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Abstract

Biochar exhibits a great potential to act as a ensi@lly applicable material for water and soil
remediation due to extensive availability of feedks and favorable physio-chemical surface
characteristics; nevertheless, studies relatets tapplication on the remediation of toxic metali
are relatively rare. Hence, this review highlighigochar production technologies, biochar
properties, and recent advances in the removal iamdobilization of a major metalloid
contaminant, As in water and soil. It also coveusfaxe modification of biochars to enhance
contaminant removal and microbial properties inchar amended soil. Experimental studies
related to the adsorption behaviors of biochar tedunderlying mechanisms proposed to explain
them have been comprehensively reviewed. Comparghet number of research publications in
SCOPUS database on “Biochar+Water1290 — Scopus), the attention drawn to examine the
behavior of biochar on the remediation of As isiteéd =85 - Scopus). Because of the toxicity of
As, the subject urgently needs more consideratiomaddition to covering the topics listed above,
this review identifies research gaps in the uséiothar as an adsorbent, and proposes potential

areas for future application of biochars.

Keywords: Bioavailability, Phytotoxicity, CharcoaBlack carbon, Activated carbon, Slow

pyrolysis
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1. Introduction

Arsenic (As) is the 2D most abundant element in the geosphere, and thenseawater. However

it has been recognized as an extremely toxic neédalbr humans as well as for fauna and flora [1-
3]. The mean amount of As in the earth’s crustisvkn to be approximately 1.8 mg/kg [4], but this
number is increased due to anthropogenic pollutimerganic anionic As species, arsenite [As(I11)]
and arsenate [As(V)], as well as organic speciadjqularly mono-, di- and, tri- methyl arsenates,
have been recognized as major toxic species ofmAsatural water systems. Furthermore, more
noxious organic and inorganic thio-As species canfdund widely in geothermal and marine
environments [5-6]. Elevated concentrations of Agroundwater have been reported in many parts
of the world [7]. Interestingly every year, somembocations are found with high background
arsenic concentrations. As noted, As can be foorgbils due to both geogenic and anthropogenic
activities, and it may occur at a wide range of a@rirations, ranging from pg/kg levels to
extremely high concentrations such as 250,000 m@4@j. The levels of As is extremely minute to
be a causative factor for health issues and hdheesafe permissible value has kept very low
compared to other toxic metals (10 pg/L) by the M/étealth Organization (WHO).

A variety of technologies such as chemical oxidatiprecipitation, adsorption, ion exchange,
reverse osmosis, and membrane separation has teptea for the removal of As in water and
wastewater. Adsorption is considered as an effeatamediation strategy due to its low cost and
relatively simple design [10-12]. However, the resaloof As from aqueous solutions is a serious
challenge for researchers, engineers, and techstdadue to varying As speciation depending on
pH of the media. Few studies have confirmed thdiegimn of some materials that are efficient in
remediating both As(lll) and As(V) species irredpexr of the pH [13-14]. Interactions of

microorganisms with different As species also ampadrtant in remediating As contaminated
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environmental systems [15]. Up to date, many materisuch as titanium carbonitride-derived
adsorbents, agricultural wastes (rice husks), esdaxide granules, which have been tested for As
remediation, are either speciation specific orytaht-specific, and, hence, they are not applicable
for the simultaneous removal from a mixture of eomihants in aqueous solutions. Therefore,
explore materials that can be used for the simetiaa remediation of many different pollutants and
their species may receive strong attention. Aatigiatarbon covers a wide spectrum of applications
in drinking water treatment due to its high perfamoe, high surface area, mechnically strong
properties and avoids chemical waste products tlestd to be added in other applications.
However; it is hardly applicable for soil remedaatidue to the cost involved in the production [16].
Hence, currently focus has been drawn to biocheralse it is a cost effective and environmentally
feasible carbonaceous product derived by the psiolyf certain feedstocks that has applications in
a variety of contaminated environments [17-18]. ldeer, yet biochar has not achieved high
surface area as in the case of Activated carborpandin mechanical properties hence, it limits the
application into water treatment.

In the past decade, biochar has been experimenteghsevely in various agricultural and
environmental problems, due to its strong influenoe immobilization of contaminants,
improvement in soil health, and carbon sequestratiorelation to climate change [19-20]. In
addition, research has revealed that biochar adsoam affinity for, and can retain, both heavy
metals and organic compounds that contaminate wattes [17, 21]. Moreover, biochar can be
produced from residues that are often burnt ird§edr buried in landfill, thus having a triple line
benefit namely economic, reduction in polluted switl water and production of renewable energy

[22]. Many studies have reported an excellent gbdf biochars to remove heavy metals, organic
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pollutants, and other pollutants from aqueous smigt[17-18, 21-23]. Due to the above-revealed

factors, research on biochar have been increasisug @xponential rate over the past few years.

1.1. Research on arsenic and biochar

The use of charcoal in agriculture or, biocharitas now referred to is a millennium old practice
in all continents but specifically in Japan andr@hiBrazil, India, Australia and parts of Africaf24
25][30]. Studies of it use has shown that soils mheharcoal has been incorporated for centuries
have result in soils that are much more fertilenttiee surrounding soils Publications related to As
adsorptive remediation both in soil and water emvinent during the years from 1980 to 2014
(according to ISI Web of Science™) have been grgvateadily [Fig. 1 ]. The figure shows the
growing interest of the scientific community on Asnediation research, and the trend on the As
remediation in soil and water has extended fromphase of scientific research to engineering
applications. There has been a significant increaseng the last decade of field scale and pot
experiments that have been conducted to investitate effectiveness of biochar as a soil
amendment to immobilize As [26-27]. However, theyestill a gap between research focused on
soil remediation and research on As remediatioagueous media [Fig. 1(a)]. Only a few studies
are focused on As immobilization in soil than thatev research. At the same time, there has not
been a centre of attention to understand the Asiliraiion/release mechanisms due to the

application of different biochar produced from was production technologies.
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Existing publications on biochar mainly deal witls iapplication in technical, economical,

climate-related aspects; soil quality and remedigtand remediation of water and wastewater
[17, 20-21, 28-31]. With the increasing interessaientific research on biochar and its surface
modifications, an integrated understanding of thecimanisms of biochar to remediate As in
contaminated water and soils via enhancing funatiaspects of biochar for future engineering
scale applications. Hence, the aim of this reviewtoi analyze recent literature related to the
application of biochar for the immobilization and/oemoval of As in soil and water

environments. This review further summarizes theemé developments in the preparation and
properties of pristine (non-activated) and engiedebiochar, as well as the mechanisms

involved in the adsorption of As with regard to @ra&nd soil aspects.

