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Abstract This review focuses the behaviour of arsenic in

plant–soil and plant–water systems, arsenic–plant cell

interactions, phytoremediation, and biosorption. Arsenate

and arsenite uptake by plants varies in different environ-

ment conditions. An eco-friendly and low-cost method for

arsenic removal from soil–water system is phytoremedia-

tion, in which living plants are used to remove arsenic from

the environment or to render it less toxic. Several factors

such as soil redox conditions, arsenic speciation in soils,

and the presence of phosphates play a major role. Trans-

location factor is the important feature for categorising

plants for their remediation ability. Phytoremediation

techniques often do not take into account the biosorption

processes of living plants and plant litter. In biosorption

techniques, contaminants can be removed by a biological

substrate, as a sorbent, bacteria, fungi, algae, or vascular

plants surfaces based on passive binding of arsenic or other

contaminants on cell wall surfaces containing special

active functional groups. Evaluation of the current

literature suggests that understanding molecular level pro-

cesses, and kinetic aspects in phytoremediation using

advanced analytical techniques are essential for designing

phytoremediation technologies with improved, predictable

remedial success. Hence, more efforts are needed on

addressing the molecular level behaviour of arsenic in

plants, kinetics of uptake, and transfer of arsenic in plants

with flowing waters, remobilisation through decay, possi-

ble methylation, and volatilisation.

Keywords Arsenic toxicity � Bioremediation �
Biosorption � Translocation � Bioconcentration �
Bioaccumulation

Introduction

This minireview is an abridged version of our book chapter

published in the book Environmental for a Sustainable

World (Dabrowska et al. 2012). Although arsenic occurs as

the 20th most abundant element in the geosphere, arsenic is

highly toxic to the biota. In many areas, arsenic levels in the

environment have exceeded the safe threshold for human

health, 10 lg/l (WHO 1993). During the last three decades,

high concentrations of arsenic in groundwater have been

reported in different regions of the world such as the Bengal

Delta (West Bengal-India and Bangladesh (Mandal et al.

1996; Bhattacharya et al. 1997, Chowdhury et al. 2000),

Madhya Pradesh (Pandey et al. 1999, 2009), and many

countries such as China, Mexico, Chile, USA, Argentina,

Vietnam, and Taiwan (Bhattacharya et al. 2002; Smedley

and Kinniburgh 2002; Bundschuh et al. 2009; Polya and

Charlet 2009). Conventional remediation technologies have

been used to clean up metal-contaminated sites because

they are relatively insensitive to the heterogeneity in
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contaminated matrix and can function over a wide range of

oxygen, pH, pressure, temperature, and osmotic potentials

(Cunningham and Berti 1993; Mohan et al. 2007). However,

they are expensive and time-consuming, often hazardous to

workers, and produce secondary wastes that may not be

environmental friendly. Among the disadvantages of con-

ventional remediation methods, cost is the primary driving

force behind the search for alternative remediation technol-

ogies, such as phytoremediation (Bhattacharya et al. 2002;

Naidu et al. 2006).

In this study, we present an overview of: (1) behaviour

of arsenic in relation to plant–soil and plant–water systems,

(2) arsenic species in plant cell interactions, (3) phyto-

remediation as a bioremediation technique for arsenic

removal, and (4) research carried out on plant and fungi

materials useful as biosorbents. Phytoremediation tech-

niques usually do not consider the biosorption processes of

living plants and their dead and decaying parts. Combining

bioaccumulation and biosorption may improve the effec-

tiveness of arsenic remediation techniques and may reduce

the disposal problem of arsenic-adsorbed material. How-

ever, further studies are needed for the development of the

methodology and to enhance its cost-effectiveness.

Soil–water and plant interaction

Inorganic arsenic detaches phosphorylation and inhibits

phosphate uptake, and hence, the presence of inorganic

arsenic in soils and water is highly toxic to plants since it

interferes with plant metabolic processes and reduces their

growth. Similarly, the two most common inorganic arsenic

species, arsenate and arsenite, act differently in different

systems. Under certain conditions, it may lead to plant

death (Geng et al. 2006). Arsenate, the dominant inorganic

species of arsenic in aerobic/oxic environments, is taken up

by plants via phosphate transport system since phosphate

ion is similar to arsenate ion (Dixon 1997). The arsenic

toxicity threshold limit for most plants is 40 and

200 mg kg-1 in sandy and clay soils, respectively (Tu and

Ma 2002).

