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ABSTRACT 

 
Predicting Aboveground Biomass Increment (ABI) of forests is important in evaluating primary 

productivity, and hence aboveground C sequestration rate and C policy implementation. Although there are 

direct methods such as remote sensing to predict the ABI, it is important to develop ground-based indirect 

methods, particularly for tropical forests, due to their stratification, complex structure and high diversity, 

which cannot be imaged properly using the direct methods. Present study developed regression models from 

a global database of tropical forests to predict the ABI from annual litter-fall. The new models could predict 

up to 92% and 66% of the variability of the ABI of the disturbed/managed and natural tropical forests, 

respectively, compared to 69% of the variability predicted by previous models, although they have used a 

part of the present database which was only available at that time. Field prediction of the new models by 

using a wet zone forest and a dry zone forest in Sri Lanka showed that the ABIs of the two forests (7-8 Mg 

ha-1 yr-1) are towards the upper limit (10 Mg ha-1 yr-1) of the tropical forests of the world. It is clear from this 

study that the new approach may be a better method for predicting the ABI in future research as well as 

tropical forest inventories. It is recommended however, that the models should be validated before their 

wider applications. 
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INTRODUCTION 

 

Aboveground Biomass Increment (ABI) is the 

growth of aerial biomass of forests at a particular 

time interval. This parameter is important in 

evaluating primary productivity, and hence in 

evaluating aboveground C sequestration rate and 

C policy implementation. Currently, there are 

several methods applied to measure the ABI, 

namely remote sensing satellite techniques 

(Coops and Waring, 2001; Goetz et al., 2009; 

Zhang et al., 2012), Eddy covariance technique 

(Zhang et al., 2012) and inverse method (Zhang 

et al., 2012), which determine above ground 

biomass or biomass increments more directly. 

However, the direct measuring methods of the 

ABI, determined from the space, have their own 

advantages and disadvantages, although they are 

promising options to ground-based methods 

(Hese et al., 2005). Alternatively, researchers 

have applied indirect modeling techniques to 

predict the ABI from measurable components 

such as annual litter-fall (Clark et al., 2001a; Neth 

et al., 2005). Predictive power of all these 

methods varies in their level of accuracy and the 

resolution at which data can be obtained. Thus, 

developing improved indirect techniques is 

equally important, since they can be used 

complementarily with direct techniques for better 

predictions. This is more important in the case of 

tropical forests because their complex structure 

and high diversity cannot be imaged properly 

from the direct techniques (Drake et al., 2003).    

 

Using 13 tropical forest plots of a global database, 

Clark et al. (2001a) predicted 69% of the 

variability of the ABI from annual litter-fall. 

However, Shoo and Van Der Wal (2008) showed 

that such a relationship does not exist for the data 

of 37 lowland and upland forest plots of the same 

database. The highest explanatory power of their 

relationships was 19% (R2=0.19, P=0.03). This 

shows that predicting ABI from the annual litter-

fall will not be reliable, unless an innovative 

procedure is developed. In the current study, data 

sorting of the global database and regression 

modeling were employed to investigate whether 

better relationships can be established between 

ABI and the litter-fall. Based on the relationships, 

the ABI of two tropical forests in Sri Lanka was 

forecasted from their annual litter-fall. 
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MATERIALS AND METHODS 
 

Data source, analysis and modeling 

Global database of the Oak Ridge National 

Laboratory (Clark et al., 2001b) and some other 

data available from various tropical forest studies 

(Spain, 1984; Amishi, 2006; Chave et al., 2008; 

Huston and Wolverton, 2009) were used in this 

study (Appendix I). These included rain forests, 

dry seasonal forests, tropical montane forests, 

tropical evergreen forests, mature secondary 

forests, Metrosideros forests, Terra firme, pine 

plantations and mahogany plantations, of which 

the geographical locations were central and south 

America, Caribbean islands, South and East Asia 

and West Africa. Altogether there were 30 forest 

sites. First, the data (ABI and annual litter-fall) 

were sorted by the following criterion. Forests 

with a recorded history of disturbance were 

considered as disturbed and managed (if planted 

after disturbance) forests. If there were no records 

of disturbances and management, those were 

considered as natural forests. Then, the two 

variables were plotted using X-Y scatter plot. 

Thereby, trends were identified and independent 

regression models were fitted using SAS (1998) 

software. Residual analysis was also performed to 

check the validity of the regression models. 