2. Production and properties of biochar

Biochar production technologies and their propsrtiave been well reviewed [17, 21]. Tan et al.
[21] have demonstrated that slow pyrolysis is thest commonly used technology for the

production of biochar that can be used widely irtewvand wastewater treatment. Biochar can
be produced from invasive plants, crop residuespdyobiomass, animal litter, bones, and

municipal solid wastes by using various thermodbahyprocesses (e.g., slow pyrolysis, fast
pyrolysis, hydrothermal carbonization, flash carkation, torrefaction, and gasification) (Fig. 2)

[32-33].
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Fig. 2. Schematic representation of biochar productionhods with regard to their common

feedstock types (adapted from [34]).

The vyield of biochar and its characteristic feasudepend on the thermochemical processes,
operating conditions, and feedstock. It has bedhestablished that the low temperature derived
biochars from slow pyrolysis result in low hydropimity and aromaticity but in high surface
acidity and polarity. Major biomass decompositiends to occur between 200 and 500 °C via
several steps including, partial hemicellulose dgoosition, complete hemicellulose
decomposition, and full cellulose and partial iigdecomposition [35]. The content of ash in
biochar can have an impact on the immobilizationcoftaminants, and it tends to increase
gradually with rising pyrolysis temperatures. Tisé aontent of pine needle biochar produced at

700 °C was nearly 10-fold higher than that of itenass, which was likely due to the



accumulation of alkaline minerals and organic nmattéth the increase of the pyrolytic
temperature [36]. The elemental composition of bemachanges with the pyrolytic temperature
and depends on the type of feedstock. Carbon con&mds to increase with increasing
production temperature, while nitrogen, sulfur, togen, and oxygen, which form gaseous
products during pyrolysis, decrease [17, 37]. Bavshproduced from biosolids and animal
manures typically contain high amounts of N, P,nd & [17, 23, 37-38]. Biochars derived from
plant biomass, manure, and biosolids generallychegacterized by having high N, P, K, and S
compared to biochars produced from woody feedstddksd et al. [38] showed that nearly half
of the N and S can be lost during pyrolysis whemgerature increases from 350 to 600 °C. The
same authors found that the residual N in biockhaot bioavailable, whereas the bioavailability
of phosphorus depends on soil pH. Hence P shdew &ioavailability in calcareous soils and
a high bioavailability in acidic soils.

Physical characteristics, including pore structw@face area, and adsorption properties, are
related to the pyrolytic temperature and feedstmrkposition [39-40]. Volatile compounds that
are present in the feedstock tend to be removed ffee matrix with increasing pyrolytic
temperature. This enhances the surface area dnataagent while decreasing the surface
functional groups along with exchange sites. Witbréasing pyrolytic temperature, aliphatic
carbon species are converted into aromatic ringaifay a graphene like structure that improves
the pore distribution, pore volume, and surfacea atthe biochar [17]. Biochars containing
large amounts of C in condensed aromatic rings terubssess few functional grou@urface
functional groups play a crucial role in the adsiorp capacity of biochar, and the content and
type of functional groups are dependent on thesteet and the pyrolytic temperature [41-42].

Low-temperature chars with low aromaticity containre C=0 and C-H functional groups that

10



promote adsorption for contaminants [43]. The analxygen to carbon (O/C) ratio is an
indication of the surface hydrophilicity and cam Uised to estimate the polar functional groups
present on the biochar surface [44]. At higher terafures, the O/C ratio is low indicating more
aromatic and fewer hydrophilic surfaces due to higtbonization and loss of polar functional
groups [44]. The (O + N)/C ratio serves as an iaticof polarity. It decreases with increasing
pyrolytic temperature [44].

In addition to slow pyrolysis, hydrothermal carlmation is another, efficient thermochemical
technology to produce biochar. It results in hagrbon yield. Compared to slow pyrolysis,
hydrothermal carbonization is high in energy constiom. Although hydrothermal
carbonization uses unconventional wet biomass esutke thermal energy depends on the
moisture content and the water to solid ratio tlsatneeded [45]. Biochars produced by
hydrothermal carbonization are high in oxygen fioral groups and cation exchange capacity
(CEC). They are more acidic than biochars produgsder slow pyrolysis [46-47]. However,
hydrothermal carbonization biochars are readilydegradable and, hence, the slow pyrolysis
biochar is more stable and has a higher potertratdrbon sequestration [17]. Nevertheless, pot
trials have shown low yields in hydrochars compdoechars from slow pyrolysis [48].

Little information has been reported regarding déipplication of biochars produced from flash
carbonization, torrefaction, and gasification tedbgies in the remediation of pollutants in
wastewaters, because these technologies focus eorprduction of bio-oil, solid fuel, or
synthetic gas. Flash carbonization is used to meduochar through the detonation of a flash
fire at high pressure (at about 1-2 MPa) in a pddked of biomass. Fast pyrolysis rapidly can
heat biomass to produce predominately bio-oil, asuhsequently, gas and biochar [21].

