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Abstract
Dynamical tunneling occurs when a particle tunnels between two distinct
classically trapped periodic regions of classical phase space that are not
separated by a potential barrier. Although the dynamical tunneling has been
observed in many multi-dimensional Hamiltonian systems, it has not been
observed in 1D systems described by a single potential. In this paper, we
show that classical trajectories of real potentials such as V1(x) = x4 exhibit
dynamical tunneling-like behavior when energy or time is complex. It was
found that the doubly periodic nature of the Jacobian elliptic functions is
responsible for this dynamical tunneling-like behavior. The time spent in one
region by the tunneling trajectory before crossing over to the other is found

to be proportional to
∣∣E3/4

0
�E

∣∣, where total energy E = E0 + i�E with E0 < 0.
Furthermore, we demonstrate that classical trajectories of the non-Hermitian
system V2(x) = x4 + (1 + i)x show evidence of dynamical tunneling even for
real energies. The role of complex time in dynamical tunneling is discussed.

This article is part of a special issue of Journal of Physics A: Mathematical and
Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.

PACS numbers: 11.30.Er, 12.38.Bx, 2.30.Mv

(Some figures may appear in colour only in the online journal)

1. Introduction

Recently, there has been great interest in classical behavior of 1D Hamiltonian systems in
complex phase space and quantum effects in classical systems having complex energies [1–
10]. In a recent paper [11], Bender et al have shown that some well-known quantum effects
can be reproduced qualitatively by means of classical mechanical equations. It was shown
that real systems with potential barriers such as the double well v(x) = x4 − 5x2 can have
trajectories that exhibit tunneling-like behavior when energy is taken as a complex quantity.
Furthermore, numerically they have found that tunneling-like trajectories of this system first
spiral around one pair of turning points and then cross the imaginary axis and spiral around the
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other pair of turning points. Then, they cross the imaginary axis again and repeat this behavior
endlessly.

The quantum tunneling in the above-described double-well system is called barrier
tunneling, as tunneling in this system takes place between two regions of a phase which
are separated by a barrier in the middle. Many phenomena related to barrier tunneling are
widely observed and applied in many areas of physics and chemistry.

It has been found that quantum tunneling can also be observed between two different
classically trapped regions of the phase space of polyatomic systems which do not contain
potential barriers [12]. When trapping is not due to a potential barrier, the tunneling
is dynamical in nature. The dynamical tunneling connects energetically accessible but
dynamically separated classical paths in multidimensional systems. This type of tunneling
is found to be more subtle than barrier tunneling and the potential function itself will not
reveal the clues of classical trapping or the possibility of tunneling.

Although barrier tunneling is not uncommon in one-dimensional systems, and a
semiclassical theory of barrier tunneling has been well established [13, 14], dynamical
tunneling has not been observed in the real classical phase space of one-dimensional systems
described by a single potential. On the other hand, many 1D systems obtained by the reduction
of higher dimensional Hamiltonian systems which cannot be globally represented in the form
of a particle moving in a potential do exhibit 1D tunneling without a potential barrier.

In this paper, we show that classical trajectories of real potentials such as V1(x) = x4

exhibit dynamical tunneling-like behavior when energy or time is complex. In section 2,
classical trajectories of V1(x) are investigated. We calculate the time spent in one region by the
tunneling trajectory before crossing over to the other. We demonstrate that classical trajectories
of the non-Hermitian system V2(x) = x4 + (1+ i)x show evidence of dynamical tunneling even
for real energies in section 3. The role of complex time in dynamical tunneling is discussed in
section 4.

