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Abstract
In this paper we derive an almost explicit analytic formula for asymptotic eigenenergy
expansion of arbitrary odd-degree polynomial potentials of the form
V (x) = (ix)2N+1 + β1x2N + β2x2N−1 + · · · + β2N x , where β ′

k are real or complex for
16 k 6 2N . The formula can be used to find semiclassical analytic expressions for
eigenenergies up to any order, very efficiently. Each term of the expansion is given explicitly
as a multinomial of the parameters β1, β2 . . . and β2N of the potential. Unlike in the
even-degree polynomial case, the highest-order term in the potential is pure imaginary and
hence the system is non-Hermitian. Therefore all the integrations have been carried out along
a contour enclosing two complex branch points, which lies within a wedge in the complex
plane. With the help of some examples we demonstrate the accuracy of the method for both
real and complex eigenspectra.

PACS numbers: 03.65.−w, 03.65.Sq, 03.65.Ge

1. Introduction

A Hamiltonian with an odd-degree polynomial potential

H =
p2

2
+ β0x2N+1 + β1x2N + β2x2N−1 + · · · + β2N x (1)

is PT symmetric when β0, β2, . . . , β2N are pure imaginary
and β1, β3, . . . , β2N−1 are real. It has real eigen spectra when
PT symmetry is not spontaneously broken (i.e. when the
wave functions are also PT symmetric). Moreover, the wave
functions of H are usually required to vanish at infinity in
various Stokes wedges to satisfy boundary conditions for
quantization. Therefore, solving the Schrödinger equation
directly to obtain eigen spectra for these systems is not
a trivial task. Recently the eigenenergy spectra of general
polynomial potentials has been investigated using the spectral
resolution method and extended Wentzel–Kramers–Brillouin
(WKB) methods [1–12].

At present, WKB theory is well developed and its
methods are very important for many applications. The
WKB method has been extended to obtain higher-order
eigenenergies for potentials such as V (x) = x2N [13]. For
this system, the integrals in each term of the expansion

1 Permanent address: Department of Mathematics, University of Jaffna,
Jaffna, Sri Lanka.

can be evaluated analytically in terms of 0 functions.
Although, at first sight the problem of obtaining higher-order
terms of WKB seems relatively simple for other systems,
it has proved difficult due to singularities at the classical
turning points [14]. However, the lowest-order WKB method
has been applied to obtain eigenenergies of many PT
symmetric potentials, such as V (x) = gx2(ix)ε. Robnik
and Romanovski [14, 15] derived a simple formula for
the semiclassical series for the potentials V (x) = x2N and
obtained explicit formulae for the WKB approximation of
the eigenenergies of the same. The recurrence relations
obtained by Robnik et al are computationally much less
time-consuming compared to the WKB recurrence relations
when the order increases. The reason behind this difference
is that Robnik’s recurrence relations involve only arithmetic
operations with rational numbers while WKB formulae
involve operations of differentiation and a collection of similar
terms. In addition, they have derived almost explicit formulae
for the WKB terms of the energy eigenvalues of the potential
V (x) = x2N . However, use of the method developed by
Robnik et al for general polynomial potentials is not possible
due to the complicated nature of the integrals involved.

Compared to the higher-order WBK expansion,
derivation of the asymptotic energy expansion (AEE)
[16–19] for polynomial type potentials is relatively easy.
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All of the integrals involved in the AEE of polynomial
potentials can be evaluated analytically in terms of
0 functions. As a result, using Robnik’s method in
conjunction with the AEE method, an almost explicit
formula for semiclassical energies for even degree
real polynomial potentials has been derived [6]. One
of the important features of this formula is that it
contains parameters a1, a2, . . . , a2N−1 of the potential
V (x) = x2N + a1x2N−1 + a2x2N−2 + · · · + a2N−1x , explicitly.
Since AEE is an expansion in reciprocal of energy, energy
is also present explicitly in the formula. Recently, the AEE
method developed for even-degree polynomial potentials has
been successfully applied for finding equivalent Hermitian
Hamiltonians for non-Hermitian Hamiltonians [20].

