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Effects of complex time on periodic and nonperiodic classical
trajectories of one-dimensional Hamiltonian systems

Asiri Nanayakkara

Abstract: In recent years, much research has been carried out on extending both quantum mechanics and classical mechanics
into the complex domain by making parameters of real hermitian Hamiltonians or total energy of the system complex. In this
paper we investigate the effects of complex time on periodic and nonperiodic trajectories of both hermitian and nonhermitian
one-dimensional classical Hamiltonian systems. Most of the periodic classical trajectories of real hermitian systems turn into
nonperiodic and open when the energy or the parameters of the potential become complex. We show that when time is taken
as a complex quantity with a specific fixed phase angle or as a specific complex function, nonperiodic trajectories become
periodic and closed. Furthermore, we show that real hermitian systems, such as H = p?[2m + x* + bx3 + cx2 + dx (b, ¢, and d are real
quantities) possess classical periodic trajectories for real energies even when time is complex (i.e., t =t,e"). It was found that there
is a discrete set of T values for which the trajectories of the preceding system are closed and periodic and periods associated with
them form a countably infinite set.

PACS Nos.: 03.65.-w, 03.65.Sq, 03.65.Ge.

Résumé : Ces récentes années, beaucoup de recherche s'est faite pour étendre les mécaniques quantique et classique vers le
domaine complexe en rendant complexes les parameétres réels du Hamiltonien adjoints ou I'énergie totale du systéme. Nous
analysons ici les effets du temps complexe sur les trajectoires périodiques et non périodiques de systemes hamiltoniens
classiques 1-D adjoints et non adjoints. La plupart des trajectoires périodiques classiques de systémes réels adjoints deviennent
non périodiques et ouvertes quand 1'énergie ou les parameétres du potentiel deviennent complexes. Nous montrons que lorsque
le temps est pris complexe, avec un angle de phase spécifique constant ou comme une fonction complexe spécifique, des
trajectoires non périodiques deviennent fermées et périodiques. De plus, nous montrons que des systémes hamiltoniens réels
comme H = p?2m + x* + bx3 + cx? + dx (b, ¢, d, quantités réelles) possedent des trajectoires classiques périodiques avec des énergies
réelles, méme lorsque le temps est de la forme complexe t = t,ei”. Nous trouvons qu'il y a un ensemble discret de valeurs de 7 pour
lesquelles les trajectoires du systéme au dessus sont fermées et périodiques et les périodes associées forment un ensemble infini
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dénombrable. [Traduit par la Rédaction]

1. Introduction

In many branches of physics, Hamiltonian systems that possess
periodic trajectories are of especial importance. In multidimen-
sional real Hamiltonian systems, the knowledge of periodic or
quasiperiodic trajectories is valuable in understanding ergodicity
and determining semiclassical eigenenergies using Einstein-
Bruillouin-Keller (EBK)-like quantization methods [1]. For most
multidimensional nonseparable systems, periodic and quasiperi-
odic motion can only exist in a part of the phase space. On the
other hand, in one dimension, real Hamiltonian systems are rel-
atively simple and because of the existence of the constant of
motion, namely, the total energy, they are integrable and hence
closed periodic classical trajectories can always exist.

Recently there has been an increased interest in classical me-
chanics of complex nonhermitian Hamiltonian systems [2-12]. For
these systems classical trajectories usually traverse complex
phase space. As in the real phase space, the classical trajectories of
one-dimensional (1D) real hermitian systems are also mostly peri-
odic in the complex classical phase space as well. Furthermore,
numerical and analytical studies have shown that when energies
are real, the classical trajectories of complex Poschl-Teller (PT)
symmetric nonhermitian systems are also closed and periodic. A
Hamiltonian is PT symmetric if it is invariant under space-time
reflection: for P, p — -p, and x — —x; and for T, p — —p, x — x, and

i— —i. However, when energies of these systems become complex,
the periodic trajectories usually become nonperiodic and open
[4, 6]. Recently it was shown that even though almost all the
trajectories corresponding to complex energies are open and non-
periodic, for some systems, there are special discrete sets of curves
in the complex energy plane for which the trajectories are peri-
odic [13]. On the other hand, in nonhermitian and non-PT symmet-
ric Hamiltonian systems, even for real energies, almost all
trajectories except few are nonperiodic and open.