2. Classical trajectories of V1(x) = x4

The classical equation of motion for the potential V1(x) = x4 is

dx

dt
= p =

√
E − x4, (1)

where p is the classical momentum and E is the total energy. By integrating (1), we have∫
dx√

E − x4
= t + c, (2)

where c is the constant of integration which depends on initial conditions. The left-hand side
of the above equation is an elliptic function of the first kind �:

�

[
sin−1

(
x(t)

E1/4

)
;−1

]
= E1/4t + α, (3)

with α = E1/4c. We invert the above equation in terms of the Jacobian elliptic function sn [15]
as

x(t) = E1/4sn(E1/4t + α;−1). (4)

Note that modulus κ2 = −1 for the above problem. sn is doubly periodic with periods 4K
and 2iK′, where K and K′ are complete elliptic functions defined as

K =
∫ π/2

0
(1 − κ2 sin2(φ))−1/2 dφ =

∫ π/2

0
(1 + sin2(φ))−1/2 dφ, (5)
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K′ 1=
∫

0
(1 − t2)−1/2(1 − κ ′2t2)−1/2 dt, (6)

and

κ ′2 = 1 − κ2 = 2. (7)

Then, K and K′ are obtained as

K =
√

π�(1/4)

4�(3/4)
(8)

K′ =
√

π�(1/4)

4�(3/4)
(1 − i). (9)

In order to understand the behavior of classical trajectories, we need to relate the
periodicity of the Jacobian elliptic function sn(u) to the periodic motion of the trajectory
and poles of sn(u) to unbounded motion as follows.

Since Jacobian elliptic function sn has two poles [15] at iK′ and 2K + iK′, the trajectory
becomes unbounded and the particle escapes to ∞ when one of the conditions E1/4t +α = iK′

and E1/4t +α = 2K + iK′ is satisfied for real t. Therefore, time taken for the particle to escape
to ∞ is given by

T∞ = [K(1 + i) − α] E−1/4 =
[√

π�(1/4)

4�(3/4)
(1 + i) − α

]
E−1/4, (10)

T ′
∞ = [K(3 + i) − α] E−1/4 =

[√
π�(1/4)

4�(3/4)
(3 + i) − α

]
E−1/4. (11)

Since sn is doubly periodic with periods 4K and 2iK′, periods of the trajectory can be
calculated for real E. When E > 0, the period is given by

T = 4KE−1/4 =
[√

π�(1/4)

�(3/4)

]
E−1/4, (12)

and for E < 0

T = 4K√
2

|E|−1/4 =
[√

π�(1/4)√
2�(3/4)

]
|E|−1/4 . (13)

Next we examine the behavior of classical trajectories using above equations. Behavior
of the trajectories will depend on the initial conditions. Given an initial condition, first we
determine α . If the T∞ (or T ′

∞) is real for this α and period T > T∞ (or T > T ′
∞), then

the trajectory will escape to infinity in a finite time T∞ (or T ′
∞). Otherwise, the trajectory is

periodic with period T . The relationship between x(0) and α is

α = �

[
sin−1

(
x(0)

E1/4

)
;−1

]
, (14)

or

x(0) = E1/4sn(α;−1). (15)

First, we consider the case when E > 0. Let α = αr + iαi. T∞ and T ′
∞ in (10) and (11)

are real only if αi = K. That is, α = αr + iK. Now we rewrite sn(αr + iK;−1) in terms of
Jacobian elliptic functions nd(αr;; κ ′) :

sn(αr + iK;−1) = i nd(αr; 2). (16)

3
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Figure 1. Two classical trajectories of the potentialV (x) = x4 in the complex x plane corresponding
to the energy E = −1. Both trajectories are periodic and trapped in a respective pair of turning
points.

Note that here we have used the properties sn(αr + iK;−1) = i sn(iαr + K;−1) and
sn(iαr + K;−1) = cd(iαr). Since nd(αr; 2) is real for real αr, sn(αr + iK;−1) must be pure
imaginary. Furthermore, |nd(αr; 2)| > 1 for all real αr and hence |sn(αr + iK;−1)| > 1.

Consequently, in order for T∞ be real, x(0) has to be pure imaginary and |x(0)| > E1/4. This
implies that when E > 0, all the trajectories starting from the imaginary x axis above E1/4 and
below −E1/4 will escape to infinity in time T∞ and all the other trajectories are periodic.

