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Asymptotic behavior of eigenenergies of
nonpolynomial oscillator potentials V(x) = x2V +

(Ax™ )} (1 + gx™)

Asiri Nanayakkara

Abstract: Analytic semiclassical energy expansions of nonpolynomial oscillator (NPO) potentials V(x) = x*Y + (Ax™)/(1 +
gx'™) are obtained for arbitrary positive integers N, mi, and my, and the real parameters X and g using the asymptotic en-
ergy expansion (AEE) method. Because the AEE method has been previously developed only for polynomial potentials, the
method is extended with new types of recurrence relations. It is then applied to the preceding general NPO to obtain expres-
sions for quantum action variable J in terms of E and the parameters of the potential. These expansions are power series in
energy and the coefficients of the series contain parameters A and g explicitly. To avoid the singularities in the potential we
only consider the cases where both A and g are non-negative at the same time. Using the AEE expressions, it is shown that,
for certain classes of NPOs, if potentials have the same N, and the same m; — my or m; — 2my then they have the same
asymptotic eigenspectra. It was also shown that for certain cases, both A and —A as well as g and —g will produce the same
asymptotic energy spectra. Analytic expressions are also derived for asymptotic level spacings of general NPOs in terms of

A and g.
PACS Nos: 02.00, B.05.00

Résumé : Utilisant la méthode de développement asymptotique en énergie (AEE), nous obtenons des développements analy-
tiques pour les énergies semi-classiques de potentiels d’oscillateurs non polynomiaux (NPO) V(x) = x>V + (Ax"™)/(1 +
gx™), pour toute valeur positive enticre de N, m; et my et réelle de A et g. Puisque la méthode AEE a été développée pour
des potentiels polynomiaux, nous devons la généraliser avec de nouvelles relations de récurrence. Nous 1’appliquons alors
au NPO généralisé ci-dessus afin d’obtenir I’action quantique J en fonction de E et des parametres du potentiel. Ces déve-
loppements sont des séries de puissance en énergie et les coefficients des séries contiennent les parametres A et g explicite-
ment. Afin d’éviter les singularités du potentiel, nous ne considérons que les cas ou A et g ne sont pas simultanément
négatifs. Utilisant les expressions AEE, nous montrons que pour certaines classes de NPO, si les potentiels ont le méme N
et les mémes m; — my ou my — 2my, alors ils ont le méme spectre asymptotique. Nous montrons aussi que pour certaines
classes, a la fois A et —A aussi bien que g et —g vont générer le méme spectre asymptotique. Nous obtenons des expressions
analytiques pour I’espacement entre les niveaux en fonction de A et g pour des NPO généralisés.

[Traduit par la Rédaction]

1. Introduction

In quantum mechanics, expressing eigenspectra of the
Schrodinger equation in an analytic form is very valuable as
it provides analytic insight into the system. The analytic ex-
pressions for eigenvalues can only be obtained for a few po-
tentials, such as the Coulomb potential, the Morse potential,
the Poeschl-Teller potential, the square-well potential, and
the harmonic oscillator.

On the other hand, rational potentials, such as the general
nonpolynomial oscillators (NPOs) Vy(x) = x2¥ + (Ax™)/(1 +
gx™), belong to a class of potentials where analytic eigen-
value expressions cannot be obtained exactly in general.
These potentials are of importance in quantum field theory
with a nonlinear Lagrangian, atomic physics and optical
physics, as well as in elementary particle physics [1-10].

Apart from this, NPOs are themselves interesting as the real
world deviates from an idealized picture of harmonic oscilla-
tors because of interactions between them and self interac-
tions. As a result, a great deal of interest has been devoted
to the investigation of one-dimensional NPOs, especially the
potential V(x) = x2 + (Ax2)/(1 + gx?) in the past. However,
the Schrodinger equation for this NPO cannot be solvable ex-
actly for arbitrary values of A, and g. Only in a few cases was
it possible to obtain exact analytical solutions [11-16].