In a recent paper, Bender and Jones [21] developed
a technique based on WKB theory to obtain the behavior
of eigenenergy levels of the potentials of the type V (x) =

−igx2N+1 (for integer N ) as g varies. The method is accurate
enough to determine the critical points where the pairs of
real eigenvalues are merged and become complex conjugate
pairs. Due to the complicated nature of the integrals, this
WKB method cannot also be applied for general odd-degree
polynomial potentials. Recently, the AEE method has been
extended for the potential of the type V (x) = µx3 + ax2 + bx
[19]. Integrals in the AEE expansion of this system contain
odd powers of

√
1 − y3, where y is the integration variable.

Therefore, the integrals are evaluated with contours enclosing
branch points 1 and ∞. However, the extension of the AEE
method to higher-order odd-degree polynomial potentials
(degree > 3) failed to produce correct energy spectra. In this
study it was found that the reason for this failure was the
choice of branch points. In this paper we extend the AEE
method to higher-order odd-degree polynomial potentials
with the correct choice of branch points for degrees> 3 and
contours and derive an almost explicit analytic formula for
asymptotic eigenenergy expansion for arbitrary odd-degree
polynomial potentials of the form

V (x) = (ix)2N+1 + β1x2N + β2x2N−1 + · · · + β2N x, (2)

where N is a positive integer and βk ∈ C for 16 k 6 2N . The
system has real eigenvalues when V (x) is PT symmetric and
eigen spectrum is complex otherwise. The AEE expansion
is valid for both real and complex asymptotic eigenenergies.
The paper is organized as follows. In section 2 we extend
the AEE method for odd-degree polynomial potentials with
two terms and evaluate the accuracy of both real and complex
eigenenergies. The main result of this paper, an almost explicit
analytic formula for asymptotic eigenenergy expansion for the
potential (2), is derived in section 3. Two examples are given
in section 3 to demonstrate the accuracy of the AEE method
as well as the derived formula. In section 4, a summary and
concluding remarks are presented.

2. Analytic semiclassical energy expansions for
V (x) = (ix)2N+1 + bx

In this section we investigate the two term odd-degree
polynomial potentials for the form

V (x) = (ix)2N+1 + bx, (3)

where b ∈ C. Consider the one dimensional Schrödinger
equation

− h̄2 ∂2U (x, E)

∂x2
+ V (x) U (x, E) = EU (x, E) . (4)

Substituting P (x, E) =
h̄
i

∂U (x,E)/∂x
U (x,E)

in the above equation, we
get

h̄

i

∂ P (x, E)

∂x
+ P2 (x, E) = E − V (x) . (5)

Note that P (x, E) above corresponds to the derivative of
the action in the usual WKB ansatz. The quantity J (E) is now
defined as

J (E) =
1

2π

∫
γ

P (x, E) dx (6)

with the quantization condition J (E) = nh̄. The contour γ

encloses two turning points of Pc =
√

E − V (x).
For the potential in equation (3), equation (5) becomes

h̄

i

∂ P (x, E)

∂x
+ P2 (x, E) = E − (ix)2N+1

− bx . (7)

Let ε = E−
1

4N+2 and y = iε2x . Then (7) becomes, after
simplification,

h̄ε4N+4 ∂ P (y, ε)

∂y
+ ε4N+2 P2 (y, ε) = 1 − y2N+1

−
by

i
ε4N .

(8)
Now we expand P (y, ε) as a power series in ε,

P (y, ε) = εs
∞∑

n=0

an (y) εn, (9)

where s and an (y) are determined below. Substituting (9) in
(8) and equating coefficients of ε0, we obtain s = − (2N + 1)

and a0 =
√

1 − y2N+1 and (8) becomes

h̄
∞∑

n=0

dan

dy
ε2N+n+3 +

∞∑
i=0

∞∑
j=0

ai a jε
i+ j

= 1 − y2N+1
−

by

i
ε4N ,

(10)
and rearranging terms, we obtain(

h̄
∞∑

n=1

dan−2N−3

dy
+

∞∑
n=1

n−1∑
i=1

ai an−i + 2a0

∞∑
n=0

an

)