Plants can be classified into three basic groups based on

the growth in contaminated soil: excluders, indicators, and

accumulators (Baker 1981; Prasad 2008). Details on their

phyto-processes and examples are given in Table 1.

Phytoremediation processes

Transfer of arsenic species from bulk soil to the root

surface: the plant factor

Arsenic transport from soil to plant roots depends on the

oxygen level at the rhizosphere of the plant species. The

speciation of arsenic greatly depends on the redox condi-

tion in the soil (Massechelyn and Patrick 1994; Heikens

et al. 2007; Tripathi et al. 2007). For example, arsenate is

more available in aerobic condition where arsenite found

more in anaerobic condition (Zhao et al. 2003). A previous

study suggested some physiological features (enhanced

root uptake, high root-to-shoot translocation rate, and tol-

erance to metalloid contamination) (Wang et al. 2002; Ma

et al. 2001). The physiological role of hyperaccumulators

in the rhizosphere has been described in recent literature

(Lasat 2002; Wenzel et al. 2003; Rajkumar and Freitas

2008). Also, some certain micro-organisms may enhance

the transformation of trace elements by means of various

mechanisms including methylation, demethylation, com-

plex formation, and oxidation (Alexander 1999; Adriano

et al. 2004). However, at present, the mechanisms of

monomethyl arsenic acid and dimethylarsinic acid uptake

by plant roots are unknown.

Three separate systems are being used by plants to take

up arsenic: (1) passive uptake through the apoplast, (2)

direct transcellular transport from the environment to the

plant vascular system, and (3) active uptake through the

symplast (Ross and Kaye 1994; Marschner 1995; Siedlecka

et al. 2001; Greger 2005. There are a number of root factors

controlling trace element uptake from soils that are soil

acidification by root exudates, activity and selectivity

of the translocators, root membrane activity, strategy

Table 1 Different plant groups in contaminated soils, phyto-processes, examples, and references

Plant groups Principal phyto-process Typical examples References

Excluders Restrict metalloid uptake and

translocation of arsenic to the

shoots

Bidens pilosa Sun et al. (2009)

Indicators Actively accumulate trace elements

in their aerial tissues and generally

reflect metal levels in the soil

Deparia sp., Pteris sp. Chang et al. (2009) and reference therein

Accumulators Uptake and translocate arsenic to

shoots without toxic symptoms

Carex rostrata, Eriophorum
angustifolium, Phragmites
australis, Salix sp., P. vittata,
Talinum sp.

Ross and Kaye (1994) Prasad (2008), Del Rio et al.

(2002), Porter and Peterson (1975), Ma et al.

(2001), Lombi et al. (2002), Sekhar et al. (2007)
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mechanisms of avoidance, and release of redactors and/or

oxidants, root excretion of chelators, phytosiderophores,

acids, and hydrogen ions (Ross and Kaye 1994; Marschner

1995; Siedlecka et al. 2001; Greger 2005). Besides root

factors, a number of elements (e.g. Fe, S, P, and Si) play an

important role for inorganic arsenic species uptake mech-

anism in the plant (Zhao et al. 2003). Generally, accumu-

lated arsenate species functions as phosphorus analogy; on

the other hand, arsenite reacts with sulfydryl groups of

enzymes and tissue proteins in the plant (Lombi et al.

2002).

Translocation mechanisms from the root to the shoot

Translocation ability is considered one of the important

factor for plant species as it determines the phytoremedi-

ation capability of the particular plant species for arsenic

(Xie et al. 2009). The change between inorganic arsenic

species inside of the plant body has reported, where

As(V) converted to As(III) with the help of arsenic

reductases (Ali et al. 2009; Hokura et al. 2006). The AF

(accumulation factor - As content in plant part/As content

in the medium) value of plant species helps to classify into

arsenic hyperaccumulator, accumulators, and excluders.

Unlike phosphorus, arsenic shows low mobility with

respect to translocation from roots to shoots, except for

hyperaccumulators (Zhao et al. 2003). Several previous

studies have suggested that arsenic transferred from root to

shoot as arsenite (Zhu and Rosen 2009). Meanwhile, the

uptake of arsenic by plant roots varies for different plants

or their parts (Stoltz and Greger 2002, 2005, 2006). The

translocation of arsenic ions from root to shoot depends on

root pressure and leaf transpiration (Raskin et al. 1997;

Caille et al. 2004; Ghosh and Singh 2005). Arsenate

translocation happens by reducing it to arsenite by gluta-

thione (GSH) (Sattelmacher 2001; Caille et al. 2004). In

vascular plants, dicotyledons are more responsible for

arsenic transportation than in monocots (Bondada and Ma

2003). In the case of hyperaccumulators, arsenic is local-

ised in epidermal cells, mesophyll cells, and xylem tissues

(Bondada et al. 2007).

