumed ( Friedel and Carlson, 1971 ; Wang et al., 2009 , 2009b ). 

.3. UV spectroscopy of rGO 

Polyphenols extracted from the green tea were added to GO sus-

ension to yield reduced graphene oxide (rGO-GT). The solution colour

hanged from brownish-yellow to black was monitored to determine

he progress of the reaction. The rGO/rGO-GT were washed thoroughly

ith deionised water until the pH of the washed solution was neutral

 Wang et al., 2011 ). A UV spectroscopic method was used to determine

earrangements of 𝜋 electronic conjugation in rGO-GT and rGO (UV 201,

hermo Scientific, USA). 

.4. Synthesis of rGO-nZVI composites 

rGO-nZVI composites under facile conditions were synthesised using

H 4 
− or green tea derived polyphenols. A 200 mL of 0.25 M FeSO 4 .7H 2 O

issolved was mixed rGO suspension under vigorous shaking for 1 h. In
he synthesis of rGO-nZVI-B, a 50 mL of 1 M sodium borohydride solu-

ion was added dropwise to rGO and FeSO 4 .7H 2 O suspension stirred for

4 h. Alternatively, for the preparation of rGO-nZVI-P, 200 mL polyphe-

ol extract was added to the rGO/FeSO 4 .7H 2 O suspension and stirred

or 24 h. The black materials resulted from both routes were washed to

 neutral pH. The freshly prepared rGO-nZVI composites (rGO-nZVI-P

r rGO-nZVI-B) were separated, vacuum dried, and stored at 4 °C. The

ydrated rGO was also ultrasonicated for 20 min and stored at 4 °C. 

.5. Characterisation of rGO-nZVI composites 

The rGO-nZVI composites were characterised with spectroscopic and

lectrochemical methods. X-ray diffractograms of rGO-nZVI-P and rGO-

ZVI-B were obtained for phase identification and particle size estima-

ion. An X-ray diffractometer at 20 kV and 30 mA was operated us-

ng Cu-K 𝛼 radiation at 𝜆 = 0.154 nm (Rigaku Ultima IV, Japan). The

ean diameter of the crystallites was estimated by the Scherrer equa-

ion ( Kumar et al., 2019a ); 

 = 

0 . 94 𝜆
𝛽cos 𝜃

here D is the mean size of the crystalline substrate, 𝜆 is the wavelength

f Cu-K 𝛼 radiation, 𝛽 is the line broadening at half the maximum inten-

ity of the Bragg peak corrected for instrumental line broadening, 0.94

s a shape factor (Scherrer constant), and 𝜃 Bragg angle. Transmission

lectron microscopy (TEM) images were obtained on a JEM-200CX 139

lectron microscope operated at 200 kV. FTIR spectra were recorded in

ransmission mode for the characterisation of surface sites with an IR

pectrometer equipped with a DTGS detector (iS50 Thermo Scientific,

SA). All spectra were obtained at 4 cm 

− 1 resolutions in the 400–4000

m 

− 1 spectral range. The Raman measurements of the rGO-nZVI com-

osites were obtained by Raman spectrometer with at 532 nm laser exci-

ation (Lumenera BRUKER SENTERRA, Germany). The electrons trans-

er of rGO-nZVI composites were examined by cyclic voltammetry using

odified glassy carbon electrodes as detailed in the S-1.2. 

