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Abstract. Anderson et al have shown that for complex energies, the classical trajectories of real
quartic potentials are closed and periodic only on a discrete set of eigencurves. Moreover, recently it
was revealed that when time is complex t (t = treiθτ ), certain real Hermitian systems possess close
periodic trajectories only for a discrete set of values of θτ . On the other hand, it is generally true
that even for real energies, classical trajectories of non-PT symmetric Hamiltonians with complex
parameters are mostly non-periodic and open. In this paper, we show that for given real energy, the
classical trajectories of complex quartic Hamiltonians H = p2 + ax4 + bxk (where a is real, b

is complex and k = 1 or 2) are closed and periodic only for a discrete set of parameter curves in
the complex b-plane. It was further found that given complex parameter b, the classical trajectories
are periodic for a discrete set of real energies (i.e., classical energy gets discretized or quantized
by imposing the condition that trajectories are periodic and closed). Moreover, we show that for
real and positive energies (continuous), the classical trajectories of complex Hamiltonian H =
p2 + μx4, (μ = μreiθ ) are periodic when θ = 4 tan−1[(n/(2m + n))] for ∀ n and m ∈ Z.
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1. Introduction

In recent years, classical behaviour of non-Hermitian Hamiltonian systems [1–5] as well
as classical motion of Hermitian systems for complex energies [6–16] have attracted much
interest. Investigation of classical mechanics in the complex domain is useful for under-
standing various classical and quantum mechanical phenomena such as barrier tunnelling,
dynamical tunnelling [17,18], classical and quantum chaos [7,19], quantum correspon-
dence principle, complex forms of uncertainty relations and the semiclassical limit of
complex quantum field theories.
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Since the earlier work on classical motion of non-Hermitian systems [6,7], several
interesting results have been found on the various aspects of the subject [8–16]. Nume-
rical and analytical investigations have revealed that when energies are real, classical
trajectories of complex PT symmetric non-Hermitian systems are closed and periodic.
However, when energies of these systems are complex, the periodic trajectories usually
become non-periodic and open [15,19]. Recently, it was shown that even though most of
the trajectories corresponding to complex energies are open and non-periodic, for some
systems, there are special discrete sets of curves in the complex-energy plane for which
the trajectories are periodic [20]. On the other hand, in non-Hermitian and non-PT sym-
metric Hamiltonian systems, even for real energies, almost all trajectories except a few are
non-periodic and open. It was also shown recently that when time is taken as a complex
quantity with a specific fixed-phase angle or as a specific complex function, non-periodic
trajectories of 1D Hamiltonian systems become periodic and closed [21].

In this paper, we investigate the classical trajectories from a different point of view.
Here we examine clasical behaviour of the complex Hamiltonian H = p2 + ax4 + bxk

(where k = 1, 2, and a is real, such that H is not PT symmetric) for complex parameter
b and real energy E. The outline of the paper is as follows. In §2, analytic expressions
for complex trajectories are derived. Expressions for periods of the periodic trajectories
as well as time taken by unbounded trajectories to escape to infinity are found in terms
of b and energy E. We shall show that for the given real energy, the classical trajectories
of the above quartic Hamiltonian are open except for a discrete set of parameter values
in the complex b-plane. In §3, we study how trajectories behave when energy is real
and b is a fixed complex parameter. The classical trajectories of complex Hamiltonian
H = p2 + μx4 (μ = reiθ ) is investigated for real energies in §4 and concluding remarks
are given in §5.

2. Classical trajectories of H = p2 + ax4 + bxk

In this section, first we study in detail the classical motion of the complex quartic
anharmonic oscillator. We assume that the Hamiltonian has the form

H = p2 + ax4 + bxk, (1)

where a is a real positive constant, b is a complex constant and k = 1 or 2. First we
derive expressions for x(t) and the period for the above Hamiltonian. When it is needed,
value of k is chosen as 1 or 2. Throughout this paper, mass of the particle is taken as half
(i.e., 2m = 1).