Gasification is applied widely in the production gdses such as CO, g@H,, and N at the

11



expense of oils and biochar. Torrefaction is artfampretreatment technology performed at low
temperatures typically of 225-300 °C which produseshar as a byproduct, when the biomass
is pyrolysed over a long residence time (~60 m#9-50]. The first torrefaction reaction step
decomposes hemicellulose of the biomass into aatursded solid produ¢?0-88 wt%) that is
likely to be characteristic with typical biocharmoperties [32, 50]. Hence, it is clear that in flash
carbonization, torrefaction, fast pyrolysis, andifieation, the biochar can be obtained as a by-
product. However, the use of such biochars in westir treatment is perhaps not feasible due

to their unfavorable properties depending on tipe ©f pollutants [16, 51]

3. Application of biochar for Asremediation in water

The capacities of biochar for As removal appeatbéodependent upon the feedstocks and
production technology. Biochars derived from vasidypes of feedstocks, such as pine wood
and bark, oak wood and bark, solid waste, rice $iusiosolids, and animal products, have been
used to test their effectiveness on As removal freater (Table 1). However, testing of more

feedstocks, such as those that are highly avaikdblgaste materials including byproducts of the

12



Tablel

Physio-chemical analysis of biochars used in Asediation literature.

Biochal Temperature  As(lll)/  pH EC Proximate analysis Elemental analysis Referenc

°C As(V) dS/m

Moisture ~ Ash  Volatile Fixec C H N O
C C

Rice hus 30C As(V) NA NA 10.1 17.4 8l.€ 1.0* NA NA NA NA [52]
Sewage Sludc 30C As(V) NA NA 84t 25.¢  73.7 0.4* NA NA NA NA [52]
Solid Wast: 300 As(V) NA NA 58.: 32.C 65. 2.2* NA NA NA NA [52]
MSW 40C As(V) 8.C NA NA 6.1 22.2 65.2 48.6 12z 1.2 31.7 [37]

50C As(V) 8.5 NA NA 9.2 264 63.¢ 59.t 9.1 1.4 20.¢ [37]

60C As(V) 9.C NA NA 6.2 15.1 78.2 70.1 84 1.: 13.7 [37]
Empty fruit buncl 70C As(lll) 9.4 NA 2.C 13.¢ NA NA 48.( 3.6 1: 30.C [13]
Rice hus 70C As(lll) 8. NA 3.7 27.z  NA NA 45.C 22 017 17.C [13]
Oak wood chg 40C-45C As(lll) NA NA 3.17 2.9z 15 78.% 82.¢ 2.7 0.2 8.C [11]
Pine wood ch: 40C As(lll) NA NA 2.6¢ 2.3C 16.C 78.1 835 3.C 0.z 8.2 [53]
Oak bark che 40C As(lll) NA NA 1.5¢ 111 22.¢ 68.t 71.2 2.6 0. 13.C [16]
Sewage Sludc 55C As(lll) NA NA 2:¢ 70.z 8.1 8.C 88.( 1. 8.C 0.4 [54]
Pine cone bioch 50C As(IlN NA NA 3.1Z 21  27. 67.t 67.¢ 3.¢ 0. 22.C [55]
Pine wood bioch: 60C As(V) NA NA NA 4.0z NA NA 85.7 2.1 0. 11.2 [56]
Rice husk bioch: 30C-35C As(V) 10.2 £ NA NA NA NA 7.7¢ NA 0.2 NA [57]
Empty fruit bunh 50C As(V) 9.E 5.2 NA NA NA NA 58.1 NA 1.€ NA [57-58]
biochar

13



bio-energy industries and municipal and domestistevanaterials, is crucial to optimize the
remediation of As contaminated waters. The remextiabf both species of As, As(lll) and
As(V), in agueous solution using biochar has bmercessful [13, 54]. Raw pine cone derived
biochar and its Zn-loaded version have been useentove As(lll) from aqueous solution, with
removal efficiencies of 66 and 88%, respectivel§][Bloreover, biochar produced from sewage
sludge (biosolids) was highly effective (89%) inetlmemoval of As(V) from water [10].
However, many researchers have focused only oretheval efficiency of As species in single
ion systems. A limited number of studies havenbeenducted to understand the effect of
activated and non-activated biochars on the adsorpf inorganic forms of As (lll) and As(V)
present in binary systems [13]. Moreover, to onowledge, no study has been conducted to
investigate the interaction of biochar with diffet@rganic species of As such as methylated and
thio-arsenate compounds. This will be a challengasl in future research. Nevertheless, none

of the studies paid attention on real environmenter rich in As and co-occurring ions.

3.1. As remediation by non-activated biochar
Many biochars tested for As removal are low terapee derived biochars (300 — 500 °C), as
the presence of more functional groups encouradpestar the adsorption of heavy metal(loid)s

compared to those derived at higher temperatureléTH.

3.1.1. Effect of pH
The pH of the medium can have an impact on chargeepties of the surface of biochar as well
as speciation of As. For instance, various funetigroups such as amine, alcohols, carboxylic,

etc. that might be present on the surface of bioral to be protonatedepending on solution

14



pH, thereby changing the surface charge of biodbarthe other hand, solution pH affects the
speciation of As into its different neutral and amc forms including, BAsSO,; HASOy,
HAsO*, AsO;® etc. The HAsO, species can be dominated at pH 3-6, whereas hfAshd
AsO,* become main species of As at 8 > pH [60]. Moreotréralent forms of As are stable at
pH 0-9 as neutral #A\sO;, while HAsO 3, AsOs>", and AsQ become stable in the pH ranges
9-12, 12-13, and 13-14, respectively [61]. Thereftne adsorption mechanisms of different
forms of As on certain type of adsorbents wouldhimee complex due to different distribution
capabilities of As(lll) and As(V) species in aqueosolution as a function of pH. The
dissociation of As species at different pHs magkgressed as following reactions [61]. Hence,
different forms of As can be adsorbed on the serts#fcadsorbent at different pH values, so that
it is quite problematic to distinguish whether thain form of As at particular pH value could be
the dominated As species on the surface as wélbasthe As- surface complex can vary with
changing solution pH. Therefore, more innovativeurfe researches are an urgent necessity in
order to understand the adsorption mechanismsffefeint species of As on biochar type carbon

materials at different pHs.