.6. X-ray photon spectroscopic (XPS) analysis 

All XPS measurements were carried out by an XPS (5000 VersaProbe

I ULVAC-PHI Inc., Japan) system equipped with a scanning microprobe

-ray source (monochromatic Al K 𝛼 1486.7 eV X rays), an electron flood

un, a floating ion gun generating low energy electrons (1.1 eV), and

ow energy Ar ions (8 eV) for charge compensation at isolating samples

dual beam technique), respectively. A small amount of well-dried and

ne sample was evenly distributed and pressed against a conducting Cu

ape fastened onto a sample holder mounted on the manipulator. Dur-

ng the experiment, the base pressure in the experimental chamber was

5 × 10 − 10 mbar, and all photoemission data was acquired in the nor-

al emission mode from well-outgassed samples. The angle between the

ample surface and analyser was set at 45 0 . Survey scans were recorded

ith an X-ray source power of 31 W and pass energy of 187.85 eV. Nar-

ow scans of the elemental lines were recorded at 23.5 eV pass energy,

hich yields an energy resolution of 0.69 eV FWHM at the Ag 3d 5/2 line

f pure Ag. All spectra were referenced to C 1s (hydrocarbon) at 284.8

V. Data analysis was performed using the embedded peak resolving

rogram (ULVAC-PHI MultiPak ver. 9.5, Japan). 

.7. Classical surface properties 

The specific surface area of the rGO-nZVI composites was determined

ith the Brunauer–Emmett–Teller (BET) method, (Quanta chrome In-

truments version 11.0). Before specific surface area determination, the

amples were degassed at 300 °C for 6 h using 99.998% Ar to remove

ater, and other surface sorbed impurities, and yield clean surfaces for

urface area measurements. The specific surface area of rGO-nZVI-B was

1.2 m 

2 g − 1 , while for rGO-nZVI-P, it was 16.1 m 

2 g − 1 . The zero point of
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harge (pH ZPC ) of the rGO-nZVI composites was determined by proton

urface titration. A 2 g L − 1 composite materials were separately equili-

rated in NaCl for 1 h under N 2 (99.996%) purging. The initial pH of

he composite suspension was ~ 5.4. The suspension pH was raised to

H 10 with 0.05 M NaOH. The acid titrations were carried out with auto

itrator systems to pH 4. 

.8. Nitrate reduction by rGO-nZVI composites 

The rGO-nZVI composites were used to reduce nitrate in water. The

xperimental procedures are documented elsewhere ( Ratnayake et al.,

017 ). In a typical experimental setup, a 200 mL batch solution was

repared in 0.01M NaCl using 5 g L − 1 rGO-nZVI-B or rGO-nZVI-P at pH

5.6 and 25 °C. The reactor system was continuously purged with Ar. At

 given point, the solution was spiked with nitrate to yield 0.8064 mM,

nd at pre-defined times a known volume of suspension was filtered

0.22 𝜇m membrane filters) into 2.5 mL tubes for nitrate and nitrite

etection by ion chromatography (Shimadzu CDD 10A VP, Japan) in

riplicate. Empirical rates of nitrate reduction by rGO-nZVI composites

ere developed from the experimental data. 

.9. Nitrate reduction in well water by rGO-nZVI composites 

The spatial distribution of nitrate in well waters in Nettiyagama vil-

age (Sri Lanka) was also compiled (Fig. 8-S: support documentation).

ell water with the highest nitrate (94 mg/L NO 3 
− ) was sampled to

valuate the efficiency of rGO-nZVI catalysts for nitrate destruction. The

xperimental procedure is the same as stated in Section 2.8 , except as

eceived natural well water was used in place of nitrate test solutions.

DS and pH measurements were carried out with a pH/EC/TDS/ORP

eter (EXTECH, 341350A, USA). We used a photometer to determine

ardness, nitrate and alkalinity in water with the manufacturer supplied

est kits (MD 600, Lovibond, Germany). 

. Results and discussion 

.1. UV–vis spectroscopy of graphene derivatives 

The reduction of GO → rGO by polyphenol is observed in UV–vis

pectroscopic data ( Wang et al., 2011 ). When compared to polyphe-

ol, the reduction of GO → rGO by BH 4 
− is relatively straightforward.

s shown in Fig. 1-S GO shows maximum absorption at 230 nm with a

houlder (at 300 nm) due to aromatic C–C and C = O, 𝜋–𝜋∗ and n–𝜋∗ elec-

ron transitions, respectively ( Mhamane et al., 2011 ). As the GO → rGO

eduction proceeds, the colour of the solution changes from brownish-

ellow → black. The peak observed at 230 nm for GO red-shifted to 273

m, which confirms the restored graphene structure. The new peak at

05 nm confirms the presence of polyphenol ( Wang et al., 2011 ) ad-

orbed on rGO. The reduction of peak intensity at 273 nm is due to the

verlapping of adsorbed polyphenol and rGO spectrums. 