× εn
= 1 − y2N+1

−
by

i
ε4N . (11)

Then coefficients an are given by

an =
−1

2a0

[
n−1∑
i=1

ai an−i + h̄
dan−2N−3

dy
+

by

i
δ4N ,n

]
. (12)

In the above formula an = 0 ∀n < 0. The first four non-zero
an for given N are

a0 =

√
1 − y2N+1,

a2N+3 = −
h̄

2a0

da0

dy
,

2
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a4N = −
by

2ia0
,

a4N+6 = −
1

2a0

[
a2

2N+3 + h̄
da2N+3

dy

]
.

Now J can be written as

J (E) =

∞∑
k=0

bk E
−(k−2N−3)

4N+2 , (13)

where

bk =
1

2iπ

∫
γ

ak (y) dy. (14)

Now, in order to evaluate the integral (14), the contour γ

is chosen such that it encloses the two branch points of√
1 − y2N+1 on the complex plane. There are 2N + 1 branch

points on the complex plane. The branch points which should
be enclosed by the contour γ are (−1)N eiNπ/(2N+1) and
(−1)N+1ei(N+1)π/(2N+1). Note that these two branch points lie
inside the Stokes wedges which are necessary for defining
the above non-Hermitian problem correctly as an eigenvalue
problem [7].

The integration is then carried out for each term and
obtained the expression for J (E) as

J (E) = b0 E
2N+3
4N+2 + b2N+3 + b4N E−

2N−3
4N+2 + b4N+6 E−

2N+3
4N+2 , (15)

where

b0 =
2 cos[ π

4N+2 ]0[ 1
2N+1 ]

√
π (2N + 3) 0[ 1

2 + 1
2N+1 ]

, (16)

b2N+3 = −
h̄

2
, (17)

b4N =
2bi sin[ π

2N+1 ]0[ 2
2N+1 ]

√
π (4N + 2) 0[ 1

2 + 2
2N+1 ]

, (18)

b4N+6 =
2Nh̄2 cos[

(
4N+1
4N+2

)
π ]0[1 −

1
2N+1 ]

12
√

π0[ 1
2 −

1
2N+1 ]

. (19)

By applying the quantization condition J (E) = nh̄, n =

0, 1, 2, . . . the eigenenergies for V (x) = (ix)2N+1 + bx can
be obtained. Next we demonstrate the accuracy of the AEE
method for odd-degree polynomial systems with the help
of two Hamiltonians. The first one is the PT symmetric
Hamiltonian H = p2 + ix5 + ix , which possesses real eigen
spectrum. Table 1 shows the first 12 eigenvalues of this
system obtain with AEE in (15) as well as the numerical
eigenenergies obtained with the matrix diagonalization
method. It is evident from table 1 that the AEE method
for odd-degree polynomial potentials produces accurate real
eigenenergies even with four terms. As expected, this method
predicts higher eigenenergies more accurately compared to
the lower ones.

The second illustration is the non-Hermitian non-PT
symmetric system given by H = p2 + ix5 + (1 + i)x .

Table 1. Comparison between calculated energy eigenvalues by
AEE and EExact, which is obtained by the matrix diagonalization
method for the Hamiltonian H = p2 + ix5 + ix (where h̄ = 1).

n EAEE EExact

0 1.415 221 1.624 377
1 4.868 558 4.820 135
2 9.517 600 9.522 461
3 15.039 04 15.038 06
4 21.276 66 21.276 58
5 28.133 84 28.133 74
6 35.543 27 35.543 22
7 43.454 71 43.454 67
8 51.828 80 51.828 77
9 60.633 69 60.633 67

10 69.842 93 69.842 92
11 79.434 11 79.434 11

Table 2. Comparison between calculated energy eigenvalues by
AEE and EExact, which is obtained by the matrix diagonalization
method for the Hamiltonian H = p2 + ix5 + (1 + i)x (where h̄ = 1).