A wide variety of approaches, such as variational techni-
ques, the Pade approximation method, the finite difference
method, perturbation schemes, continued fractions method,
and expansions into complete sets have been applied to the
NPO V(x) = x2 + (Ax3)/(1 + gx?). Additionally, the concept
of supersymmetric quantum mechanics has also been applied
to such NPOs [17].
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The asymptotic energy expansion (AEE) method [18] was
developed for potentials of the type V(x) = Z,vi(x) where
vi(x) satisfy the scaling property vi(Ax) = A%vi(x) for real A
and integer n;. This method produces analytic expressions
for quantum action variable J as an analytic series of energy
E. Therefore the AEE method has been applied to investi-
gate asymptotic behavior of eigenvalues (large eigenvalues)
of polynomial potentials [19, 20] analytically. In addition,
the AEE method has also been used to obtain the locations
of zeros of wave functions of polynomial potentials [21,
22]. Because NPO V(N, x) does not satisfy the scaling
property mentioned earlier, the AEE method cannot be ap-
plied directly to NPOs.

In this paper the AEE method is extended to obtain a new
type of recurrence relations, which can be used to obtain the
AEE of NPOs (Vj(x)) in analytic form, having parameters A
and g explicitly in the series. We will also investigate the
asymptotic behavior of eigenvalues and level spacings in
terms of A and g of NPOs.

In Sect. 2, the AEE method is extended and recurrence re-
lations for NPOs Vj(x) are derived. AEEs are obtained for
few NPO potentials as illustrated in Sect. 3. In Sect. 4
asymptotic eigenenergies and level spacings of energy are ob-
tained for general NPOs and concluding remarks are made in
Sect. 5.

2. Extended AEE method for NPOs

In this section we will extend the AEE method and derive
recurrence relations for the general NPO one-dimensional
Hamiltonian

H(x,p) =p> + V(x, N) (1)
where
Ax™
V(N x) =xN + ——
1+ gxm

where N, m;, and m, are integers and 2N + m, > my; A and g
are real parameters. These equations are required to obtain
asymptotic semiclassical energy expansions in analytic form.

As in the polynomial case [20], the AEE quantization con-
dition for NPOs is

J(E) =nh (2)
where N is a positive integer and quantum action variable
J(E) is given by
1
J(E)=— P(x, E)dx 3
(E) =5, PleE) 3

P(x, E) satisfies the equation
hOP(x, E)
i Ox

and is related to the wave function as

h OW/0x
P()C, E) = 7 w

Y P E) = E — V(N,x) = Po(x, E) (4)

The contour y in (3) encloses two physical turning points of
P.(x, E). To obtain the AEE, first P(x, E) is expanded in a
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series of powers of energy and subsequently obtain recur-
rence relations. For the preceding potential, (4) reads

hOP(x, E)
i Ox

Ax™

E-xN -~
I + gxm

+ P*(x,E) = (5)

and has to be written in the form

hoP P hgx™ OP

Pt — f 2N
i Ox i Ox t8 o

+ Egx™ — gVt _xm o (6)

before deriving recurrence relations.
Let € = E-12N and y = ex. Then (6) becomes, after simpli-
fication

h 2N+mg+laP ;
€ (y 6) _|_62N+mZP2(y’ 6)

i ady
hgy™ NTLOP(y, €
n 8).’ (v, €) 1 gy™ &N p2 (v, €)
i Jdy
_ (1 o yZN)emz +gym2(1 . yZN) o )\ym1€2N+m27m1 (7)

Now we expand P(y, €) as a power series in €.

9= a)é (8)
k=0

where @, and k are determined later. Substituting (8) into (7)
and equating coefficients of €, we obtain s = —N and g =
v/1 —y?N and (7) becomes

ny O

Z N+k+ldak
+ ZZa a; ettm gy'"zZZa a]

i=0 j=0 lOJ
_gymz(l y )+ (1 —y )6

and assuming a; = 0 when k < 0 and rearranging terms, we
obtain

ﬁidak—N—mz—l
i dy

_Z N+my+k+199k dak hgy

_ )Lym] €2N+m27m| (9)

hgy™ SSday_n—
+ gy Z kdzv 1
k=1 l k=1 y

oo k—my

oo k—1
+ Z Zalak i—my + gymz Zzatak i+ 2gym7a0ak> ek
=1
o gymz(l y ) + (1 _y )6 _)\y 62N+m2 m (10)
Then coefficients a; are given by