Next we assume E < 0. T∞ now becomes

T∞ = [2K − α(1 − i)]|E|−1/4. (17)

Let α = αr + iαi :

T∞ = [2K − (αr + αi) + i(αi − αr)]|E|−1/4. (18)

For E < 0,

x(0) = |E|1/4(1 + i)sn(α;−1)/
√

2. (19)

Therefore, T∞ is real when αr = αi. On the other hand, sn(a(1 + i);−1) (a is real) can
be written as b(1 + i)sn(a;−1) (for some b ∈ R). As a result, we have

x(0) =
√

2i|E|1/4sn(a;−1). (20)

Therefore, for E < 0 any trajectory starting from the imaginary x axis will escape to
infinity in time T∞ and all the other trajectories are periodic. Two typical periodic trajectories
when E < 0 are shown in figure 1. Each one of the two trajectories is trapped in a respective
pair of turning points as shown.

Next we introduce a small complex component to the total energy E0. First consider the
case E0 < 0. Then, total energy becomes E = −E0 + i�E for some real �E :

x(t) = (−E0 + i�E )1/4sn((−E0 + i�E )1/4t + α;−1). (21)

4
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Due to the complex component i�E, trajectories which are periodic for real energies have
now become non-periodic. Assuming �E is small compared to E0, we expand (−E0+i�E )1/4

as

(−E0 + i�E )1/4 = E1/4
0√
2

(1 + i) + �E

4
√

2E3/4
0

(1 − i). (22)

Let �ε = �E
4
√

2E3/4
0

(1 − i), and x(t) becomes

x(t) = A sn

(
E1/4

0√
2

(1 + i)t + �εt + α;−1

)
, (23)

where A = (E1/4
0√
2
(1+ i)+�ε

)
. First consider a trajectory starting from the origin. Then, α = 0.

The case when α �= 0 will be considered later. Next we monitor x(t) as time t increases from
zero. We approximate x(t) as

x(t) = A sn

(
E1/4

0√
2

(1 + i)t;−1

)
+ A�εtcn

(
E1/4

0√
2

(1 + i)t;−1

)
dn

(
E1/4

0√
2

(1 + i)t;−1

)

(24)

Here, we have used the relation d(sn(u))

du = cn(u) dn(u), where cn(u) and dn(u) are
Jacobian elliptic functions.

Since sn(u+2miK′) = sn(u), cn(u+2miK′) = (−1)mcn(u) and dn(u) = (−1)m dn(u+
2miK′) for integer m, when t = 2

√
2mK

E1/4
0

, sn
(E1/4

0√
2
(1 + i)t;−1

)
becomes zero.

Since 2miK′ = 2mK(1 + i), sn(0) = 0, cn(0) = 1 and dn(0) = 1, then x(t) becomes

x(t) ≈ A�εt �= x(0). (25)

Therefore, the trajectory is not periodic but it spirals. As t increases further, the quantity
E1/4

0√
2
(1 + i)t + �εt will become large enough to satisfy the condition

E1/4
0√
2

(1 + i)t + �εt = 2nK + 2miK′ = 2nK + 2mK(1 + i), (26)

where n and m are non-negative integers. Note that condition (26) cannot be satisfied by any
real t when m = 0 as |�ε| is small. sn(u + 2nK + 2miK′) = −sn(u) and hence for any τ

which satisfies (26)

x(τ ) ≈ (−1)nx(0). (27)

Since n represents the number of crossings by imposing the condition that τ must be real
and n = 1, we find m, which is the approximate number of times the trajectory spirals before
it crosses from one pair of turning points to the other.