 

Predicting ABI for forests of Sri Lanka 

The ABI was predicted for a wet zone forest 

(Udawatta Kele forest reserve, ca. 750 m masl, 

mean annual rainfall for the last ten years: 1800 

mm) and a dry zone forest (Sigiriya sanctuary, ca. 

150 m masl, mean annual rainfall for the last ten 

years: 1400 mm) of Sri Lanka. To predict ABI, 

data on annual litter-fall were collected from 

permanent litter traps (Anderson and Ingram, 

1993) constructed in the two forests. First, four 2 

x 2 m plots were demarcated in random positions 

in each forest, by selecting grid coordinates on a 

map of the section of the forest by using a random 

number generator, and then by using Global 

Positioning System (GPS). Litter in the plots was 

removed and a 2 mm nylon mesh (2 x 2 m) was 

fixed 20 cm above the plot as a litter trap. Then, 

the plot was fenced with thick polythene sheets 

(black and white) to protect from wild animals. 

Litter (both fine and coarse) fallen on the trap was 

collected monthly for one year (January-

December 2010), oven-dried (65 oC for 72 hrs), 

and dry weight was recorded. Thereby, annual 

litter-fall by weight per unit area was estimated. 

This estimate was used to predict the ABI of the 

two forests from the models developed. 

RESULTS AND DISCUSSION 
 

There were 11 natural forests in the global 

database. First, a 2nd degree polynomial 

relationship between annual litter-fall and the 

ABI was fitted to the dataset with R2 of 0.78, 

which was significant at 1% probability level. 

Thereby, it was found that the model explained 

78% of the variability of the actual ABI. 

However, when one outlier (a natural rainforest in 

India, Appendix I), which lay far from the line 

with a large residual value was removed. Based 

on visual observations, it was then possible to fit 

a significant, negative linear relationship (P 

<0.01) between the annual litter-fall (X) and the 

ABI (Y) as given below, for 10 natural forests in 

the global database (Appendix I, Eq. 1 and Figure 

1a), which explained 66% (R2 = 0.66) of the 

variability of the actual ABI. Comparison of the 

two models for the smaller sum of squares (SS) 

revealed that the linear model was sufficient to 

explain the variability of the actual ABI. The 

residual plot of the linear model showed a lack of 

pattern, confirming its validity. Parameter 

estimates of the coefficient of X and the intercept 

were significant (P < 0.05).       

 

Y=-1.82X+14.2; R2=0.66 (P <0.01)      Eq. 1 

 

Using a similar analysis by removing one outlier 

(a palm-dominated floodplain in Puerto Rico) as 

above (Appendix I), it was possible to fit a linear 

model to 18 disturbed and managed forests 

(disturbed forests, plantations or monocultures). 

Its relationship between the annual litter-fall (X) 

and the ABI (Y) was positive, as given below (Eq. 

2 and Figure 1b). It explained 92% of the 

variability of the actual ABI. Its residual plot 

confirmed its validity. Parameter estimate of the 

coefficient of X was significant (P< 0.05). 

 

Y=0.616X; R2=0.92 (P<0.01)               Eq. 2 

 

 

The opposite (i.e. negative and positive) 

relationships of the two types of forests could be 

attributed to a litter-fall-associated soil nutrient 

cycling issue. In the natural forests, in general, 

there is a relatively higher level of soil organic 

matter than that of the managed forests (Lai, 

2004). Litter-fall and decomposition contribute 

organic matter with relatively high C/N ratio to 

the top soil. 
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Figure 1. Relationships between annual litter-fall and above ground biomass increment for, (a) natural 

forests, and (b) disturbed/managed forests in the global tropical database.  

** Significant at 1% probability level 

 

Table 1. Annual litter-fall and predicted aboveground biomass increments (ABI) of the dry and wet zone 

forests in Sri Lanka, assuming that they are natural or disturbed and managed forests 

 

Forest 

 

Annual litter-fall 

(Mg ha-1 yr-1) 

 

ABImf 

(Mg ha-1 yr-1) 

 

ABInf 

(Mg ha-1 yr-1) 

Sigiriya sanctuary (Dry zone forest) 

 

Udawatthe Kele (Wet zone forest) 

  11.8a ± 0.6 

 

  12.5a ± 0.6 

      7.3 

 

      7.7 

      -7.3 

 

      -8.6 

 

Mean ± 1 SE. Means in the same column followed by the same letter are not significantly different at 5% 

probability level, according to t-test. ABImf and ABInf are aboveground biomass increments predicted from 

the developed regression models, assuming that the forests are disturbed/managed forests or natural forests, 

respectively.       
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This tends to immobilize soil nutrients in the 

decomposing organic matter, reducing nutrient 

availability to the forest trees (Seneviratne, 2002). 