H;ASQ 0 = H(;q) +H,AsQ,,, pPK1= 923 (1)
H,AsQ,, = H(;q) + HAS@(;q) pK, =1210 (2)
HASGE, = Hi + ASCE, PK, = 1341 3)

HyASO,,y = Hig +H,ASOy,, PK, = 23 4)
H,AsQ,,, = Hgy + HASO,, PK, = 638 (5)
HASGE,y = Hig + ASOh,, PK, =116 6)

15



A study conducted on pyrolysed sewage sludge uesedA$(lll) removal showed that the
adsorption capacity at two acidic pHs, which weke33.5 and pH 6-6.5, was about the same
for As(lll) removal [54]. However, the pH affectdde equilibrium time for adsorption onto
sludge biochar. There was slightly higher andefastemoval at pH 6-6.5 than the lower pH
[54]. In another study, the percentage As(lll) readovas a 20 - 40% at pH 3 - 4 for oak wood
and bark and pine bark biochars [53]. In each cas@ll) sorption decreased above pH 4.0 and
the adsorption was virtually insignificaat pH 5.0 and higher [53]. Similar results haverbee
observed for the removal of As(lll) by pine conedbiar (PC) [55] . The point of zero charge
(pHzp9 for PC was found at pH 4.66; therefore, the bewcurface was positively charged at pH
< 4.66; thus, the adsorption of As was higher ak4E6. Furthermore, As(lll) adsorption
decreased with the increase of pH up to 7.0, wiwels likely due to the van der Waals
interaction between the elemental As and biochdase. Thereafter, above 7.0 pH, there was a
decrease in adsorption, because of the electimstgiulsive forces between the negatively
charged surface of PC with negatively charged Bsglpecies [55]. The surface of biochar can
itself carry both positive and negative chargea ednge of pHs; however, the surface becomes
net negative above its pfd while it is net positive below the pi [13, 62]. Hencethe pHyc is

an important parameter, because it determines ¢hectmarge of the biochar surface for the

adsorption of As.

3.1.2. Effect of redox conditions
In the soil-water-interface of many hydromorphic wetland soils such as rice paddies,
floodplains, riverine soils, marshes, bogs, and feedox conditions can vary [63-64]. The redox

potential is one of key factors that can have apaich on the interactions between As and

16



biochar surface [65]. Biochar can act as an edaghump donating electrons to more oxidized
species [66]. Nevertheless, the oxidation ratedathar surface is quite a slow process and hence
the biochars possess a high tendency to acceptagiedrom other reducing agents as well [67].
In a recent study, biochars produced from wood grass at temperature 200-700 °C were
capable of reversibly accepting and donating up temol of electrons per gram of biochar and
grass biochars having high mineral ash contentavatioan increased electron exchange
capacities than wood derived biochars [68].

Redox active species such, FeO(OH), MnOOH (E°V)1.BInO, (E° - 1.2 V), NQ (E° - 0.88

V), etc. which are attached with the biochar swgfaan transform more mobile As(lll) to less
mobile As(V) species, thereby controlling the midpibf more mobile and toxic As species
present in such biochar treated soil and wateesys{65, 67]. It has been found that depending
on the feedstock types, some biochars consistdaixractive mineral phases of Fe and Mn and
many of these species may exist as nanoparticBds Tese redox active mineral phases could
catalyze the redox reactions associated with @iffelAs species as tubular pores of biochar
along with mineral phases have different electraubal potentials [70]. For instance, the
oxidation of As(lll) to As(V) by MnQ is particular of concern to sequestrate mobilespecies

in soil, sediments and water systems. In this ddaprocess, firstly Mn(IV) gets oxidized to
Mn(lll) producing an intermediate produdnOOH* (reaction 7) [7].

2MNO,,, + H;ASO, .= 2MNOOH* + HASO

(s) 4(aq (7)

Secondly, the MNOOH* oxidizes 3AsO; to HsAsO, followed by theadsorption of reaction

product of As(V) on the surface of Ma(@eaction 2).

2MnOOH*

s) TH3ASO; = 2MNO

+ H,AsO, .+ H,0

(s) 4(aq) 2= (8)
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Rinklebe et al. [65] observed a similar occurrentehe Eh/pH and the As immobilization
mechanisms in As contaminated floodplain soil adl we in the same soil amended with
biochar.

Iron can be present in biochars in the forms afl maide (FeOs, F&O,, FEOOH) depending on
the pyrolysis conditions, since iron in the oxidatistates of both Beand F&® may be an
essential element in many types of feedstocks [df.example, the amount of iron in a biochar
derived from bio-solid feedstock has been repateloe 2.3% of the total weight of the biochar
[72]. It has been found that iron oxide may be @nésn biochars as magnetite or hematite. The
redox transformation of As(lll) to less toxic As(¥ihd its adsorption on iron oxide has also been
examined in several studies [73-75]. Moreover,dbmbined effects of both oxidation of As(lIl)
and reduction of As (V) and their sorption propeston iron oxide, goethite, and magnetite have
been studied under laboratory conditions [76]. filnéings of this study revealed that, at pH 6-9,
the As(lll) is adsorbed to a similar or greatereext(reactions 9 and 10) than As(V) ioon
oxide and goethite and the sorption of As(V) orhbogterials (reactions 11, 12, and 13) is more

favorable than that of As(lll) below pH 5-6 [13,,745].