The translocation factor (TF) (Baker and Whiting 2002)

is an important feature for characterising plant capacity in

phytoremediation techniques (Tu et al. 2002; Sekhar et al.

2007). Various studies have reported different TF values

(Stoltz and Greger 2002; Fitz and Wenzel 2002; Raab et al.

2007). Hyperaccumulators demonstrated high TF values

(Ma et al. 2001; Franseconi et al. 2002). TF values lower

than 1 for plants indicate that arsenic transportation to the

shoots is limited (Gonzaga et al. 2006) and that could be

due to high phosphate concentrations (Knudson et al. 2003;

Rahman et al. 2008). However, still there is a knowledge

gap on the extent and mechanisms of As transport in the

phloem, particularly in rice (Oryza sativa), as concentra-

tions decrease distinctly from roots to grain (roots [ stems

and leaves [ husks [ grain) (Abedin et al. 2002; Xu et al.

1991). Zhao et al. (2003) pointed out therefore that the

contributions of xylem- versus phloem-derived As to the

grain need more attention.

Bioconcentration and bioaccumulation

The trace element concentrations in plant tissues could be

expressed as a bioconcentration factor (BCF, BF, or CF)

(Tu and Ma 2002; Sekhar et al. 2007). The shoot or root AF

(AFbio) is calculated as the ratio of the NH4OAc-extract-

able concentration from the arsenic in plant (Stoltz

and Greger 2002). Arsenic concentrations in ranges

5–20 mg kg-1 DM are critical for most of the non-accu-

mulating plants (Kabata-Pendias and Pendias 2001, Lombi

et al. 2002). Del Rio et al. (2002) described wild plants

occurring on uncontaminated sites, after arsenic-contami-

nated sludge was spilled in that area values ranged from 0.1

to 0.6 mgAs kg-1 DM. Luongo and Ma (2005) reported

that Pteris vittata was able to translocate arsenic from roots

to fronds, reducing arsenate to arsenite, and maintaining

high concentrations of phosphate in the roots that can be

contributed to arsenic tolerance and hyperaccumulation.

Arsenic uptake showed an increase in the presence of

acetate, carbonate, and phosphate ions, as well as NPK

combination, whereas nitrate, chloride, and sulphate sig-

nificantly decreased arsenic uptake Chandra et al. (2007).

Therefore, it is important to pay attention to the other ions

in the solution in this field of research.

Phytoremediation methods

In the end of last century, phytoremediation has got more

exposure due to its cost-effectiveness, in situ application,

environment friendliness, and less negative affect towards

surrounding biodiversity (Salt et al. 1995; Watanbe 1997;

Kabata-Pendias and Pendias 2001). The term phytoreme-

diation covers a range of plant-based remediation techniques

such as phytoextraction, phytostabilisation, phytoimmobil-

isation, rhizofiltration, and phytovolatilisation. Among all

the techniques, phytoextraction got prioritised due its eco-

nomic and scientific value (Peuke and Rennenberg 2005).

The main process used in phytoextraction techniques is

bioconcentration in the above-ground parts of the plant

species.

Arsenic-tolerant plants that may be potentially used for

phytostabilisation purposes have been known for a long

time (Rocovich and West 1975; Benson et al. 1981). As

phytostabilisation is a long-term process, native plant

species will be prioritised for reducing ecological conflict
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with local ecosystem (Moreno-Jiménez et al. 2010). Phy-

toimmobilisation is an area where data are scarce (Doyle

and Otte 1997) in soil science which focuses to decrease

the availability of contaminants to water and plants by

altering soil factors by formation of precipitates and

insoluble compounds and by sorption onto the roots.

The rhizofiltration method has been used for filtration of

contaminated water including groundwater, storm water,

and other effluents using aquatic macrophytes and macro-

algae (Salt et al. 1995; Mazej and Germ 2009). In the

phytovolatilisation process, plants transpire or diffuse

volatile arsenic out of their roots, leaves, or stems. In this

mechanism, the plants absorb organic and inorganic pol-

lutants from soil or water in the transpiration stream and

volatilise them into the atmosphere in a modified or

unmodified form at comparatively low concentrations.