Figure 2 shows a typical dynamical tunneling trajectory for the system. Equation (26) can
be written in terms of �E as

Re(τ ) = 1√
2E1/4

0

{
2K + 4mK + �E

2E0
K

}
, (28)

and

Im(τ ) = 1√
2E1/4

0

{
�E

2E0
(2m + 1)K − 2K

}
. (29)

By imposing the condition that Im(τ ) = 0, we have

m = 2E0

�E
− 1

2
, (30)
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Figure 2. A typical tunneling-like trajectory of V (x) = x4 corresponding to E = −0.8+0.1i. This
trajectory starts from the origin. First it spirals around the right pair of turning points for a while,
and then it moves across the imaginary axis and spirals around the left pair of turning points. After
spending some time, it goes across the imaginary axis again to the right-hand side and spirals again
around the right pair turning points, repeating the same process endlessly.

and hence the time spent by the trajectory before crossing to the other side is given by

Tc ≈
√

2π�(1/4)

�(3/4)

[
E3/4

0

�E

]
. (31)

We have derived the above results for α = 0. When α �= 0 equations (25) and (26) become

x(t) ≈ A�εcn(α) dn(α)t �= x(0), (32)

E1/4
0√
2

(1 + i)t + �εt = 2nK + 2mK(1 + i) − α. (33)

Using equations (28)–(33), we make the following observations.
(a) Any trajectory starting from the origin will spiral around one pair of turning points

for
√

2π�(1/4)

�(3/4)

[E3/4
0

�E

]
amount of time before crossing over to the other pair of turning points.

Since the real part of the energy is negative, when the real part of the total energy decreases
(i.e. increase of E0) the trajectory will cross over less frequently. Similarly, the smaller the
complex energy �E, the longer the time the trajectory will spiral around one pair of turning

points. This is illustrated in figure 3. Furthermore, when �E → 0,
√

2π�(1/4)

�(3/4)

[E3/4
0

�E

] → ∞, and
the particle will be trapped around one pair of turning points forever and no tunneling will
take place.

(b) If the trajectory does not start from the origin, then the amount of time it will spend
around the first pair of turning points will depend on the starting location of the trajectory.
However, after the first crossing, it will spend the same amount of time around each pair of

turning points as in (a) (i.e. Tc =
√

2π�(1/4)

�(3/4)

[E3/4
0

�E

]
).

Using techniques similar to those described before, it can be shown that if the real part of
the energy is positive, then no tunneling-like behavior can be observed.
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Figure 3. Behavior of tunneling-like trajectories as energies E0 and �E change. The trajectory in
(a) represents E = −1.5 + 0.5i. The trajectory in (b), which corresponds to higher real energy
E = −1.0 + 0.5i, spends less time spiraling around the right pair turning points before crossing
over to the other side. On the other hand, when the imaginary part of the energy �E was decreased
while keeping the real part of the energy fixed at −1(E = −1.0 + 0.1i), the time spent by the
trajectory becomes large as shown in (c).

3. Classical trajectories of V2(x) = x4 + (1 + i)x

The classical equation of motion for the potential V2(x) = x4 + (1 + i)x is

dx

dt
= p =

√
E − x4 − (1 + i)x. (34)

In order to investigate tunneling-like behavior in this system, we solve (34) numerically.
Although it can be solved analytically in terms of Jacobian elliptic functions as in the case of
V1(x), we used the numerically generated trajectories to understand the behavior qualitatively.
For real positive energy no tunneling-like behavior was observed. Figure 4 shows trajectories
for three different real negative energies. Dynamical tunneling-like trajectories can be observed
in this non-Hermitian system even for negative real energies without an imaginary part as
shown in figure 4. As in the case of x4 potential, for lower energies, trajectories get trapped
in one pair of turning points for a longer time period before tunneling compared to the higher
energies.
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Figure 4. Tunneling-like trajectories of V (x) = x4 +(1+ i)x for real negative energies. Energies of
trajectories corresponding to (a), (b) and (c) are E = −0.7, E = −1.0 and E = −3.0, respectively.
These trajectories clearly demonstrate that as energy decreases, the amount of time spent by each
trajectory around one pair of turning points will increase similar to the case of barrier tunneling.