.2. X-ray diffraction and TEM characterisation 

The X-ray diffraction peaks at 2 𝜃 = 44.34°, 65.26° ( Fig. 1 -A: rGO-

ZVI-P), 44.43°, and 65.11° ( Fig. 1 -A: rGO-nZVI-B) confirm the presence

f 𝛼-Fe (0) BCC phase in the core ( Kassaee et al., 2011 ). The basal peak

t 2 𝜃 = 26.72° corresponds to organised graphite sheets in rGO-nZVI-P

ith 0.33 nm inter-layer spacing (Fig. 2-S). During the graphite → GO

xidation, the peak at 2 𝜃 = 26.72° has disappeared, and a new one ap-

ears at 2 𝜃 = 11.46° with enhanced interlayer spacing (i.e., 0.76 nm).

he absence of the peak at 2 𝜃 = 11.46° suggests GO → rGO conversion

y exfoliation ( Guo et al., 2012 ) (Fig. 2-S). As shown in Fig. 1 -B-I and

-II, the diffraction patterns for rGO-nZVI-B matches well with that of

he iron oxide ( Wang et al., 2009 , 2009b ), and they further confirmed

y XRD results. The shell structure is composed of mixed iron oxides/

ydroxides with a layer thickness around 2–7 nm. However, the outer
ayering is sporadic around metallic Fe cores ( Petala et al., 2013 ). The

e (0) is highly reactive, and upon exposure to the ambient atmospheric

onditions, they readily oxidised into core-shell structures. The relative

roportions of oxidation states of iron in the mixed-layer coatings are

ighly variable, and they depend on the reductants used in the material

abrication ( Li et al., 2006 ). In the presence of rGO, the nZVI particulates

re decorated with a coating that protects the core Fe (0) from further

xidation. Due to the presence of Fe (0), the electron diffraction patterns

f rGO-nZVI-P are more complex than the rGO-nVI-B. The preparation

ethods of nZVI exert significant influence on the physical and chem-

cal properties of the particulates and operation parameters ( Li et al.,

006 ). 

As shown in TEM images ( Fig. 1 -C), the graphene sheets form stable

onfigurations as corrugation, bending, and folding ( Yadav et al., 2016 ;

ang et al., 2014a , 2014b ). Most nZVI particulates are spherical with

iameters in the range ~4 to ~15 nm, which are well dispersed within

GO layers ( Fig. 1 -D). This unique arrangement inhibits Fe (0) rapid

xidation and agglomeration ( Peik-see et al., 2014 ). However, in the

ase of BH 4 
− reduction, Fe (0) tends to agglomerate on the rGO surface

rGO-nZVI-B). Polyphenols act as a capping agent for Fe (0) to prevent

ts aggregation. According to published data ( Wang et al., 2009 , 2009b ),

ully oxidised nZVI particles are relatively small (diameter 4–10 nm)

hile core-shell particles are relatively large and include a Fe core (~18

m). When compared to rGO-nZVI-P, the relative proportion of Fe (0)

n rGO-nZVI-B is low. In the latter case, under ambient conditions, the

xterior portions of Fe (0) particulates readily convert into amorphous

e (OH) 2 or Fe (OH) 3 with specific surface area ( Wang et al., 2014 ,

014b ). Therefore, the specific surface area of the rGO-nZVI-P (16 m 

2 

 

− 1 ) should be less than the rGO-nZVI-B (32 m 

2 g − 1 ). 