-1 |hdag_y—m— +hgym2 dag_n—1
2gy™ayg | i dy i dy

ax =

knb

8km2 Zaak i—my +gy Zaak i
+ A" 8k 2Nty —my 62N+m2_m'] (11)

where a; = 0 V k < 0. Now J can be written as
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J(E) = bl kN1RY (12)
k=0

where b, = (1/27) Aakdy and can be determined analytically
in terms of A and g. The contour y encloses the two branch
points of y/1 —y2¥ (i.e., +1 and —1) on the real axis. The
quantization condition J(E) = nh determines the eigenener-
gies of

axm

V(N,x) =2V 4+
( .X) X + 1 +gx1712

For polynomial potentials all the integrals /ﬂkdy have the
general form either [[x"/(1 — x2Vym+12]dx or [ix"/(1 — x2Ny"]dx
where m is an integer and N is a positive integer [15].
However, the second integral, in general, does not contrib-
ute to J except when m = 1 and n = 2N — 1.

On the other hand, for NPO potentials, in addition to the
preceding two forms, another integral of the form f[l/x’(l -
X2Nym+121dx, with [ as a positive integer, contributes to the J.
Importantly, all of the preceding integral forms can be eval-
uated analytically in terms of gamma functions.

3. lllustrations

In this section we present three simple illustrations for
NPOs. The method described in this paper can be applied to
a general NPO of the form x?V + Ax™/(1 + gx™) when 2N +
my > m;. Because AEE series contains terms that have posi-
tive powers of A in the numerator and g in the denominator,
the AEE method is accurate when A is small (IAl < Igl) and g
is large (Igl > 1). The AEE expansion is more accurate for
large eigenvalues and therefore, it is suitable for investigating
asymptotic behavior of eigenvalues. It is convenient to use a
computer algebra package such as MATHEMATICA to de-
rive the AEE series. Using MATHEMATICA 8.0 [23], recur-

rence relation (10) was implemented with ay = /1 — y?N for
the three potentials. Results are given in the following sub-
sections.

3.1. V(x) = x* + A% + gx?)
For this potential, (12) becomes

o0
J(E) =Y b3 (13)
k=0

It is found that b, = 0 V odd k except kK = 3 and b, is zero.
The first six nonzero bys are

i h
NI eV

=)y

r[3/4
be = — (&7 + 4,\)—[ ]
4g2\/mI[1/4]
by = —A(8 + Sg)»)&
96g3\/nI"[3/4]

r'[3/4]

by = —3A(16 + 5g°h* 4+ 20gA) ———————
0 (16-+5 8 )80g4ﬁr[1/4]
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Table 1. Some eigenvalues calculated with AEE for V(x) =
x* 4+ [(AxD)/1 + gx?] are compared with numerical eigen-
values. The calculation was carried out for A = 0.1 with g =
10 and A = 1.0 with g = 50 results are shown up to seven
significant figures.
AEE Numerical AEE Numerical
N =01 g=10 A=10 g=50
0 1.016 14 1.065 94 1.0009 1.075612
5 21.248 60 21.246 81 21.25847 21.25726
10 50.266 34 50.264 88 50.276 39 50.274 83
15 84.467 52 84.466 27 84.47749 84.476 45
20 122.6147 122.6135 122.624 6 122.623 6
40 303.922 1 303.9212 303.9320 303.9312
60 518.9812 518.980 4 518.9912 518.990 4
100 1021.000 1020.999 1021.009 1021.009
200  2564.207 2564.207 2564.217 2564.217

Applying quantization condition J(E) = n#, the eigenener-
gies are obtained. For comparison purposes, the Schrodinger
equation for the preceding potential was solved numerically
as well. Eigenenergies are shown in Table 1.