The equation of motion is

dx

dt
= p = 2

√
E − ax4 − bxk. (2)

The turning points of this system are taken as x0, x1, x2 and x3 and by integrating
eq. (2) we have

∫
dx√

(x − x0) (x − x1)(x − x2)(x − x3)
= 2

√
aeiπ/2t + c, (3)
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where c is the constant of integration, which depends on initial conditions. The left-hand
side of the above equation is an elliptic integral of the first kind and hence eq. (3) becomes

2√
(x0 − x2) (x1 − x3)

F

(

sin−1

[√
(x − x1) (x0 − x2)

(x − x0) (x1 − x2)

]

,
(x1 − x2) (x0 − x3)

(x0 − x2) (x1 − x3)

)

= 2
√

aeiπ/2t + c, (4)

where F is an elliptic function. We invert the above equation in terms of Jacobian elliptic
function ‘sn’ as

x (t) = x1 (x0 − x2) − x0(x1 − x2)sn2(u)

(x0 − x2) − (x1 − x2)sn2(u)
, (5)

where

u = √
a (x0 − x2) (x1 − x3)e

iπ/2t + α

and modulus

κ =
[
(x1 − x2) (x0 − x3)

(x0 − x2) (x1 − x3)

]1/2

and α is an arbitrary constant, which is determined by the initial conditions. Note that
x(t) in the above equation is still a solution of (3), when x0, x1, x2 and x3 are cyclically
changed (e.g., x3 → x0 → x1 → x2 → x3). To understand how the trajectories behave,
we need to recognize the periodic, bounded and unbounded properties of the function
x (t). First, we find complementary modulus κ ′ and complete elliptic functions K and
K ′. They are defined by

κ ′2 = 1 − κ2 = (x0 − x1) (x2 − x3)

(x0 − x2) (x1 − x3)
(6)

K =
∫ π/2

0
(1 − κ2 sin2 (φ))−1/2dφ (7)

K ′ =
∫ 1

0

(
1 − t2

)−1/2
(1 − κ ′2t2)−1/2dt. (8)

K and K ′ are evaluated directly from the above equations and they are independent of
phase angle θ .

The trajectory x(t) is given by

x (t) = x1 (x0 − x2) − x0(x1 − x2)sn2(u)

(x0 − x2) − (x1 − x2)sn2(u)
.

The condition for trajectory becomes unbounded and the particle escapes to infinity is

(x0 − x2) − (x1 − x2)sn2(u) = 0 (9)

where

u = √
a (x0 − x2) (x1 − x3)e

iπ/2t + α
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satisfied for some real positive t and the time taken for the particle to escape to ∞ is given
by

T∞ =
(
sn−1(z0) − α

)
e−iπ/2

√
a (x0 − x2) (x1 − x3)

(10)

where

z0 =
√

(x0 − x2)

(x1 − x2)
.

‘sn’ is doubly periodic with period 4mK+2niK ′, where m and n are integers. Therefore,
the condition for the trajectory to become periodic and particle does not escape to infinity
is

√
a (x0 − x2) (x1 − x3)e

iπ/2t = 4mK + 2niK ′; m, n ε Z (11)

and t < T∞.

Then the trajectory is periodic with the period.

Tp =
(
4mK + 2niK ′) e−iπ/2

√
a (x0 − x2) (x1 − x3)

. (12)

Note that if Tp > T∞, the trajectory is still non-periodic. By imposing the condition
that Im

(
Tp

) = 0, we have

r ≡ n

m
= Im[2iK/z]

Im
[
K ′/z

] ; m, n ε Z, (13)

where

z = √
a (x0 − x2) (x1 − x3).

As n and m are integers and the energy E is fixed, r is rational and eq. (13) provides
a discrete set of parameter values in the complex b plane for which classical trajectories
are periodic. Let b = breiθ . Figures 1a and 1b show how the ratio r varies with discrete
values of θ for k = 1 and k = 2, respectively. Without loss of generality, the energy E is
taken as unity as it is real. The results can be generalized for any real energy E by simple
rescaling of x and t .