Biochar= FeOH , + AsQj,, +3H, «=FeH,AsQ,, +H,0, 9)

Biochar= FeOH, + AsCj,, +2H,, - =FeHAsQ,, +H,0,, (10)
Biochar= FeOH, + AsQ},, +3H,, - =FeH,AsQ +H,0, (11)
Biochar= FeOH + AsQf('aq) +2H(,, - =FeHAsQ +H,0, (12)
Biochar= FeOH ,+AsC, + H/,, -=FeAsG, +H,0, (13)
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Understanding and application of such biochar-Aksxe complexes would be a crucial
alternative option in order to establish sustdma@&nvironmental management strategies for the
remediation of wastewater and multi-metal pollused systems s. However, the elucidation of
the underlying mechanisms of biochar-As interactiam different soil systems still remains
poorly understood and, hence, key aspects relatédid topic need to be addressed by future

research.

3.1.3. Kinetics and isotherm aspects for biochaimaractions

Understanding of kinetics and isotherm aspectsa@ho the adsorption of As on biochar surface
is beneficial to examine reaction rates, effectahe variables including initial concentration of
As, and re-arrangement patterns of As atoms osuhace. Adsorption of As(lll) and As(V) by
pristine biochars has been reported to be aifumaf time [10, 37, 53-55]. In studies with
biochars derived from rice husk, organic fractidmumnicipal solid wastes and sewage sludge,
the sorption of As was well described by the psesetmnd-order kinetic model.

Fitting experimental data to a pseudo-second-amtmtel suggests the dependency of reaction
rate on available binding sites in the surfacehef @adsorbent. The rate-limiting step may be a
chemical adsorption between the biochar surfacdtedontaminant [37, 54-55].

Table 2 shows maximum adsorption capacities oembfit biochars. Highest sorption capacities
were reported by Jin et al., 2014 for As(V) somtivhereas for As(lll) the maximum sorption
was reported by Samsuri et al [13] for empty fluihch and rice husk biochars produced at 700
°C. Many studies have reported that the Langmudehwidely fits the adsorption isotherms of
both As(lll) and As(V) onto biochars [10, 13, 3B-55, 57]. Reports on thermodynamics are

limited; however, only one study was found to eatduithe thermodynamic parameters necessary
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to predict the feasibility of adsorption under maticonditions [55]. Interestingly, some studies
have used highly unrealistic initial concentratidas their studies ranging from 50-400 mg/L
[13, 57] and this could lead to bring in wrong daoistons since very high concentrations can

lead into surface precipitation on solids.
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Table 2. Arsenic adsorption capacities of biochars proddoem different feedstocks

Biochal Temperature  As(lll) pH BET Pore Initial Metal Optimum  Maximum  Referenc
°C [As(V) surface area Volume  Concentration Adsorbent Removal
(m%g) (cm’g) (mg/L) dose (g/L)
Rice hus 30C As(V) 6.7-7 15t 0.15: 0.9C 8 2.5¢ ug/g [52]
Sewage Sludg 30C As(V) 6.7-7 51 0.05¢ 0.9C 16 4.2F nglg  [52]
Solid Wast 30C As(V) 6.77 5 0.02¢ 0.9C 16 3.54 ug/g [52]
MSW 40C As(V) 6.C 21 0.027 5-40C 2 24 mg/c [37]
50C As(V) 6.C 29 0.03¢ 5-40C 2 25 mg/c¢ [37]
60C As(V) 6.C 30 0.03¢ 5-40C 2 28 mg/c [37]
Empty fruit bunct 70C As(lll)  8.C 1.8¢ 0.011 50 5 18.9mg/t  [13]
As(V) 6.C - - 50 5 51mglc  [13]
Rice hus 70C As(lll)  8.C 25.1 0.01¢ 5C 5 19.3mg/t  [13]
As(V) 6.C - ) 50 5 71mglc [13]
Oak wood che 40C-45C As(lll) 5.C 2.0« 0.72 0.01-0.1 10 4.13mg/t  [53]
Pine wood ch: 40C As(lll) 5.C  2.77 0.41 0.01-0.1 10 2.62mglt  [53]
Oak bark che 40C As(lll)  5.C 25.2 0.8¢ 0.01-0.1 10 3.00 mg/t  [53]
Pine bark chs 40C As(lll)  5.C 1.8¢ 1.0€ 0.01-0.1 10 13.1 mg/t  [53]
Sewage Sludc 55C As(ll)  3-3.£ 70 NA 1 10 0.07 mg/t  [54]
Pine cone bioch 50C As(lll)  4.C 6.€ 0.01¢ 0.1C 10 0.006 mg/t [56]
Ricehusk bioche 50C As(V) 9.t 23.2 0.00¢ 0-20C 2 0.3t [57]
Empty fruit bunct  30C-35C As(V) 10.z 46.2 0.00¢ 0-20C 2 0.4z [57]

biochar




This study revealed that the adsorption of As(ih) pine cone biochar in aqueous solution is
energetically favourableAG®, -4.42 kJ mot ; AS®, 0.058 kJ mot K*) and exothermicAH®,

13.25 kJ mol) [55]. The adsorption of As on bioclgara function of several factors, including
the concentration and type of oxygen functionalugs, zeta potential, O/C ratios, (O + N)/C

ratios and polarity indices [(O + N)/C] [13, 23,5, 77].

3.2. Use of modified biochar for As treatment

Many different surface modifications have been araohfor As sorption onto biochars. Among
those, a zero valent Fe coating is the most pramireecause Fe is one of the most effective
materials for As removal from water [12, 56, 78-84bwever, the materials and methods used
for Fe coating vary. In one study, a hematite sasipa was mixed with a feedstock and
pyrolyzed together to induce thermal activationheimatite and maghemite formation [56].
Evaporative methods and direct hydrolysis are comprocedures used to produce iron-oxide
amended biochars [12, 78-79]. Other than iron, AHD@anganese salts, or minerals have been
used for surface activation of biochars to remogd &0, 82]. KOH has been used to activate the
surface of municipal solid waste biochars by mixitgm with 2 M KOH for 1 h [37].
Activation of biochar by producing nano-compositeay lead to an increase in the adsorption
capacity due to a high surface area of the nanemah[81-82].