Thus, the higher the litter-fall, the lower the soil 

nutrient availability is, leading to lesser ABI. 

However, in managed forests, there is relatively 

low soil organic matter content. High litter-fall 

helps to increase soil organic matter, thus 

contributing to increased nutrient release and 

ABI.  

 

Predicted ABIs of the two forests based on the 

equations (Eqs. 1 and 2) above are given in Table 

1. Values of annual litter-fall of the two forests, 

which were not significantly different (p > 0.05), 

fall within the range of disturbed and managed 

forests of the present database (i.e. 0.2-12.7 Mg 

ha-1 yr-1, Table 1 and Figure 1b). Therefore, it is 

clear that the two forests behave as disturbed and 

managed forests. Further, negative ABIs 

predicted from the equation of natural forests 

confirm that they are not natural forests (Table 1). 

This is also supported by the fact that the two 

forests have been historically disturbed for 

cultivation and tree planting (Perera, 2001; 

Munasinghe, 2003), and hence are managed 

forests. The ABIs of managed, disturbed or 

plantation forests in tropics have been reported to 

range from very low values up to ca. 10 Mg ha-1 

yr-1 (IPCC, 2006; Fang et al., 2007; Vasconcelos 

et al., 2012). Values of the two forests are close 

to the upper limit of the range. 

 

In previous research, the ABI of forest stands has 

been estimated based on the litter-fall, with the 

assumption that the litter-fall is proportional to 

the ABI (e.g. Clark et al., 2001a; Malhi et al., 

2004). In contrast, our analysis showed that the 

annual litter-fall was well related to the ABI, 

when the database was separated into natural and 

disturbed/managed forests. Our models could 

predict up to 92% of the variability of the ABI, 

particularly in the disturbed and managed forests 

of the global tropical forests. The model 

developed by Clark et al. (2001a) could predict 

only 69% of the variability of the ABI, although 

they used a part of the present database. Thus, our 

approach is a better method for predicting the 

ABI in future research as well as tropical forest 

inventories. It is recommended however, that the 

models should be validated before their wider 

applications. 
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Appendix I. Tropical forest sites used in the study; their category and history of disturbance   

 

Country  Forest type  Forest category History of 

disturbance 
      Natural Disturbed/managed 
     

USA-Hawaii Metrosideros forest  √ Volcanic activity 

USA-Hawaii Metrosideros forest  √ Volcanic activity 

USA-Hawaii Metrosideros forest  √ Volcanic activity 

USA-Hawaii Metrosideros forest  √ Volcanic activity 

USA-Hawaii Metrosideros forest  √ Volcanic activity 

USA-Hawaii Metrosideros forest  √ Volcanic activity 

Mexico  Terra firme forest   √ Erosion 

Mexico  Terra firme forest   √ Erosion 

India  Rain forest  √   

India  Rain forest  √   

India  Rain forest  √   

USA-Hawaii Metrosideros polymorpha 

dominated forest 

 √ Volcanic activity & 

Hurricane  

India  Rain forest†  √   

Mexico  Terra firme forest   √ Erosion 

Puerto Rico Dry seasonal forest   √ Deforestation 

Puerto Rico Mature secondary  √   

USA-Hawaii Metrosideros polymorpha 

dominated forest 

 √ Volcanic activity 

Jamaica  Tropical montane forest  √   

Jamaica  Tropical montane forest  √   

Venezuela Terra firme forest   √ Deforestation 

USA-Hawaii Metrosideros polymorpha 

dominated forest 

 √ Volcanic activity 

Jamaica  Tropical montane forest  √   

Jamaica  Tropical montane forest  √   

Puerto Rico Mature secondary  √   

Puerto Rico Mature secondary  √   

Brazil  Terra firme forest   √ Deforestation 

Puerto Rico Palm-dominated forest, 

floodplain† 

 √ Deforestation & 

flooding 

USA-Hawaii Metrosideros polymorpha 

dominated forest 

 √ Volcanic activity 

Puerto Rico Mahogany plantation  √ Deforestation 

Puerto Rico Mahogany plantation  √ Deforestation 

† outlier 