.3. Vibration spectroscopic data 

The Raman spectrum of nZVI is virtually featureless. The weak

and shows at 700 cm 

− 1 is due to partial oxidisation of the Fe (0)

 Jabeen et al., 2013 ). The Raman spectra of rGO-nZVI-B and rGO-nZVI-P

re simple and contain G, D, 2G, and 2D bands characteristic of crys-

alline carbon structures ( Fig. 2 -A). Graphite or high-quality graphene

hows a D band at 1351 cm 

− 1 with weak intensity. The D-band is due

o the breathing mode of the distorted sp 2 C rings that requires a defect

r an adjacent graphene edge for activation; it results from transverse

ptical phonons around the K point of the Brillouin zone ( Wang et al.,

014 , 2014b ; Lespade et al., 1984 ). The intensity of the D band directly

roportional to defect density and the highest value is shown in rGO-

ZVI-B ( 𝐼 𝐷 
𝐼 𝐺 

= 0 . 851 ) . The G-band corresponds to the doubly degenerated

 2g phonon at the Brillouin zone. In rGO-nZVI-P, the G band due to first-

rder scattering of E 2g phonon of sp 2 C in rGO occurs at 1535 cm 

− 1 .

owever, in rGO-nZVI-B, the G band has shifted from 1535 → 1587

m 

− 1 due to the rGO oxidation ( Chen et al., 2013 ). In both instances,

he rGO phase is present, and the D band intensity of graphite increases

ith the oxidation. 

Upon conversion of GO to rGO, both G and D bands broaden

nd shift. The intensities of G and D bands are higher in rGO-nZVI-B

 

𝐼 𝐷 

𝐼 𝐺 
= 0 . 851 ) than rGO-nZVI-P ( 𝐼 𝐷 

𝐼 𝐺 
= 0 . 853 ) , which suggest the abundance

f isolated rGO domains ( Li et al., 2014 ; Wang et al., 2009 , 2009b ). The

D overtone at 2679 cm 

− 1 determines the multi-layering in graphene.

he presence of mono-layering in graphene signifies by the 2D band at

679 cm 

− 1 . The D band broadens and blue shift evidence multi-layering

f graphene ( Li et al., 2014 ; Wang et al., 2009 , 2009b ). In rGO-nZVI-B,

he band at 2680 cm 

− 1 indicates mono-layering in graphene structure,

hereas a multi-layering structure is observed in rGO-nZVI-P. However,

he presence of functional groups such as carbonyl, carboxyl, hydroxyl,

nd epoxides in GO inhibits layer stacking and further enhance the at-

achment of metal oxide nanomaterials ( Kumar et al., 2019b ). The con-

rmatory evidence for the presence of rGO monolayers required high-

esolution transmission spectroscopic measurements ( Chen et al., 2012 ;
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Fig. 1. (A–D): (A). X-ray diffractograms of rGO – nZVI-B and rGO – nZVI-P. (B). Low energy diffraction patterns rGO-nZVI-P (B-I) and rGO-nZVI-B (B-II) (C). 

Corrugation and folding morphology of rGO, (D). nZVI core shells and oxidised particulates. 
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un et al., 2017 ). However, without high-resolution TEM data, we can-

ot express the light areas of rGO sheets as monolayers ( Kumar et al.,

016 ). 

In the FTIR spectrum of crystalline graphite, no specific bands do

ppear, but weak bands around 2200 cm 

− 1 are due to aromaticity

ithin the non-crystalline graphite matrix ( Friedel and Carlson, 1971 ;