Activation of biochar as an amendment has enhaAsexbrption as shown in Table 3.
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Table 3 Arsenic adsorption capacities of modified biochars

Biochal Type of Temf. As(lll) pH BET Pore Initial Metal Optimum  Maximum Referenc
Biochar °C [As(V) surface areaVolume  Concentration Adsorbent Removal
(mlg) (cm¥g)  (mg/L) dose (g/L) mgl/g
Mn Oxide Pine woou 60C As(V) NA 462 0.022 cc/i 10 2.t 0.5¢ [56]
modified biochar
Birnessite modifiec Pine woor 60C As(V) NA 67. 0.066 cc/i 10 2.t 0.91 [56]
biochar
Hydrogel bioche Rice hus 30C As(V) 6.7-7 51 0.05¢ 1-15C 0.167-16.7 28 [83]
Magnetic bioche Pine woou 60C As(V) NA 193.1 NA 20 2.t 0.4z [80]
NZVI-biocha Bamboo 40C As(V) NA NA NA 5-40C 2 24 [81]
KOH activatec Municipal As(lll) 8.2 49.1 0.357 50 5 31 [37]
biochar solid waste
Fe-biocha Hickory 55C As(V) NA NA NA 55 1 2.1¢ [79]
chips
Empty friit bunck-  Fruit bunct  70C As(lll)  NA NA NA 50 5 31.¢ [13]
Fe biochar As(V) NA NA NA 50 5 15.2
Rice hus-Fe Rice hus 70C As(lll)  NA NA NA 50 5 30.7
biochar As(V) NA NA NA 50 5 16.¢
AlIOOH-biocha Cotton woor  60C As(V) NA NA NA 50 2 17 [82]
Magnetic bioche  Cotton woor  60C As(V) NA NA NA 50 2 3.1 [82]
Fe coated Ric Rice hus 55C As(V) 773 NA 2 0.t 6.C [78]
Husk biochar
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Chemical activation of biochar is so far the smlethod that has been used to improve the
adsorption capacity via increasing surface areg polume, pore size distribution, and partially
by changing functional groups on the surface otlhéws [18]. The electrostatic interactions are
suggested to be the main mechanism that triggess itimobilization of various heavy
metal(loid)s on either positively or negatively died biochar surfaces [77]. Enhanced surface
area and pore volume may enable the diffusion ofnés the biochar pores, thereby providing
more metal (loid)active sites to bind metal ionstloe biochar surface [84]. Thus, the adsorption
of As on biochar can be optimized by expanding sheace area and pore size distribution
(micro-, meso- and macro-). However, poor adsonptibAs was shown in some materials that
are characterized with high surface area and polteme, suggesting that pore size distribution
is an additional parameter that influences sorptiapacity [17, 77]. This implies that many
factors can govern the adsorption mechanisms meguih great variation in the sorption
capacitieof the adsorbent.. Surface complexation with fuorel groups of biochar is possibly
responsible for the adsorption of As ions [12, &ipchars produced at low temperatures are
rich in oxygenated functional groups, such as cayftmand phenolic groups [17, 21].

The ionizable functional groups of biochar surfat@y acquire charge through protonation and
deprotonation with solutes [85]. Amine groups ane of such surface functional groups which
may present on biochar surfaces, can protonateidit @Hs and result electrostatic attractions
with negatively charged arsenate species (reactiat)s[86]. However, further studies are
extremely necessary in revealing the actual mesham molecular leveHence, the elucidation
of molecular-level interactions controlling the goon of As on biochar would be of major
theoretical and practical interest in future reskear

Biochar— NH, + H* O PPP1°f9", Biochar- N"H, O %1% - Biochar- NH - AsQ,  (14)
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Assuming the presence of different types of acglidace sites in hydrated biochar a®K&

surface reactions for As complexation may writtericlows;

=C,OH +H,AsO, = =C,HAsQ,” +H,0 (15)
= 2C,OH +2H,AsQ,” = =2CHAsQ,” +2H,0 (16)

Where C is any of the surface active sites thaiewaken for the adsorption, here it may be
carbon functional group. In some cased biocharuigpsrted with titanium dioxide as a
photocatalyst [87]. If TiQ is impregnated to biochar, the most common hydrdi@V) may

react with As(lll) and As(V) and the postulated im&aisms are as equations 17-20 [88].

Ti™ —OH," +H,AsQ, = Ti"Y) —OH," » s ASQOH), (17)
Ti™ —OH," + AsQ,(OH)* = Ti™) —OH," « + AsQ (OH)," (18)
Ti®™) —OH," + AsQ,(OH)* = Ti") —OH," « + ASQ,(OH)* (19)
Ti™ -OH," + AsQ,” & Ti'™) —=OH," + « AsO;™ (20)

4. Application of biochar in As contaminated soil

Pot experiments with different plants such as rgegr olium perennel.), tomato Solanum
lycopersicunlL.), Miscanthus giganteysnd maizedea may4..) have been conducted with As-
contaminated soils using biochars produced at uartemperatures. Soils that have been used
were contaminated by geogenic As, including mind E9-90], as well as industrially

contaminated soil [91], and As containing pestisidpplied soils [92-93].

4.1. Response of soil physio-chemical propertiessetontaminated soils to biochar
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High extractable dissolved organic carbon (DOC), K3g, K, SQ* contents were observed in
soils amended with wood and bioenergy derived Hacx [92, 94-95]. A rapid reduction of
As(V) to As(lll) in biochar amended soils has bedserved, because organic matter and various
functional groups such as phenolic, alcoholic amdbaxylic associated with the biochar can act
as electron donors to govern the reduction reastfogactions 21, 22, 23) [96]. Because of such
naturally occurring redox reactions in biochar mpayated soils, the mobility of As(lll) species
is increased, while As(V) is strongly retainedgrétby reducing the leachate concentrations of

As(V) and increasing the bioavailability of As(lil) such biochar-soil systems [96-97].