Although the eigenvalues obtained from the numerical
method were not exact, here we assume that they are at least
accurate up to seven significant figures. It is apparent from
Table 1 that the AEE method produced less accurate eigen-
values when N is small. However, as N increases, an increase
in the accuracy of the AEE method has become evident. The
analytic expression of J presented in (13) for the preceding
potential can be utilized to investigate the asymptotic behav-
ior of eigenvalues analytically.

3.2. V(x) = x* + Ax2(1 + gx)

The next illustration is for V(x) = x* + Ax%(1 + gx) and
the AEE expansion is

o0
J(E) =Y bt (14)
k=0

As in the previous illustration, by = 0 V odd k except k = 3
and b, = 0. The first six nonzero b;s are

A _h (M
CTaaErpa 2 T A Jar
r[3/4]
be = —(2g* 12 + 83 — g2a2)— 0
e § )8g4ﬁr[1/4]
4
by = —a(—8+ 9g2x)¢
966/ I"[3/4]
r[3/4]

bio = 31(=32 4+ 10g°%% + 100g%x — 5g*2\2) ——————
to = 3( 8 g4 )160g8ﬁF[1/4]

For this system the AEE energies are given in Table 2
along with numerically calculated energies. As in the first il-
lustration, the eigenvalues calculated with the AEE method
became more accurate for large N.
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Table 2. Some eigenvalues calculated with the AEE method for
V(x) = x* + [(Ax?)/1 + gx] are compared with numerical eigen-
values. The calculation was carried out for A = 1 with g = 10 and
A =5 with g = 50 and results are shown up to seven significant
figures.

AEE Numerical AEE Numerical
N A=1.0 g=10 L=50 g =150
0 09711115 1.052777 0.978 339 1.057 186
5 21.228 33 21.22772 21.23632 21.23624
10 50.246 19 50.246 53 50.254 18 50.254 17
15 84.447 41 84.446 79 84.455 41 84.455 40
20 122.594 5 122.5949 122.602 6 122.602 6
40 303.9020 303.9020 303.9100 303.9100
60 518.961 1 518.9609 518.969 2 518.969 2
100 1020.979 1020.981 1020.988 1020.988
200  2564.187 2564.187 2564.195 2564.195

3.3. V(x) = x8 + Ax%(A + gx)
The AEE expansion for V(x) = x® + Ax%(1 + gx) is

J(E) = b "8 (15)
k=0

It is found that b, = 0 V odd k except k = 5 and b,, by, and
be are all zero. The first six nonzero b;s are
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n > 15 the eigenvalues agree well with the numerically cal-
culated values as shown earlier.

4. Asymptotic behavior and energy level
spacings for general potential V(x) = x2N +
[Ax™)(1 + gx™)]

First, the recurrence relations in (10) is utilized in this sec-
tion to obtain four terms of the AEE series analytically for
the general NPO potential V(x) = x2V + (Ax™)/(1 + gx™).
These terms will be adequate to study the asymptotic behav-
ior of eigenvalues and the lever spacings. Even with a com-
puter algebra package, the b, terms cannot be derived
directly when N, m;, and m, are not assigned numerical val-
ues. However, by inspecting terms in the AEE series system-
atically for various values of N, m;, and m,, one can
generalize the b, terms of AEE for the general NPO poten-
tial. It was found that there are four different forms of AEE
expansions for the above potential corresponding to parame-
ters m; and m, being even or odd. These four forms arise
when (i) (m; — my) is even; (ii) both m; and m, are odd;
(iii) my is odd while m, is even but N # 2(m; — my) + 1;
and (iv) my is odd while m, is even but N = 2(m; — my) + 1.

Equations (16)-(32) provide the AEE expansion of the
preceding general potential with four terms.