n EAEE EExact

0 1.385 058–0.392 35i 1.529 177–0.552 65i
1 4.857 391–0.499 47i 4.826 487–0.455 24i
2 9.511 001–0.570 92i 9.514 849–0.573 41i
3 15.034 33–0.625 34i 15.033 80–0.624 25i
4 21.272 98–0.670 02i 21.273 01–0.669 76i
5 28.130 80–0.708 31i 28.130 78–0.708 13i
6 35.540 68–0.742 04i 35.540 67–0.741 93i
7 43.452 44–0.772 33i 43.452 44–0.772 26i
8 51.826 78–0.799 92i 51.826 77–0.799 87i
9 60.631 86–0.825 32i 60.631 86–0.825 28i

10 69.841 26–0.848 90i 69.841 26–0.848 87i
11 79.432 58–0.870 96i 79.432 58–0.870 93i

This system has complex eigen spectrum. Table 2 shows
the first 12 eigenvalues of this system obtain with AEE in
(15) as well as the numerical eigenenergies obtained with
the matrix diagonalization method. It is evident from table 2
that the AEE method for odd-degree polynomial potentials
can produce accurate complex eigenenergies even with four
terms. Similar to the previous example, this method predicts
higher eigenenergies more accurately compared to the lower
ones.

The analytic expression of J (E) in (15) can also be
utilized to investigate the asymptotic behavior of eigenvalues
of potential in (3) analytically.

3. AEE of general odd-degree polynomial potential
V (x) = (ix)2N+1 + β1x2N + β2x2N−1 + · · · + β2N x.

In this section we use the same method used in section 2
to obtain the AEE for the general odd-degree polynomial
potential in equation (2). Equation (7) now becomes

h̄

i

∂ P (x, E)

∂x
+ P2 (x, E) = E − (ix)2N+1

−

2N∑
k=1

βk x2N−k+1.

(20)

3
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Let ε = E−
1

4N+2 and y = iε2x . Then (20) becomes, after
simplification,

h̄ε4N+4 ∂ P (y, ε)

∂y
+ ε4N+2 P2 (y, ε)

= 1 − y2N+1
−

2N∑
k=1

βk

( y

i

)2N−k+1
ε2k . (21)

Now P (y, ε) is expanded as a power series in ε,

P (y, ε) = εs
∞∑

n=0

an (y) εn, (22)

where s and an (y) are determined below. Substituting (22) in
(21) and equating coefficients of ε0, we obtain s = − (2N + 1)

and a0 =
√

1 − y2N+1 and (21) becomes

h̄
∞∑

n=0

dan

dy
ε2N+n+3 +

∞∑
i=0

∞∑
j=0

ai a jε
i+ j

= 1 − y2N+1
−

2N∑
k=1

βk

( y

i

)2N−k+1
ε2k (23)

and rearranging terms, we obtain(
h̄

∞∑
n=1

dan−2N−3

dy
+

∞∑
n=1

n−1∑
i=1

ai an−i + 2a0

∞∑
n=0

an

)

εn
= 1 − y2N+1

−

2N∑
k=1

βk

( y

i

)2N−k+1
ε2k . (24)

Then coefficients an are given by

an =
−1

2a0

[
n−1∑
i=1

ai an−i +h̄
dan−2N−3

dy
+

2N∑
k=1

βk

( y

i

)2N−k+1
δ2k,n

]
.

(25)
In the above formula an = 0 ∀n < 0. Now J can be

written as

J (E) =

∞∑
m=0

bm E
−(m−2N−3)

4N+2 , (26)

where

bm =
1

2iπ

∫
γ

am (y) dy. (27)

The contour γ encloses the two branch points of
√

1 − y2N+1

on the complex plane. The turning points and the contour
used are the same as in the previous section. Note that
these two branch points lie inside the Stokes wedges which
are necessary for defining the above non-Hermitian problem
correctly as an eigenvalue problem [7].