Both methylated and volatile arsenic compounds are

involved in this process (Frankenberger and Arshad 2002;

Adriano et al. 2004). However, literature on phytovolati-

lised arsenic is sparse. It has been observed that the pres-

ence of sulphate and salinity in soils hinder the

volatilisation process (Terry and Zayed 1994). Data are

scarce for the kinetics of arsenic release from soils and

uptake kinetics of different plants (Abedin et al. 2002; Ir-

telli and Navari-Izzo 2008; Sarkar et al. 2007; Tyrovola

and Nikolaidis 2009; Li et al. 2011) as well. Hence, it will

be important to focus the future research on arsenic release

kinetics in contaminated soils and kinetics of plant uptake

in the presence of different ligands and chelating agents in

addition.

Bioremediation

Bioremediation technology is another group of process

based on degradation, stabilisation, or volatilisation of

contaminants from sites using micro-organism (fungi and

bacteria) (Andrews et al. 2000; Bhattacharya et al. 2002).

The main mechanisms of arsenic bioremediation are bio-

oxidation and biomethylation. Bio-oxidation has been tes-

ted in arsenic-contaminated water under aerobic conditions

(Osborne and Ehrlich 1976; Ahmann et al. 1997).

Biomethylation of arsenic was studied both under aer-

obic and anaerobic conditions with the help of fungi (Cox

and Alexander 1973; Andrews et al. 2000). The rate of

biomethylation depends on environmental conditions such

as temperature, potential redox, and pH (Fergusson 1990;

Wallschläger and London 2008). Arsenic methylation

typically occurs under phosphate- or nitrogen-deficient

environments (Luongo and Ma 2005); however, concen-

tration of nitrates and sulphates can be moderately reduced

by bacterial processes (Bhattacharya et al. 2002). Potential

of biomethylation has been studied by different filamentous

fungi (Huysmans and Frankenberger 1991; Andrews et al.

2000).

Biosorption

Arsenic biosorbents were taken from inactive, dead bio-

logical biomass, such as algae (Hansen et al. 2006; Vilar

et al. 2006), vascular plants (e.g. Pandey et al. 2009), fungi

(Dambies et al. 2002; Say et al. 2003; Loukidou et al. 2003;

Mohan et al. 2007), and bacterial materials (e.g. Kuyucak

and Volesky 1988). A plant-based biosorbent mainly con-

sists of cellulose and lignins. Primary plant cell walls

consist of micelles of cellulose, hemicellulose (including

pectins), and glucoproteins. Different models have been

used to describe arsenic solutions—biosorbent equilibrium,

the most common being Languimir, Freundlich, Hill, and

Dubinin–Radushkevich isotherms (Mohan and Pittman

2007; Febrianto et al. 2009). Most of the biosorbent

capacities reported in literature are low in relation to the

capacity of activated carbon (Dabrowska et al. 2012). The

recent attention is now given to different biochars for

arsenic immobilisation from soils and adsorptive removal

in aqueous media (Namgay et al. 2009; Hartley et al.

2009).

Biosorption mechanisms can be divided into two main

categories: metabolism dependent (transport across cell

membrane and intracellular precipitation and accumula-

tion) and metabolism independent (precipitation, physical

and chemical adsorption, ion exchange, and complexation)

(e.g. Veglio and Beolchini 1997). Biosorption mechanisms

that are independent of cell metabolism are relatively rapid

and are reversible (Kuyucak and Volesky 1988; Hoffman

et al. 2004; Mukherjee and Kumar 2005). Dead biomass

has higher metal uptake capacity, and the process is

nutrient independent (Aksu et al. 1991).

Adsorption by plant material consists of three steps:

surface adsorption (physical and chemical), diffusion into

particles, and adsorption and fixation within the mineral

particles. However, not many studies have been conducted

to observe the actual arsenic binding mechanism to the

biosorbents. Kuyucak and Volesky (1988) hypothesised

that some metal ion biosorption by dead biomass of algae,

fungi, and yeasts takes place through electrostatic interac-

tions between ions in solution and cell walls. Few studies

by Ghimire et al. (2003) showed that the phosphorylation

of biosorbent leads to higher binding of arsenates to the cell

wall. Arsenic removal from solution could also take place

through formation of complexes on the cell surface (e.g.