1. If (m, — my) is even, the AEE is

J(E) —_ b0E<N+l)/2N + bN+1 T b2N+2E7<N+l>/2N

_ T[1/8] _h
0 = SﬁF[S/g] 5 = _5 4 b2N+m27m]E_(N+”12_ml_l)/2N (16)
AT[1/8]
g = — where
8¢2\/mI[5/8] (2]
I'[1/2N
] bo = (17)
432
=— W+ 120) —————— 0
buo = =08 2 T ) (N + )/7I[(172) + (112N))
I'[5/8
I'[3/8
gt/ 718] L (N IrEN — 12N (19)
In Table 3, the AEE energies and numerically calculated e 12,/7[(N — 1)/2N]
energies are given for comparison. Very low eigenvalues do
not agree with the numerical eigenvalues. However, when if N<my—mp+1
A I[(my — my + 1)/2N]
b2N+m2—m1 = -\ = (2’0)
8)(my —my— N+ l)ﬁF[(N—&-ml —nmy + 1)/2N]
if N= my —myp + 1
A
b my—m; — —\ Anr 21
wemm =~ (52 1)
if N>m;—my+ 1
A I'\(m; —my + 1)/2N
b2N+mzfml = _< ) [( l 2 ) ] (22)

8) 2N \/AL[(N +my —m;y + 1)/2N]
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Table 3. Some eigenvalues calculated with the AEE method for the potential
V(x) = 2% + [(Ax*)/1 + gx] are compared with numerical eigenvalues. The calcu-
lation was carried out for A = 1 with g = 10 and » = 5 with g = 50.

AEE Numerical AEE Numerical
N A=10 g=10 A=50 g=150
0 1.127 239 1.222 547 1.130126 3 1.224 879
5 35.487 08 35.487 48 35.495239 35.495 693
10 99.53493 99.534 99 99.545 484 99.545 595
15 185.4897 185.489 8 185.502 07 185.502 11
20 290.064 6 290.064 6 290.078 42 290.078 43
40 862.027 1 862.027 1 862.045 19 862.045 19
60 1638.2679 1638.2679 1638.289 03 1638.289 03
100 3690.067 99 3690.067 99 3690.093 92 3690.093 92

200 11141.64223 11141.64223 11141.676 37 11141.676 37

2. If (my — myp) is odd and m, is odd, the AEE is
J(E) = bOE(N+l)/2N + bN+l +b2N 2E*(N+1)/2N + b2N—m o E*(N+2m27m171)/2N 23
+ 1+2my

where by, by, and byy,, are the same as when (m; — my) is even and if m; < 2(my — 1) = N

2\ (2my —my — N —1)I[(2N + my — 2my + 1)/2N]
b2N+2ﬂlg*m] =\ (24)
82/ 2N(2my —my — 1)y/7T[(3N + my — 2m, + 1)/2N]
if 2my — 1) =N <m; < 2(my — 1)
A T[(2N + my — 2my + 1)/2N]
bansomy—m = —| (25)
82/ (2my —my — 1)\/7C[(N + m; — 2my + 1)/2N]
if m =2(my - 1)
A\ T[(2N +my —2my + 1)/2N]
bansomy—m = —| (26)
8/ \/7T[(N +my — 2m; + 1)/2N]
if my > 2(my — 1)
A I[(my — 2my + 1)/2N]
b2N+2m27m1 = _2 (27)
8 2N\/7-11“[(N +my — 2my + 1)/2N]
3. If (m; — my) is odd while m, is even and N # 2(m; — m,) + 1 the AEE is
J(E) _ bOE(N+1)/2N + bN+1 + b2N+2E_(N+1)/2N + b4N+2m272m1E_(3N+2m2_2ml—l)/2N (28)
where by, by, 1, and byy,, are the same as when (m; — m,) is even and if N < 2(m; — mp) + 1
)\.2 (N — 2]’)’[1 + 2]’!’!2 — 1){F[2(m1 — I’HQ) + 1}/2N}
banvomy—2m = —| = 5 (29)
8 8N2\/7{[N + 2(m; —my) + 1)/2N}
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if N > 2(}7’11 —m2)+ 1
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22 r{2(my —my) + 1]2N}
b4N+2m2—2ml = \2 (30)
§*JAN/a{|N + 2(m; —my) + 1]/2N}
4. If (my — my) is odd and m, is even with N = 2(m; — m,) + 1 the AEE is
J(E) _ bOE(N+1)/2N + bN+1 + b2N+2E_(N+1)/2N + b3N+m2E_(2N+mz_l)/2N (3])

where by, by, and by, are the same as when (m; — m,) is
even and

(32)

S <A2> my T[(N — my)/2N]

%) 4N2\/xI[(2N — my)/2N]

Note that b2N+m2—mp b2N+2mg—m17 b4N+2m2—2m| B and b3N+mz
are the lowest order terms that contain parameters A and g in
cases 1, 2, 3, and 4, respectively. Consequently, for asymp-
totic energies, these terms will supply the largest contribution
to A and g.