AsQj,, *2H, t2e - AsQ,, +H,0,, (21)
Biochar=C,H,OH - C;H,O +e+H., (22)

Biochar= R(OH), -=R=0 +e+ H(;q)

(23)

Cation exchange capacity (CEC) and pH of soils aetnate a considerable increase with
increasing application rates of biochar which mawtdbute to controversial interpretations.
High pH may lower the positive charge on soil-BGteyn which could reduce the anionic As
sorption whereas high EC may induce more cationbetqpresent and that may induce As
sorption or precipitation [98]. However, none oé tstudies have focused their attention on the
influence of the increase in pH and CEC by the tamtdof BC on As sorption. In some previous
studies the addition of biochar as a soil amendnaatdreased the DOC in pore water collected
from field and pot trials, sincgoil carbon pool is relatively stable and insoluf@é, 99-100].
However, it was shown that Orchard Prune residaehair increased the organic matter content

by approximately >50%, which might increase the mdtion of As(V) and move it into soil

solution [94]. The interactions of As with phosphains, which are associated with biochar, are
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also of concern, because phosphate ions are lwiké&dthe mobility and bioavailability of As
species [101-102]. In a solution culture, the pneseof high contents of P reduced the mobility
and bioavailability of As(V) due to their compet#i effects that allowed As(V) to be more
retained and, and, consequently, it was less dlaifar uptake by plants. However, application
of Pin soil systems increased the dissolution of As@greby enhancing its bioavailability
[101]. Hence, it is clear that the interactionsAsfP are dependent on the environmental system
as well as the existing concentrations of As aftioR].

Studies on biochar ageing in As contaminated so#sscarce. However, the age of the biochar
likely determines its surface charge, which is sseatial parameter to describe to understand the
adsorption behavior of various ionic forms of conitaants [103]. When biochars are placed in
soil, porous organomineral layers form on the si@f@Joseph et al 2013). These have a high
concentration of function groups that can binchwieavy metals [104]. However, studies have
revealed contradictory data, some of which indi¢h#t ageing of biochar does not increase in
surface charge [103], whereas other studies havemgrated an increase in surface charge with
ageing biochar [105-106]. Additional experiments smil ageing with biochar may develop a

better mechanistic understanding of the interastadfrbiochar and soil.

4.2. Role of biochar on As in soil

The application of biochar in many As contaminadgstems results in an increase in its mobility
and bioavailability [93-94, 107-108]. Hence, thisggests that future researchers should not
apply some biochar types in the field for remediatof As contaminated soils [89]. To solve
this conflicting behavior of biochar-As systemscemt studies have suggested the use of

biocharsalong with phytoremediation for decontaminationsofls with As [94, 96]. Although
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similar As concentrations can be found in soil$ierent differences can be observed in soil
systems, which are likely due to differences il pobperties such as texture, P, pH, Fe, OM,
and DOC before and after biochar additions, andy theay influence As mobility and
bioavailability [91]. At the same time, As mobiliynk in soil depends strictly on the co-
existence of organic/inorganic sulfur and iron [M4]. Understanding molecular level
characteristics may provide information concernimg mechanisms involved, but studies are
limited at this level [109].

Biochar ageing studies have confirmed that high G&Goil leads to the formation of stable
biochar-metal complexes. Reduction in As concéintian the shootsf maize Zea mayd..)
plants grown in biochar amended sandy soil wasrmks, which was mainly attributed to the
adsorption of As onto the biochar surfaces [10T Tesults showed a decrease in As uptake by
the maize depending on the application rate. lailaish in As due to the long-term application
of pesticides, bioavailability of As for phytoexttion byLolium perennd.. was studied [92].
The authors showed that the bioavailability of Aghwlow-temperature (350 °C) derived
biochars was less than that from biochars derivaa high-temperatures (650 °C) (Reduction in
bioavailability were 100% and 70% respectively canagl to the control) [92]. The amount of
water-extractable As can be reduced temporarilal®e of the precipitation of As with metal
cations, such as &a However, they may readily re-dissolve, releaghsgagain to the aqueous
solutions [92, 112]. In the ryegrass study [76]ewlthe application rate of biochar was increased
from 30 to 60%, the concentrations of As in shagdues of ryegrass were increased indicating
that higher application rates would be suitablearioreasing As phytoextraction in soils.
Application of biochar produced from orchard pruesidue as a soil amendment in an As

contaminated mine soil increased the concentratibds in pore water (500 - 2000 pg)Land

28



decreased the accumulation of As in roots and shaibtomato plantsSolanum lycopersicum
L.) grown in the mining soil. This interesting obs&tion was explained by the formation of
soluble As-DOC complexes, which are mobile but matybe able to diffuse through the tissues
of tomato plants (Fig. 3). Accumulation of As omtato fruits was low due to reduction of the
phyto-availability of As in the biochar treated migoil. [89]. Contents of P and Fe in soils can
be increased by over 20-fold by the addition ofchar [89, 113]. Macro-, micro- and nano-
porous structure of biochar surfaces can faalithe reduction of Fe [114] and Mn species
found in soils [66], which results in a negative #lue. Negative Eh conditions promote the
reduction of As(V) to As(lll) species which is naadily adsorbed in soils and hence under

negative redox potentials, As species are more lmobsoils [115].
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Fig. 3. Graphical illustration of postulated mechanismsAs adsorption on biochar surface

However, some studies have demonstrated insignifieffects of fresh biochar on As adsorption
compared to soils without biochar [91, 103]. Thiggests a possibility of As complexation with
DOC from biochar, which can be prominent in soiighvhigh organic C. Slight changes in soil
pH may not influence the sorption of As in bioclhanended soils [103]. Competition of DOC,
P, and As for the vacant sorption sites on soflesas can lead to an increase of the solubility of
As in soil [91, 94]. In some cases, biochar apgibeamay induce solubilization of As in the

pore water (>2500 mg/L), which may be attributechigh pH. However, in a study where a
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compost amendment was used, As toxicity was reddaedo a reduction in extractable metals
and an increases in soluble P [91, 94]. More dmtaiholecular level studies are needed to
provide insights into the influence of ageing, DOTinteractions, and microorganisms on the

soil-As interactions.