In this paper we investigate the effect of complex time on tra-
jectories of both hermitian and nonhermitian systems. In the
next section we show that by introducing time as a complex quan-
tity with specific features, the nonperiodic and open trajectories
of complex nonhermitian systems as well as most real hermitian
systems with complex energies can become periodic and closed.
The phase angles corresponding to several nontrivial complex
nonhermitian systems will be determined as illustrations in Sect.
3. Further, in Sect. 4, we show that by introducing time as a
complex quantity with specific phase angles, real hermitian sys-
tems, such as H = p?2m + x* + bx3 + ¢x? + dx (b, ¢, and d are real
quantities and mass of the particle, m, is taken as 1/2) produce
periodic classical trajectories with infinitely many discrete real
periods for most values of b, ¢, and d. Concluding remarks are
made in Sect. 5.
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Fig. 1. When time is defined as a complex quantity with a complex function t = F(t,) (solid line) satisfying the condition F(nT,) = nT,ei"
nonperiodic trajectories become periodic with period T,. As a special case, complex time can be defined with a fixed phase angle r such that

t = F(t,) = t.ei" (broken line).
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2. Complex time and nonperiodic trajectories

In this section we show that any nonperiodic trajectory with
complex period can be made periodic by introducing time as a
complex quantity with a specific phase angle. Consider a trajec-
tory x(t) of a one-dimensional (1D) Hamiltonian, H, having a com-
plex period, T. Let T = T,ei" where T, and 7 are the norm and the
argument of T, respectively. Then x(t) satisfies the relation

x(ty + nT) = x(ty + nT,e") = x(t,) 1

where n€N and t, can be real or complex. When time, t, is a real
quantity, as t increases any trajectory starting from x(0) at t =0 will
not close itself for any t > 0 because real t can never become
complex T. Hence, the trajectory is not periodic. However, if we
introduce time, t, as a complex quantity with fixed phase angle 6,
(t =t.ei") and x(t) is analytically continued for complex t, then as t,
increases it can satisfy t, = nT, and

x(te”) = x(nT,e") = x(0) (2)

Hence the trajectory is periodic with period T,. Actually, for any
complex time t defined by

t = Ft,) (3)

where t, is real and F: R — C is a continuous complex function
with the property that F(nT,) = nT,e"" for Vn € N as in Fig. 1, the
trajectory becomes periodic with period T,. However, for simplic-
ity, in the rest of this paper, when we introduce complex t, unless
otherwise mentioned, t is always taken as t = F(t,) = t,e'" Vt, € R.

The preceding result is valid for both nonperiodic trajectories of
hermitian and nonhermitian Hamiltonians. In the next section,
with four different Hamiltonians, the complex phase angles and
behavior of classical trajectories will be examined.

3. lllustrations

In this section we study four Hamiltonians that possess classical
trajectories with complex periods.

First, the complex periods are obtained with both analytical and
numerical methods. Then the complex time introduced in the
previous section will be utilized to obtain phase angles that make
nonperiodic trajectories periodic.

3.1. Complex harmonic oscillator
The first example is the complex harmonic oscillator;

1
Hyp) = p* + EIJ«ZXZ (4)

For the Hamiltonian, H,, the classical equation of motion can be
solved exactly [14] and x(t) is given by

V2E . ;
x(t) = sin (ut + ¢, + idy) )
I

where ¢, and ¢; are real constants that depend on the initial
conditions and constant pu can be real or complex. We write p =
e’ where i, and 6, are real numbers with 0 < 6, < 2w If Eis real
and positive and 6, = 0 then the x(t) is periodic with a real period
27w. When u is complex, 6, # 0 and the x(t) is nonperiodic.
However, if time, t, is taken as complex with t = t,ei" where 7= -0
then the x(f) becomes periodic with the real period 27/u,. Note
that even when E is complex the trajectories are periodic.

3.2. Anharmonic oscillator p2 + AxN
When N is even and E and A are real, the Hamiltonian

Hy(N,\) = p* + Ax" (6)

has bounded motion and close periodic classical trajectories.
However, when A is complex and (or) E is complex, these trajecto-
ries become nonperiodic (Fig. 2a). The complex phase angle, 7, for
this system can be easily found by rescaling the equation of mo-
tion. Consider H,(2M, A) when A and E are complex. The equation
of motion is

d
d—’: = VE - a )

Now x is scaled by a factor e® and time t by a factor ei” such that (7)

involves only real variables and hence the system will have close
periodic trajectories. The 6, is found as
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Fig. 2. (a) A typical trajectory of the Hamiltonian H,(6, u) = (p?/2) + ux® where . is complex, drawn for real time. The trajectory is not periodic.
(b) The time is taken as a complex quantity with phase angle = -0.016 611. The trajectory has become periodic. The trajectory is drawn for
n=1+0.1i, x(0) = 0.5i, and E = 1.0.
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(b)
arg (E) — arg (\) Figure 2b shows the same trajectory in Fig. 2a when complex time
x = M ®) is introduced.