Having obtained four coefficients of AEE, now we investi-
gate how the eigenvalues behave asymptotically. Four terms
in each of these AEE expansions can be used to investigate
how the asymptotic eigenenergies will depend on the param-
eters N, my, my, A, and g. Because the fourth term in each of
the AEE expansions is the most dominating term having my,
my, A, and g, it can be used to investigate how the parameters
of the potential will contribute to asymptotic eigenenergy
spectra. It is interesting to note that for all the possible values
of N, my, and m,, the contribution of A and g are only in the
form A or A2, and g1, g2, or g.

Because (20), (22), (29), and (30) contain m; and m, in the
form m; — m,, all the m; and m, having the same difference
my — my will produce almost the same asymptotic eigene-
nergy spectra in each case. Similarly, it is evident from (24)-
(27) that when m; is even while m, is odd, the same m; —
2m, will generate almost the same asymptotic eigenspectra
for each case separately.

When m; — m, is odd, m, is even and N # 2(m; — mp) + 1,
both A and -\ generate almost the same asymptotic eigene-
nergies as terms (29) and (30), which contain A only in the
form of A2 Similarly, according to (24)-(30), when m; — m,
is odd, g and —g will produce almost the same asymptotic
eigenenergy spectra except for N = 2(m; — m,) + 1.

For large N, by = 2/m, by, = —(#/2), and by, = —[(2N —
1)A2/127t], For large energies, the energy level spacing is ap-
proximately given by

1
(0JI9E)

~
~

(33)

First we write the AEE as

J(E) = by EWN+DN busi + bansa E-(N+D2N
+ baE—((X—N—l)/zN (34)

where o takes value 2N + my, — my, 2N — m; + 2my, 4N +

2my — 2my, or 3N + m, depending on cases as described ear-
lier. Now the level spacing AE becomes

AE = coEN-VRN | o - (N+3N | pe(e=N+ 12N (35)

where ¢y = 2N/(N + 1)by, ¢; = [2Nboy,o/(N +1)]c%, and ¢,
[( — N +1)by/2N]c3.

For large N, ¢y ® w, ¢; ~ —(1/6)2N — A2w, and ¢, ~
-(A2g)[m/(my — my + 1)] when (m; — my) is even; ¢, ~
—(MgH)[m/(m; — 2my + 1)] when both (m; — m,) and m, are
odd; and ¢, ~ —-(A¥g?)[37/4(2m; — 2m, + 1)] when (m; — m,)
is odd and m, is even.

Here we have employed the relation IT1/x] - x — y for
large x, where y is the Euler constant.

When (m; — my) is odd and m, is even

AE = nE" 4 ¢ E7"* 4 ¢ ,E7" (36)
or

AE = tE" 4 (¢) + co)E~ (37)
otherwise.

Therefore, very large N, asymptotic eigenvalues have the
level spacing

AE ~ m\/E (38)

regardless of the values of A, g, m;, and m,.

Now we investigate how the asymptotic eigenenergies
change with parameters A and g. The first-order approxima-
tion to the change in energy AE, due to changes in X is
given by

_ (0J10x)

AE, ~ —=A
* 7 (8JI0E) * (39)

Because only the fourth term contains the parameter A

Oby, 2N
AE; (

A2 |ETle 2NN A, 40
O bo(N-i-l)) “0)

and similarly changes in energy AE, due to changes in g are
given by

o Naba< oN
bo(

~ Y E*[(O{*ZN)/ZN]A 41
s~ og N+l)) § (41)