4.3. Response of microbiological properties in henxcamended As contaminated soils

Biochar amendments have been found to have leas effect on microbial biomass nitrogen
(MBN) than microbial biomass carbon (MBC) [116].léng-term field study showed that the
MBC:MBN was increased by biochar, thereby reducitigg temporal variability of microbial
growth in the environment [116].

Only a few studies have been carried out on thporeses of microbes in biochar amended As
contaminated soils [92-93, 117-118]. Biochar amesals in soils can increase microbial
activity [116]. The improvement of both plant gt and soil microbial activity may be due to
nutrient supply by biochar (K C&*, Mg?) and the labile C fraction of biochar that is
considered asfaod source of microbes [92]. Microbial activity in sbitan also affect the redox
conditions of the soil as well as speciation of Mence, microbial activity can lead to reduction
of As(V) to As(lll), thereby impacting the mobilitynd bioavailability of As. Dehydrogenase
(DHA) activity is considered to serve as an indicadf total microbial activity. In one study
[76], addition of biochar produced under both lomdéigh pyrolytic temperatures resulted in
anincrease in DHA compared to the control. Howewer significant difference was observed
with the application rate [92]. The labile fractiaxf carbon (C), which is higher in low
temperature derived biochar than in high tempeeabiochar, can act as an energy source for

soil microorganisms [119]. Such a readily availadsdergy source can enhance microbial activity
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resulting in a higher soil DHA, which may contribub the short-term reduction in the water-
extractable concentration of As [92]. In a studgameling the speciation and reduction of As(V)
in As contaminated mine tailing sediments amendétl biochar, the populations of As(V)
reducing bacteriaGeobacter, Anaeromyxobacter, Desulfosporosirared Pedobacterwere
increased after the addition of biochar and thisclbar-bacterial consortium stimulated the
reduction of As(V) to As(lll) and increased tbencentrations of dissolved organic matter in the
biochar amended mine sediments [117]. More resedschnecessary to understand
mechanistically the soil-microbial activities tree associated with biochar amended soils with

AS.

4.4. Summary and futureresearch

Many papers have been published on the applicabbrisochar to remediate soil and water
systems that are polluted by toxic organic andganrc contaminants. However, few laboratory
or field studies have been done regarding the aotems of biochar and metalloids. More
research is needew study biochar-As interactions. The present reviecuses on recent
developments related to the interactions of biocha As species found in water and soil
systems.

Arsenic adsorption properties are affected by pyioitemperature, residence time, feedstock,
and pyrolysis technology. Depending on the pyrolymperature, biochar can be used as an
adsorbent for arsenic. Low-temperature biocharsnawee effective in As sorption than high-
temperature biochars. Adsorption of As is affedigdhe solution pH, adsorbate and adsorbent
dose, and equilibration time. Much attention hasnbgiven to enhancing As sorption by

modifying the biochar surface. Modifications haweeb performed using different coatings of
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iron, including nano zero valent iron and other enats such as Al and Mn. The most
predominant adsorption mechanisms for As by biodhalude electrostatic attraction, ion-
exchange, physical adsorption, and chemical bondomnplexation and/or precipitation).
However, due to the low surface area and weak nméddaproperties, biochar has not been
considered as promising as activated carbon inmdier treatment. Modifications to biochar
which increase the surface area and mechanicakgie®, may allow it to be used in water
treatment suitable for oxy-anions and metalloidsclee the research towards such would be in
high interest in terms of material science pointiefv. The studies in the literature for biochar-
As interaction in water consist of rather differgrarameters and methods from study to study
and hence, comparison is impossible. Also, no stutliave focused the attention on organic
arsenic removal using biochar and that would bemsimg for future research. Enhanced
biotranformation of methylated arsenic by bacteneorporated biochar may be a potential
future study since biochar provides residency facrobes. Molecular level interactions of
biochar-functional groups need to be studied matech may provide clear information on the

mechanisms involved.

Biochar-induced changes in soil physio-chemicalpproes may influence the bioavailability
and phytotoxicity of As. Contrasting results haweib reported in terms of As mobility in soil
due to changes in other solutes in the soil solytOC, pH, CEC, and Phosphate. Even though
the use of biochar as an adsorbent is increasingnder of research gaps exist. More research
is needed to confirm the use of nano-biochar coitggsn the environment. Low-cost
modifications such as using steam-activation, actilzation, or other activations may facilitate

As remediation. Activation by nitrogen may providmide functional groups which could be
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useful in increasing arsenic sorption, however,research has been focused. Hence, more
attention need to be driven towards assessingaictien of different arsenic species on nitrogen
activated biochars. Interactions with rhizosphererobes, iron plaques interactions with biochar
in soil needs fundamental molecular level attentioay be using advanced techniques like
Nanoscale secondary ion mass spectrometry etcigdpacand fractionation of different arsenic
species in soil may influence the mobility, biod&hility, fate and transport with the presence of
biochar due to the changes in soil chemistry, whighe no attention paid yet. The interaction of
biochar and soil microbes in relation to the imntiahtion of toxic As species, including the use
of methylated and thio-arsenates, need to be stutliene of the studies have performed any
cost-benefit analysis for biochar and other mal®enehich can be considered as a gap in the

research related to As-biochar interaction.
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