 ucureanu et al., 2016 ) ( Fig. 2 -B). In GO, the graphite structure still re-

ains with increased inter-layer distance (graphite = 0.33 nm GO = 0.76

m). The GO is composed of sp 3 -hybridized carbons (with hydroxyl and

ther/epoxy functional groups arranged on both sides of the surface) and

p 2 -hybridized carbons (with carbonyl and carboxyl functional groups

on basal and edge structures). The rGO derived nZVI nanocomposites

re enriched with functional groups. The broadband at 3000–3600 cm 

− 1 

egion relates to H– bonded O–H stretching vibrations of –COOH, ph-

sisorbed water, or structural –OH in GO. However, the discrimination

f –OH present in –C–OH and H 2 O is not possible from our data. The

and at 1724 cm 

− 1 corresponds to stretching of –C = O in –COOH, or eas-

ly convertible functional groups as anhydride or lactone preferentially

ocated along the periphery of the GO sheets. The band at 1724 cm 

− 1 

isappeared upon the reduction of GO → rGO and Fe (II) → Fe (0) by

ither BH 4 
− or polyphenols. In GO, the band at 1620 cm 

− 1 attributes
o bending modes of –OH groups from physisorbed water. In rGO, the

houlder bands at ~1630 cm 

− 1 and 1400 cm 

− 1 are assigned to aromatic

nd –C–C– stretching. The GO structure contains a large proportion of

COOH groups in different H-bonded local environments. The band at

047 cm 

− 1 ascribed for H-bonded –COOH deformations. The band at

047 cm 

− 1 increased when polyphenol is used in the Fe (0) and GO

eductions. 

The broad doublet around 3200 to 3350 cm 

− 1 corresponds to H-

onded –OH vibrations in phenolic and carboxylic groups of polyphe-

ols. The band at 2810 cm 

− 1 indicates the vibrations of –C–H present

n phenolic and graphene structures. The absence of band at 1724 cm 

− 1 

n both rGO-nZVI-B and rGO-nZVI-P spectrums confirms GO → rGO con-

ersion. The shoulder band at 980 cm 

− 1 is due to bending vibrations

f –C–H in rGO and is prominent due to the formation of admixture

ith graphite and rGO. The band at 598 cm 

− 1 indicates the presence of

e x O y phase on graphene sheets ( Fig. 2 -B). The shoulder peak at 1400

m 

− 1 due to –COOH symmetric stretching has developed as a discrete

and upon GO → rGO conversion. The invariant behaviour of IR bands

round 3000–3500 cm 

− 1 and 1047 cm 

− 1 indicates surface adherence of

–O bonds onto defects or graphene sheets. The association of Fe (0) on

GO matrix is possibly occurred via 𝜋–𝜋 framework is shown in Fig. 3 . 
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Fig. 2. (A–B): (A). Raman spectra of graphite, GO, rGO-nZVI-B, and rGO-nZVI-P (B). FTIR spectra of graphite, GO, rGO-nZVI-B, and rGO-nZVI-P. 
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.4. X-ray photon spectroscopy (XPS) 

Details of the XPS spectrums of rGO-nZVI-P and rGO-nZVI-B are

hown in Figs. 3-S to 5-S, and only the spectral evidence corresponds

o Fe (II) → Fe (III) conversion is discussed. Fig. 5-S (A) shows the re-

olved Fe (0) peaks correspond to Fe 2p 3/2 and Fe 2p 1/2 of rGO-nZVI-P

nd rGO-nZVI-B at (711.5 eV, 725 eV) and (710.8 eV, 723 eV), respec-

ively. The Fe 2p 3/2 and Fe 2p 1/2 peak shifts are due to Fe (0) → Fe

III) conversion ( Kumar et al., 2017 ). The characteristics Fe (0) peak

hows at 707 eV or 706.8 eV for rGO-nZVI-B or rGO-nZVI-P, respec-

ively ( Guo et al., 2012 ). As shown in Fig. 5-S (B and C), the anionic

xygen in Fe x O y shows a peak around 529–530 eV ( Guo et al., 2012 ;

i et al., 2011 ). The peaks observed at 530 and 531 eV are due to an-

onic oxygen in rGO-nZVI composites. However, the origin of surface

xygens cannot be resolved from the nature of the data presented. 