Mcafee et al. 2001). Metal ions can bind on to single ligand

or through chelation. However, no other records were

found on biosorption through arsenic complexation.

Advanced synchrotron and other spectroscopic techniques
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will be able to reveal the mechanisms and speciation

behind.

Plants as biosorbents

Vascular plants

Plant materials such as living plants (Hoffman et al. 2004),

their parts or their dried, seized, and chemically treated

seeds (Kumari et al. 2006; Koivula et al. 2009; Pandey

et al. 2009), and also the residue of vascular plants from

industry or agriculture, such as rice polish and orange

wastes (Ranjan et al. 2009; Ghimire et al. 2003), were

tested as biosorbent material for arsenic removal. Maxi-

mum biosorption capacity for living plants was sometimes

observed to be a two-stage process, that is, rapid first phase,

and a slow second phase. Pandey et al. (2009) reported

chelation of As(III) with the –OH groups for fresh different

parts of the biomass of Momordicacharantia. Most of these

experimental results were in good agreement with the

Langmuir and Freundlich sorption models. However, the

Dubinin–Radushkevich (D–R) sorption isotherms were

applied to evaluate the nature of sorption and were used to

explain the heterogeneity of surface energies (Ranjan et al.

2009).

Plant litter as biosorbent

Fibres, lignins, cellulose, and other substances bind to cell

walls, such as phenols, cutin, suberins, waxes, and others

(e.g. Berg et al. 2003). Certain cell wall components,

specially lignin and pectin, are assumed to be connected

with the sorption of metal ions (Bailey et al. 1999; Quek

et al. 1998; Randall et al. 1974; Senthilkumaar et al. 2000;

Volesky and Holan 1995). Plant fibres are capacious for

sorption of metal ions and have been tested for water

cleaning (e.g. Bailey et al. 1999).

Other plant groups

Alginate, a component of the outer cell wall of brown

algae, Prokaryotes cell walls, is composed of polysaccha-

rides, proteins, and lipids (offers particularly abundant

metal-binding functional groups, such as carboxylate,

hydroxyl, sulphate, phosphate, and amino groups), and

mushrooms, filamentous fungi, chitin, chitosan, and other

fungi have been studied for arsenic retention (Hansen et al.

2006; Loukidou et al. 2003; Mcafee et al. 2001; Say et al.

2003; Murugesan et al. 2006). However, not much atten-

tion has been given to understand the mechanisms behind

these biosorption processes.

Conclusion

Phytoremediation and bioremediation techniques are good

and inexpensive tool for removing and/or stabilising

arsenic and to clean up of water–soil systems. However, its

success depends on both plant and soil factors such as soil

suitability for plant growth, depth of contamination, depth

of the plant root system, level of contamination, and

urgency in cleaning up. About 450 plant species have been

recorded as phytoremediation; however, a few number of

arsenic hyperaccumulator plants have been found. The

crucial factor in using hyperaccumulators for phytoreme-

diation of arsenic is their climate limitations and post-

harvest management of the arsenic-containing biomass.

However, the gaps in knowledge regarding the molecular

level mechanism and kinetics behind arsenic and plants,

microbes etc. are still limiting the use of phytoremediation

for arsenic removal. In situ techniques will be more useful

in such developments in view of the fact that the sequential

extraction techniques or other common methods are not

reliable in understanding speciation. The advanced syn-

chrotron techniques and nano-Secondary Ion Mass Spec-

troscopy will be very useful in this regard to investigate

and understand the mechanisms behind the arsenic inter-

actions with plants. Further investigations are required to

clarify whether active exclusion and the phosphate path-

way uptake mechanism are simultaneously employed in

different species. Transfer of accumulated arsenic in plants

carried with flowing waters, remobilisation through decay,

possible methylation, and volatilisation are needed to be

considered. Hence, further studies are important to ascer-

tain the extent of arsenic remobilisation through decay and

other microbial process and influence of geochemical

changes following physical and metabolic gaseous

exchanges, and exudates in the total aquatic system are

necessary. Since the retention of arsenic from soils and

plants is very complex, it is difficult to quantify by

experimentation since there are several variables such as

plant species, soil physicochemical processes, climatic

conditions, and soil arsenic bioavailability. Hence, a need

exists to develop a mathematical model for predicting

dynamic uptake, translocation, accumulation, and mobili-

sation of arsenic in the soil–plant system.
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Haro M (2002) Heavy metals and arsenic uptake by wild

vegetation in the Guadiamar river area after the toxic spill of the
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