3. Discretization of classical energy

Next we consider the case when parameter b is a fixed complex number and E is a variable
(assume a = 1 and b = 1 + i). As a result, eq. (13) allows only a discrete set of values
of E for which trajectories are periodic. It was found that these discrete values of E

can be either real or complex, satisfying the condition (13). Tables 1 and 2 show some
real discrete values of E, which make trajectories periodic when k = 1 and k = 2,
respectively. Figures 2 and 3 show the periodic trajectories of systems k = 1 and k = 2
for two values of real energies.

Moreover, it was found that if energy E corresponds to the periodic trajectories of
p2 + ax4 + bx then −E will be the energy that makes trajectories of p2 − ax4 + ib̄x (b̄ is
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Figure 1. By applying the condition that classical trajectories are periodic, we obtain
discrete values of θ for a fixed value of br . (a) Shows how the ratio r varies with
complex phase angle θ of the potential V (x) = x4 +breiθ x . In order to have periodic
trajectories, r (r ≡ n/m) has to be rational and hence only discrete values of θ satisfy
the condition (13). Each point in the graph represents such a value. (b) Same as (a)
but for the potential V (x) = x4 + breiθ x2.
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Table 1. Classical energy spectrum corresponding to periodic
trajectories of V (x) = x4 + (1 + i)x for various (m, n).

m n E

1 1 0.27499
1 2 0.71624
1 3 0.78605
2 3 0.60480
2 5 0.74280
2 1 −0.28103
3 1 −0.53968
3 2 −0.07449
5 2 −0.42562

Table 2. Classical energy spectrum corresponding to periodic
trajectories of V (x) = x4 + (1 + i)x2 for various (m, n).

m n E

1 1 −0.02143
1 2 −0.16951
1 3 −0.32417
2 3 −0.08940
2 5 −0.24827
2 1 1.458020
3 1 2.99725
3 2 0.81963
5 2 2.17849

the complex conjugate of b) periodic. Further, E and −E are solutions corresponding to
the same n and m in the periodic condition (13) for these two Hamiltonians, respectively.
In other words, if SE is the discrete set of energies for which classical trajectories of
p2 + ax4 + bx are periodic then S−E is the set of energies for which trajectories of
p2 − ax4 + ib̄x are periodic. Figures 4a and 4b show two periodic trajectories illustrating
the above claim.

4. Periodic classical trajectories of H = p2 + μreiθx4

Next we assume that a = μ and b = 0 in the Hamiltonian (1). Then new Hamiltonian
has the form

H = p2 + μx4, (14)

where μ is complex and μ = μreiθ .
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Figure 2. A periodic trajectory corresponding to (m, n) = (1, 2) for the quartic
potential V (x) = x4 + (1 + i)x with real energy E = 0.71624.

Figure 3. A periodic trajectory for the quartic potential V (x) = x4 + (1 + i)x2

corresponding to (m, n) = (3, 2) with real energy E = 0.81963.
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Figure 4. Typical periodic classical trajectories of the potentials (a) V (x) = x4 +
(2 + 3i)x and (b) V (x) = −x4 + (3 + 2i)x. Energies of trajectories corresponding
to figures (a) and (b) are E = 2.42227 and E = −2.42227, respectively. The four
turning points are marked as dots.
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The equation of motion is

dx

dt
= 2

√
E − μx4, (15)

where E is the total energy. Following the same procedure as in §2, we obtain required
equations. By integrating (15) we have

∫
dx

√
E − μx4

= 2t + c, (16)

where c is the constant of integration, which depends on initial conditions. The left-hand
side of the above equation is an elliptic integral of the first kind and hence eq. (16)
becomes

F

(
sin−1

[(μ

E

)1/4
x(t)

]
,−1

)
= 2 (μE)1/4 t + α, (17)

where α = (μE)1/4 c and F is an elliptic function. We invert the above equation in terms
of Jacobian elliptic function ‘sn’ as

x (t) =
(

E

μ

)1/4

sn
(
2 (μE)1/4 t + α; −1

)
. (18)