Now we define d,, d,, d, ds, ds, ds, and dg as
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Table 4. Changes of asymptotic eigen energies with respect to changes in A and g.
my — mp Condition AEy AE,
— N<my —my + 1 —(1/g)doAN (A/gz)doAg
my — my 1S even N=m—m +1 —(1/g)d1 AN (A/gz)dlAAAg
— N>m—my+ 1 —(1/g)d2 AN (MgHdaAg
— my <2(my—-1)-N —(1/gHd3 AN (AgY)dsAg
my — my is odd 2my— 1) =N <my <2(mz - 1) —(1/g?)ds AN QMgYdiAg
and my is odd my; = 2(mp — 1) —(1/g%)ds A\ QMgddsAg
— my > 2(mp — 1) —(1/g%)ds AN —(2AMg)dsAg
my — my is odd N < 2(m; —mp) + 1 —(2)»/g2)d7Ak (2)\2/g3)d7Ag
and m; is even N =2(m —mp) + 1 —(2M/g¥)ds A (Br%ghHdsAg
— N> 2(m —mp) + 1 —(2Mg%)do AN 1%g¥)doAg
do = 2NT[(my — my + 1)/2N] F—(m—mi/2N)
(N + 1)(my —my — N + 1)bo/T[(N + my — my + 1)/2N]
1
d — E*(mzfml)/2N
1 ((N + 1)bo>
d2 _ F[(ml —my + 1)/2N] —(my—my )2N
(N + 1)bo/7C[(N + m; — my + 1)/2N]
dy = (27"12 —m —N— I)F[(zN +my —2my + 1)/2N] —(2my—m )12N
(N + 1)(2my — my — 1)bo\/7[(3N + my — 2my + 1)/12N]
d, = 2NF[(2N +my —2mp + 1)/2N} —(2my—m )I2N
(N + 1)(2my — my — 1)bo\/7T[(N +my — 2my + 1)/2N]
- 2NT[(2N + my — 2my + 1)/2N] - (@m-m)2N
(N + 1)bo\/TC[(N + my — 2m; + 1)/2N]
de — I[(my — 2my + 1)/2N] - @m—m)2N
(N + 1)bo/7C[(N + my — 2my + 1)/2N]
g (N —2my + 2my — 1)T[(2(m; — my) + 1)/2N]E~GN+2m=2m)2N
’ 4N(N + 1)bo\/7T{[N + 2(my — my) + 1]/2N}
dg = myI'[(N — my)/2N] E—(@N+m—1)2N
4N(N + 1)bo/m[(2N — my)/2N]
_ I'[(2(m; —my) + 1)/2N] —(3N4+2my—2m) 2N (42)

2(N + 1)bor/7T{[N +2(m; — my) + 1]/2N}

and express AE, and AE, in terms of d;...ds as shown in
Table 4.

It is evident from Table 4 that as A increases (when X is
positive and g is positive), the asymptotic eigenenergies de-
crease for all values of N, m;, and m, except for the case
where m; and m, are odd with m; < 2(my, — 1) — N or m;
and m, are odd with m; > 2(m, — 1). On the other hand, as
g increases (when A is positive and g is positive), the asymp-
totic eigenenergies increase for all values of N, m;, and m,
except for the case where m; and m, are odd with m; <
2(my — 1) — N or my and m, are odd with m; > 2(m, — 1).

5. Concluding remarks

In this paper, we have derived AEEs for the NPO x?V +
[Ax™/(1 4 gx™)]. Because AEE has been developed only for

polynomial potentials, it cannot directly be applied to nonpo-
lynomial systems. In this paper new types of recurrence rela-
tions were derived for NPOs and applied to the preceding
general NPO to obtain expressions for J in terms of E and
the parameters of the potential. These expansions are power
series in energy and coefficients of the series contain param-
eters A and g explicitly. The most significant first four terms
of the AEE were derived as analytic expressions explicitly in
terms of N, my, my, A, and g. Using these AEE expressions, it
was shown that there are classes of NPOs with different m;
and m, but with the same m; — m, or m; — 2m,, share the
same asymptotic eigenspectra if both have the same N. It was
also shown that for certain cases, both A and —A as well as g and
—g will produce the same asymptotic energy spectra. Therefore,
extended AEE is a very useful tool in investigating NPOs ana-
Iytically and they provide analytic insight into the problem.
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