When Nis odd, H,(N, A) does not possess bound states unless A is
complex. Consider the case when N = 3. When A is purely imagi-
nary (i.e., Hy(3, ia) = (p?/2) + iax® with real a), this Hamiltonian is PT
symmetric and possesses closed periodic classical trajectories.
_arg(h) + M — Darg(E) (9) However, when A or energy E is complex, the trajectories become

2M nonperiodic, and 7 in this case is found as [4]

and complex phase angle 7is determined to be

T =

< Published by NRC Research Press
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. T — Zarg(;\) — arg(E) (10)

For the Hamiltonians H, and H,, phase angle 7 is found in a
simple manner. However, finding 7 for the next two examples is
not a trivial problem.

3.3. Anharmonic oscillator (1/2)w?x2 + pux4
We find the phase angle, 7, for

1
Hy(w, u) = p* + szxz + px* (11)

using the Hamilton—Jacobi method developed by Capman et al.
[15] and Born [16].

Hyw, 1) = Hy(o) + px* (12)
where

Hy(w) = 2 l 2.2

olw) =p +2wx (13)

which is exactly solvable. This semiclassical method has been
used to investigate 1D nonhermitian systems recently [17]. The
Hamilton-Jacobi method is based on the existence of the action
variable. We obtain the following equations for the preceding
Hamiltonian [17]:

E)) =Jo + A, (14)
and
2
1 2ol 21 + 1)2
A= — d()e”ke(—) cos* 6 (15)
2T ®
0
where
1 1 .
n= ( - E) - gze’k"Akv (16)

and the period is given by T = 0J/0E. The period is calculated using
(14), (15), and (16) and it is approximately obtained as

1

T= — (17)
o+ A,
where
2m
n 1 ~ 4 —ike
A, = —— | 7(2n + Ycos"p e “de (18)
27w’
0
= 1 ik oy
i=1-— > A, (19)
w Y

To obtain T from (17), (18) and (19) should be solved iteratively and
then A, should be calculated. We now define time t to be complex,

VB Va-
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t = t.ei” with 7 = arg(T). Then the classical equation of motion is
solved numerically with complex t. Fig. 3a shows a typical trajec-
tory that is nonperiodic when w is complex. This trajectory be-
comes periodic for the correct phase angle, 7, as shown in Fig. 3b.

3.4. PT potential hole
The Hamiltonian for the PT potential hole is

b

Ha,b,a) = p* + + (20)

sin®ax  cos® ax

where a € C and a,b € R. When « is real, the Hamiltonian system
H,(a, b, @) is exactly solvable and possesses classical periodic tra-
jectories. Classical action variable ] for this system is given by [18]

o (21)

When « is purely imaginary, this system is PT symmetric and all
the quantum energy eigenvalues are real. When « is complex,
trajectories are nonperiodic and energy eigenvalues are complex.
A typical nonperiodic trajectory of this system for complex « and
complex E is shown in Fig. 4a. The period for the preceding system
is

r=_ 1 (22)

JE 4a\/E

If « and E are complex, then

T = Te — explilarg(e) + (arg(E)/[2)]}

' 4a\VE,

(23)

Now T, = 1/4o,\/E, and 7 = —[arg(x) + (arg(E)/2)]. Using t = t.ei" as
time, the nonperiodic trajectories of this system can be made
periodic as shown in Fig. 4b. In the aforementioned manner we
can make nonperiodic trajectories of complex Hamiltonians peri-
odic.

The classical action angle variable w for periodic motion is a
linear function of time [14],

t
w=vt+B=}+w0 (24)

where v is the frequency of the motion, T is the period, and w,, is
the action angle variable at t = 0.

If the motion is nonperiodic with a complex period, w associ-
ated with the nonperiodic trajectory is complex and can be ob-
tained by analytically continuing (24) for complex T = T.ei” or
complex frequency, v. It is evident from (24) that by introducing a
correct complex phase angle, 7, for time ¢ (f = t,ei"), we can make
the classical action angle variable, w, a real quantity (assuming w,
is real) and hence make the motion periodic with real frequency
v=1/T,.

4. Complex time and periodic trajectories of
hermitian systems

In this section we examine the periodic trajectories of the her-
mitian Hamiltonian

2

H=p—+x4+bx3+cx2+dx (25)
2m

< Published by NRC Research Press
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Fig. 3. (a) A typical trajectory of the Hamiltonian H;(w, ) = (p?/2) + (1/2)w?x? + ux* where w is real and p is complex. The trajectory is not
periodic. (b) A classical trajectory wherein the time is taken with the complex phase angle 7= -0.973 014 7. The trajectory is now periodic. The
trajectory is drawn for w = 1.0 and w = 0.01i, x(0) = 0.5i, and E = 2.5 + 0.1i.