.5. Nitrate reduction in water 

The reduction efficiency of nitrate by rGO-nZVI-P or rGO-nZVI-B was

etermined around pH 5.6. When compared to rGO-nZVI-B, the rGO-

ZVI-P shows enhanced reactivity for nitrate reduction ( Fig. 5 -A). Al-

ays, the dominant nitrate reduction product by rGO-nZVI composites is

mmonium ion, which accounts for over 95 % of N-mass balance. Nitrite

nd nitrogen oxides are present in small quantities initially. However,

o nitrite accumulation is shown ( Microbes et al., 2004 ). When kinetic

easurements were made with nitrite or nitrate and Fe (0), it was shown

hat the rate of nitrite reduction by Fe (0) is over ten-fold faster than of

itrate ( Microbes et al., 2004 ). In the nitrite/Fe (0) system, only 50% of

 was accounted for ammonium ion conversion ( Scherer, 2002 ). Mainly

he ammonium production seems to occur via nitrite reduction pathway.

he nitrate reduction by NO or N 2 pathways is not significant ( Goto and

ujie, 2001 ; Han et al., 2016 ) shown in the CV data (Fig. 6-S. A and B,

ig. 7-S), the Fe (0), Fe (II) and Fe (II)-polyphenol species are active in

itrate reduction by rGO-nZVI composites ( Fig. 4 ). In the presence of Fe

II), however, the nitrate reduction does not occur in homogeneous so-

ution ( Liu and Wang, 2019 ), and it is essentially surface-mediated. The

H zpc values of rGO-nZVI-P and rGO-nZVI-B are 6.2 and 6.9, respec-

ively. When pH ~5.6, the surface of rGO-nZVI composites is positively

harged, and NO 3 
− forms an outer-sphere surface complex without a
igand exchange. The Fe (0) and C include an array of micro-galvanic

ells with a relatively large potential difference ( Liu and Wang, 2019 )

hich drives larger electron flow from rGO-nZVI-P or rGO-nZVI-B com-

ared to nZVI. The transfer of electrons occurs readily to nitrate ions via

urface attached OH 

− conduits. The experimental data suggest ammo-

ium as a major product, while N 2 , NO and NO 2 
− present in the system

n traces. Accordingly, the nitrate reduction seems occurring via nitrite

nto ammonium, as shown in Fig. 4 . 

.6. Nitrate reduction kinetics 

Nitrate reduction by rGO-nZVI composites occurs via multi-electron

ransfer routes. Therefore, the development of a mechanistic model to

ccount for nitrate reduction kinetics is quite challenging. Therefore,

o quantify NO 3 
− reduction by rGO-nZVI composites, an empirical ki-

etic model was developed using the initial rate determination method

 Fig. 5 -A). The nitrate reduction by nZVI composites at pH 5.6 follows

econd-order kinetics by the model shown below: 

𝑡 

𝑄 𝑡 

= 

1 
𝑘 2 𝑄 

2 
𝑒 

+ 

𝑡 

𝑄 𝑒 

here 𝑄 𝑡 and 𝑄 𝑒 are [NO 3 
− ] at a given time t and [NO 3 

− ] at a maxi-

um reduction, respectively. The 𝑘 2 represents the empirical rate con-

tant for nitrate reduction. When initial [NO 3 
− ] = 0.8062 mM, the re-

uction rate is highest in the rGO-nZVI-P composite. The rate constants

re determined as 2.1039 and 2.9347 for rGO-nVI-P and rGO-nZVI-P,

espectively. 

.7. Reusability of nZVI composites 

The Fe (0) in polyphenol/rGO composite is well dispersed,

hich results in enhanced efficiency of nitrate reduction at initial

NO 3 
− ] = 0.8062 mM and pH 5.6. The reusability of the substrates for

itrate reduction was also examined. Always when compared to rGO-

ZVI-B, the rGO-nZVI-P showed superior performance for nitrate reduc-

ion. The efficiency of nitrate reduction by nZVI is optimal around pH

2 and decreases rapidly at neutral pH. However, in the presence of

GO, the nitrate reduction by rGO-nZVI-P was optimal around pH 5.6.