We studied explicit expressions for the polynomial
potentials of order 3, 5, 7 and 9 and develop a general form for
am (y). Unlike in the even-degree polynomial potential case,
for odd-degrees, there are two forms for the coefficient am (y)

in (27) depending if m is even or odd. Utilizing the procedure
described in [18], we have obtain the general expression for
am (y):

For even m

a2m (y) = −y
2N−2m+1

2

2m−1∑
j=0

A2m− j−1, j

[
y(2N+1)/2(

1 − y2N+1
)1/2

] j

,

(28)
where

As,l =
1

2

l−1∑
t=0

s∑
i=0

As−i,l−t−1 Ai,t −
1

4
h̄i (s − 2N (l + 1) − 2)

× As−2N−2,l−1 +
1

4
h̄i (2N + 1) (l − 3) As−2N ,l−3 (29)

and Aα+β = 0 if α < 0, β < 0 or α + β is even. A2N ,2 =
(2N+1)ih̄

4 and A4N−2k,1 =
β2N−k+1

2 for 06 k 6 2N .

For odd m

a2m+1 (y) =

2m−1∑
j=0

A2m− j−1, j

[
yN(

1 − y2N+1
)1/2

] j

, m > 4,

(30)
where

As,l = −
1

4
h̄i (s + l (1 − 2N ) − 2N − 1)

× As−2N−1,l−1 +
1

2
h̄iN (l − 3) As−2N+1,l−3 (31)

and Aα+β = 0 if α < 0, β < 0 or α + β is even. A2N−1,2 =
iNh̄

2

and A4N−2k−2,1 =
β2N−k

2 for 06 k 6 2N − 1.

Next we obtain the AEE coefficients bn as

b2n = −
1

2π i

2n−1∑
j=0

A2n− j−1, j

∫
c

y
(2N+1) j

2 + (2N+1)

2 −n(
1 − y2N+1

) j/2 dy, (32)

b2n+1 = 0.

The contour integral in (27) can be evaluated in terms of
0 functions as∫

c

y
(2N+1) j

2 + (2N+1)

2 −n(
1 − y2N+1

) j/2 dy =

4i
2n+ j+1

2 cos[
(

2Nn+1
4N+2

)
π ]0[1 −

j
2 ]0[ 3

2 −
n−1

2N+1 + j
2 ](

1 + (2N+1) j
2 + (2N+1)

2 − n
)

0[ 3
2 −

n−1
2N+1 ]

. (33)

for odd j and when
(

(2N+1) j
2 + (2N+1)

2 − n
)

is even. Otherwise,

the integral vanishes. Then we have the expression for J (E)

as

J (E) = −
h̄

2
+

∞∑
n=0

dn E
−(2n−2N−3)

4N+2 , (34)

where

dn = −
2 cos[

(
2Nn+1
4N+2

)
π ]

π0[ 3
2 −

n−1
2N+1 ]

2n−1∑
j=0

A2(n− j−1),2 j+1

×
in+ j+10[ 1

2 − j]0[2 + j −
n−1

2N+1 ]

(1 + (2N + 1) ( j + 1) − n)
, (35)

4
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Table 3. Comparison between calculated energy eigenvalues by
AEE and EExact, which are obtained by numerical integration of the
Schrödinger equation for the Hamiltonian
H = p2 + (ix)7 + x6 + ix5 + x2. (where h̄ = 1, β1 = 1, β2 = i, β5 = 1
and β3 = β4 = β6 = 0).

n EAEE EExact

0 1.738 373 1 1.493 334 2
1 5.174 861 5 5.180 123 0
2 10.480 775 10.480 141
3 17.145 262 17.145 492
4 24.970 416 24.970 591
5 33.833 532 33.833 555
6 43.647 033 43.647 038
7 54.343 902 54.343 905
8 65.870 552 65.870 553
9 78.182 780 78.182 781
10 91.243 272 91.243 273
11 105.019 95 105.019 95

Table 4. Comparison between calculated energy eigenvalues by
AEE and EExact, which is obtained by numerical integration of the
Schrödinger equation for the Hamiltonian H = p2 + (ix)9 + x2 + ix
(where h̄ = 1, β8 = i, β7 = 1 and βk = 0 for all k < 7).