4. Dynamical tunneling and complex time

When energy is complex, tunneling-like behavior in classical trajectories for barrier potentials
such as V (x) = x4 − bx2 has been previously observed [11, 16]. In this section, we examine
dynamical tunneling-like behavior of classical trajectories for the x4 potential and x4 + bx
(where b is real) when time is complex. For x4 potential, classical trajectories are described by

x(t) = E1/4
0 sn

(
E1/4

0√
2

(1 + i)t + α;−1

)
, (35)

when energy is real and negative. Here, we rewrite equation (23) without the �ε term. Next
we replace t by t0 e−i�θ , where �θ is small. It is easy to see that now equation (35) becomes
similar to equation (23):

x(t0 ei�θ ) = E1/4
0 sn

(
E1/4

0√
2

(1 + i)t0 + �εt0 + α;−1

)
, (36)

but �ε is now given by

�ε = E1/4
0√
2

(1 − i)�θ. (37)

8
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Figure 5. Classical tunneling-like trajectories of the real Hermitian potential V (x) = x4 + bx
for real b and complex time t = t0 ei�θ . Real energies and complex phase angles �θ corresponding
to (a), (b) and (c) are (E = −1.0 and �θ = 0.05), (E = −4.0 and �θ = 0.05) and (E = −4.0
and �θ = 0.1), respectively. It is evident from these trajectories that the amount of time spent by
trajectories around one pair of turning points is less sensitive to change in energy as compared to
the changes in the complex phase angle.

Here we have used the approximation

t = t0 e−i�θ ≈ t0(1 − i�θ). (38)

Now m and Tc as in equations (30) and (31) become

m = 1

2�θ
− 1

2
, (39)

Tc ≈
√

2π�(1/4)

4�(3/4)E1/4
0

[
1

�θ

]
. (40)

It is evident from equation (36) that when time is complex and energy is real, certain
trajectories show dynamical tunneling-like behavior. However, m is now independent of the
energy E0 as shown in (39). In other words, for complex time, the number of times the trajectory
spirals before it crosses from one pair of turning points to the other is independent of energy
and depends only on the phase angle of the time t.

Next consider the potential x4 + bx (where b is real). The classical equation of motion for
this system is solved by numerical integration. Three tunneling-like trajectories are shown in
figures 5(a)–(c). In all three cases, energy is real and negative, and the phase angle introduced

9



J. Phys. A: Math. Theor. 45 (2012) 444025 A Nanayakkara

for time is small. These figures show that the quantities m and Tc change very little as energy
changes by a large amount. On the other hand, when �θ changes, m and Tc change considerably.

5. Summary and concluding remarks

In this paper, we have shown that quantum dynamical tunneling-like behavior, which takes
place in multidimensional real Hermitian quantum systems, can occur in 1D systems when
energy or time is complex. For the barrierless potential V (x) = x4, we obtained an analytic
expression for the motion of the particle. The number of times a classical trajectory spirals
around before it crosses from one pair of turning points to the other is

[ 2E0
�E − 1

2

]
, and the

amount of time spent by the trajectory before crossing over to the other side is found to be√
2π�(1/4)

�(3/4)

[E3/4
0

�E

]
, where −E0 is the real part of the total energy and �E is the imaginary part of

the total energy. The dynamical tunneling-like behavior in this system is a result of the doubly
periodic nature of the Jacobian elliptic functions.

The dynamical tunneling-like behavior was also observed in the non-Hermitian systems
such as V (x) = x4 + (1+ i)x even for real negative energies. As in the case of barrier tunneling,
for low energies, particle trajectories get trapped in one pair of turning points for a long time
before tunneling over to the other pair of turning points. It was found that real Hermitian
potentials such as V (x) = x4 + bx, where b ∈ R, can have classical trajectories which tunnel
between a pair of turning points for real energies when time contains a small imaginary part.
In a recent paper [11], Bender et al suggested a possibility of having both real and imaginary
parts for �E in the uncertainty relation �E�t � �/2. In this paper and [17], we see the
similarity between the behavior of classical trajectories when energy and time are complex.
Therefore, we believe that there is also a possibility of having both real and imaginary parts
for �t in the uncertainty relation above.
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