n rGO-nZVI composites, rGO acts as an electrode in the array of Fe (0)
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Fig. 3. A postulated model for the association of Fe (0) with rGO. The Fe (0) adhesion on rGO believes via 𝜋–𝜋 stacking. 
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o  
nd C galvanic cells, which increases electron flux. However, rGO-nZVI-

, most of the nZVI particulates are covered with an insulating oxide

ayer, which limits electrons transfer to some extent. In the case of rGO-

ZVI-P, this effect is minimised, which enhances electrons flux. When

ompared to rGO-nZVI-B, the enhanced efficiency of nitrate reduction

y rGO-nZVI-P is ascribed due to higher electrons flux. The improved

eduction efficiency of nitrate by rGO-nZVI-P is ascribed due to the fol-

owing factors; a. the large proportions of electrons are released from

GO-nZVI-P by the Fe (0) and C galvanic cell, b. surface water splitting

t the surface generating H 

+ . The large potential difference created by

e (0) and C galvanic cells drives a more significant number of elec-

rons than corrosion, and water splitting at the surface site creates H 

+ 

oth favour nitrate reduction ( Liu and Wang, 2019 ). Although nZVI is

ispersed well in the rGO surface, in rGO-nZVI-B, most of the nZVI par-

iculates are covered with an oxide layer that limits efficient electrons

ransfer to nitrate ( Fig. 5 B). The efficiency of rGO-nZVI-P is declined by

bout 2% with repeated use for five days. 
.8. Application to nitrate-rich natural well water 

In a batch experiment, rGO-nZVI-B or rGO-nZVI-P was used to de-

truct nitrate in a well water sample used for human consumption (Fig.

-S: support documentation). As in Table 1-S (support documentation),

he nitrate concentration of our water sample exceeds the WHO limit

e.g. 50 mg/L nitrate, WHO, 2017 ) specified for drinking water by about

wo folds. Over 55% nitrate in the well water can be eliminated by rGO-

ZVI-P treatment. Concurrently, over 40% TDS reduction in water can

lso achieve. However, when rGO-nZVI-B is used, only 43% of nitrate

as destructed; however, no decrease in TDS was observed. The divalent

ations seem to complex with polyphenolic compounds present in rGO-

ZVI-P. Although nitrate is enforceable water quality parameter, TDS

s non-enforceable. However, excess TDS renders water unpalatable.

herefore, TDS control is desirable first, to increase water palatability.

he rGO-nZVI-P can use as a starting material for concurrent removal

f TDS and nitrate in water. However, the mechanism of the reduction
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Fig. 4. Postulated nitrate reduction pathways. NO 2 
− /NO 3 

− Eh 0 0.843 V; NO/NO 3 
− Eh 0 0.952 V; N 2 /NO 3 

− Eh 0 1.241 V, NH 4 
+ /NO 3 

− Eh 0 0.878 V, NH 4 
+ /NO 2 

− Eh 0 

0.890 V. 

Fig. 5. (A–B): (A). Pseudo Second-order kinetic model for the removal of excess nitrate using rGO – nZVI composites and T 25 °C. (B) Nitrate removal efficiency on 

repeated used of rGO-nZVI substrates. Initial solution composition [NO 3 
− ] initial = 0.8062 mM [rGO-nZVI] = 5 g L − 1 , pH 5.6. 
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f divalent ions by rGO-nZVI substrates, and detailed characterisation

f the spent catalyst warrants further research. 

. Conclusions 

The synthesis of Fe 0 on rGO matrix by polyphenol has resulted in

ZVI with enhanced stability (rGO-nZVI-P). The rGO-nZVI-P is suitable

o destruct nitrate from water. The nitrate reduction occurs efficiently

t near-neutral pH yielding ammonia as the main product (~95%). The

ncorporation of nZVI amidst rGO is believed via 𝜋–𝜋 stacking. Further

esearch warrants into in situ conversion of ammonium produced by

itrate reduction into chloramines for safe water disinfection. The rGO-

ZVI-P has a promise in drinking water treatment due to its ability to

educe nitrate and TDS in natural water concurrently. 
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