n EAEE EExact

0 1.845 369 7 1.722 988 2
1 5.730 160 1 5.786 054 6
2 11.834 124 11.847 978
3 19.733 814 19.732 860
4 29.209 838 29.209 369
5 40.121 601 40.121 580
6 52.367 271 52.367 288
7 65.868 043 65.868 047
8 80.560 282 80.560 283
9 96.391 051 96.391 052
10 113.315 31 113.315 31

d0 =
2 cos[ π

4N+2 ]0[ 1
2N+1 ]

√
π (2N + 3) 0[ 1

2 + 1
2N+1 ]

(36)

and A2(n− j−1),2 j+1 is given by (29) and (31).
Note that parameters of the potential are now contained

in coefficients A2(n− j−1),2 j+1 as multinomials in β1,β2, . . . ,
β2N−1.

Now, with the following two examples, the accuracy of
the formulas (34)–(36) is tested by calculating eigenvalues
of two Hamiltonians using formulas (34)–(36) with the
quantization condition J (E) = nh̄, n = 0, 1, 2, . . . and
comparing them with the exact eigenvalues obtained by
numerical integration of the Schrödinger equation.

The first example is the Hamiltonian

H = p2 + (ix)7 + x6 + ix5 + x2 (37)

for this potential N = 3, β1 = 1, β2 = i, β5 = 1 and β3 =

β4 = β6 = 0. The first 25 non-zero terms of the AEE for this
Hamiltonian were obtained from (34)–(36). Table 3 shows
the AEE eigenvalues and the exact eigenvalues obtained by
numerical integration of the Schrödinger equation for the
Hamiltonian (37).

The second example is

H =
p2

2
+ (ix)9 + x2 + ix, (38)

where N = 4, β8 = i, β7 = 1 and βk = 0 for all k < 7. The
AEE eigenvalues and the exact eigenvalues obtained by
numerical integration of the Schrödinger equation for the
Hamiltonian (38) are given in table 4.

It is evident from the above two examples that
the formulas (34)–(36) derived for odd-degree general
polynomial potentials produce very accurate eigenenergies for
higher eigenstates. This is due to the fact that the large number
of terms in the series could be now included in the calculation
with the help of algebraic formulas (34)–(36).

4. Summary and concluding remarks

We derived a simple formula for the semiclassical series for
the general polynomial potential V (x) = (ix)2N+1 + β1x2N +
β2x2N−1 + · · · + β2N x using the recurrence relations obtained
by the AEE method. Almost explicit formulae for the
asymptotic eigenenergy expansion are presented for the above
potentials for any N . The formulae can be used to find
semiclassical analytic expressions for eigenenergies up to any
order very efficiently. The formulae are verified with two
Hamiltonians. In a previous paper, similar expansions have
been obtained for general even-degree polynomial potentials
[18]. However, the Hamiltonian for odd-degree polynomial
potential considered in this paper is non-Hermitian, and
hence the two branch points used for integration must lie
within Stokes wedges which are needed for defining the
non-Hermitian problems correctly as an eigenvalue problem.
It is important to identify that for such systems, the direct
application of the WKB method to obtain higher-order terms
in the expansion is found to be very complicated (if not
impossible) due to the fact that integrals in the expansion
coefficients cannot be evaluated analytically. Although the
WKB expansion and AEE produce the same semiclassical
series for the potential V (x) = (ix)2N+1, they are completely
different when the potential contains two or more terms.
Therefore, the above explicit formula can be employed for
obtaining semiclassical eigenspectra in the place of the
higher-order WKB method. With the aid of four examples we
have shown the accuracy of the AEE method for both real and
complex eigen spectra.

The AEE expansions are very useful in analyzing
systems analytically. They can be utilized to find out
how the level spacings, density of states and other
quantities vary with energy and parameters of the potential.
Recently the AEE method was found to very valuable
in finding isospectral Hermitian and non-Hermitian pairs
of Hamiltonians [20]. Since the odd-degree polynomial
potentials are non-Hermitian and PT symmetric for certain
combinations of parameters β1, β2, . . . , β2N the formulae
derived in this paper will be valuable for finding equivalent
Hermitian Hamiltonians for non-Hermitian Hamiltonians.
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