Note that modulus κ2 = −1 for the above problem. K and K ′ are defined in (7) and
(8) and

κ ′2 = 1 − κ2 = 2. (19)

Then K and K ′ are obtained as

K =
√

π	 (1/4)

4	 (3/4)
(20)

K ′ =
√

π	 (1/4)

4	 (3/4)
(1 − i) . (21)

As in the previous sections, the condition of trajectory become periodic and particle
does not escape to infinity is

2 (μE)1/4 t = 4mK + 2niK ′; m, n ε Z. (22)

Then the trajectory is periodic with the period

Tp(μr) = 2mK + niK ′

(μE)1/4 . (23)

As μ = μreiθ

Tp(μr) = K

(μrE)1/4 [(2m + n) + in] (cos (θ/4) − i sin (θ/4)) . (24)

Tp(μr) = K

(μrE)1/4

[
((2m + n) cos (θ/4) + n sin (θ/4)) + i (n cos (θ/4)

− (2m + n) sin (θ/4))
]
. (25)
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As K is real and E is real and positive, by imposing the condition that Im
(
Tp

) = 0,
we have

m

n
= cot (θ/4) − 1

2
; m, n ε Z (26)

or

θ = 4 tan−1

[
n

2m + n

]
; m, n ε Z. (27)

When n = 0 and m �= 0, H = p2 + μrx
4 and it is Hermitian. Then H possesses

periodic trajectories and the period Tp(μr) becomes

Tp(μr) = 2mK

(μrE)1/4

but the period corresponds to the minimum non-zero m and the resulting period is

Tp+(μr) =
√

π	(1/4)

2 (μrE)1/4 	(3/4)
. (28)

On the other hand, when n �= 0 and m = 0, H = p2−μrx
4 and it is the non-Hermitian

‘wrong sign’ potential, which also possesses periodic trajectories. The period is

Tp−(μr) =
√

π	(1/4)

2
√

2 (μrE)1/4 	(3/4)
=

√
π	(1/4)

2 (4μrE)1/4 	(3/4)
. (29)

It is evident from eqs (28) and (29) that the Hamiltonians p2 + 4μrx
4 and p2 − μrx

4

have the same classical period (i.e., Tp+(4μr) = Tp−(μr)). Note that these two Hamil-
tonians are the classical limits of the quantum mechanical isospectral Hamiltonians as
shown in [22–26].

5. Concluding remarks

In this paper, we have presented three main results. First, for the given real energy, the
classical trajectories of quartic Hamiltonians H = p2 + ax4 + bxk (where a is real, b

is complex and k = 1 or 2) are closed and periodic only for a discrete set of parameter
curves in the complex b-plane.

The second result is that given complex parameter b, the classical trajectories are found
to be periodic only for a discrete set of real energies. As a result, real classical energies
get discretized or quantized by the condition that trajectories are periodic and closed.
This result is analogous to what was obtained by Anderson et al in [20] for real potential
parameters with complex E (here it is for complex potential parameters with real ener-
gies). Further, we showed that if S(E) is the discrete set of energies for which classical
trajectories of p2 + ax4 + bx are periodic, then S(−E) is the set of energies for which
trajectories of p2 − ax4 + ib̄x are periodic. We presented our results with illustrations. It
is important to note that when b is complex and not pure imaginary, the entire quantum
eigenspectrum corresponding to the Hamiltonian H is complex and eigenenergies do not
come as complex conjugate pairs. Therefore, H cannot be pseudo-Hermitian and cannot
have any antilinear symmetry.
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As the third result, we showed that for real energies, the classical trajectories of com-
plex Hamiltonian H = p2 + μx4 (μ = reiθ ) are periodic only for discrete values of θ

satisfying the condition θ = 4 tan−1[(n/(2m + n))] for n and m ∈ Z. Further, it was
found that Hamiltonians p2 + 4μrx

4 and p2 − μrx
4, which are the classical limits of

the quantum mechanical isospectral Hamiltonians introduced in [22–26], have the same
classical period.
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