2

Im(x)

Im(x)

where b, ¢, and d are real parameters and m = 1/2. The equation of

motion for the preceding potential is

d.
d—:=p=2\/E—x4—bx3—cx2—dx

The turning points of this system are taken as x,, X, X,, and x.

Integrating (26) we have

f dx
V(* = 2 — x)(x — X)X — x5)

=2t + ¢ (27)

where ¢ is the constant of integration, which depends on
initial conditions. The left-hand side of the preceding equa-
tion is an elliptic integral of the first kind and hence (27)
becomes
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Fig. 4. The trajectory is drawn for the PT Hamiltonian with a = 2.0, b = 1.0, and « = 1.0 + 0.6i for complex energy E=1.0 +iand x, =1-1.
(a) The Hamiltonian is complex nonhermitian and the trajectory is nonperiodic and escaping to «. (b) Time is taken as a complex quantity
with the argument 7 =-0.933 119. Now the trajectory has become periodic.
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A = (29)
V(X0 = X)(%; — Xa) (X0 — %) — (%, — x,)sn’(u)
(% = X)X = %) | (X1 — Xp)(Xg — X3)

(X = Xo)(%; — %) | (X — X)(%; — %)

=2t +¢c (28 ,
(28) U ="V(X — %)% — %)™t + o’

where F is an elliptic function [19, 20]. We invert the preceding
equation in terms of Jacobian elliptic function sn as [19] and modulus

1

x F|sin where
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= ((’ﬁ = X)(%o — X3))1/2

(X = %5)(%y — X3)

and «' is an arbitrary constant that is determined by the initial
conditions. Also note that x(f) in the preceding equation is still a
solution of (26), when x,, x;, X,, and x, are interchanged in any
order (e.g., X; —> X, —> X; —> X, —> X3). To understand how the
trajectories behave, we need to recognize the periodic, bounded
and unbounded properties of the function x(t). First we find com-
plementary modulus k' and complete elliptic functions K and K'.
They are defined by

2o q e Bo T M m X 30)
(% — xz)(’ﬁ — X3)

2

K= f (1 — Ksin®(¢) d¢ (31)
0

K = f (1 - )70 - k%) Pde (32)

0

K and K' are evaluated directly from the preceding equations.
Because « in (29) determines the trajectory, trajectories become
bounded or unbounded depending on the value of «. Jacobian
elliptic function sn is a doubly periodic function of u with periods
4K and 2iK'. It is analytic except at the points congruent to iK' or to
2K + iK' (mod 4K, 2iK’). These points are simple poles. We can
relate the periodicity of Jacobian elliptic function sn(u) to the
periodic motion of the trajectories. The condition for a trajectory
to become periodic is

V(X — X)(¥%; — x3)ei“/ZT = 4nK + 2miK (33)

for some integers n and m. Then the period is given by

T = na + mp (34)
where
4K —im[2
«= - (35)
V(X0 = X)(X1 — X3)
2iK e ™
B= (36)

) V(%o — %5)(%; — X3)

If T is real for some integers n and m then the motion is periodic.
T depends on the parameters b, ¢, d, and energy, E, through the
turning points X, X, X,, and x,. If T is complex, trajectories are not
periodic. Let T=T,ei". Now time t is taken as a complex quantity as
t=t.ei". As we have shown in Sect. 2, trajectories are now periodic
with periods T, where

T(n,m) = VinRe(a) + mRe(B)2 + nIm(e) + mIm(B)12 (37)

299

and

nIm(a) + mIm( B))

i m) = tan- (nRe(a) + mRe(B)

(38)

Because n and m are integers, only discrete values of T will produce
periodic trajectories. For real time, the Hamiltonian in (25) pos-
sesses only one real period. However, for real parameter values (b,
¢, d, and energy E), if time is complex, there are infinitely many
discrete values of 7 for which the classical trajectories of this
Hamiltonian are periodic and there are infinitely many distinct
real periods corresponding to these 7 values.

5. Concluding remarks

In this paper we showed that when time is taken as a complex
quantity with a fixed phase angle or as a complex function having
specific properties, nonperiodic open trajectories will become pe-
riodic and closed. The nonperiodic nature of the original trajec-
tory may be due to complex parameters of the potential or
complex energy. With four examples we demonstrated the pre-
ceding claim. When energy and parameters b, ¢, and d of the
Hamiltonian H = p?/2 + x* + bx® + cx2 + dx are real, we showed that
there are infinitely many discrete values of phase angle 7 for
which trajectories are closed and periodic. For these rvalues there
are infinitely many distinct periods associated with the periodic
trajectories. Although detailed discussion on the consequence of
complex time on classical trajectories was limited to five illustra-
tions in this paper, due to the general manner, complex time is
defined in (3) and can be applied to any 1D classical trajectory
having a complex period.
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