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A B S T R A C T

Soil organic carbon (SOC) is a key driver of ecosystem functioning and may also contribute to climate change
mitigation through the sequestration of carbon. Therefore, having an understanding of the key drivers of SOC
may inform management changes that will improve ecosystem function and climate change mitigation. The
selected study area is ranged from montane forests to tropical grasslands. Extensive soil sampling (0–0.15 m and
0.15–0.30 m) was undertaken across this region to inform our knowledge about key drivers of SOC at different
spatial scales. Initially spatial modelling was carried out using spatial linear mixed modelling approach using a
variety of environmental covariates. The model had a Lin’s concordance correlation coefficient value of 56–60%,
and indicated that SOC was predominately influenced by vegetation type and elevation, although the sub-surface
(0.15–0.30 m) SOC was influenced by slope and wetness index. Further, four spatial transects with 100 m
sampling interval were extracted from the digital maps representing the study area and empirical mode de-
composition (EMD) analysis was carried out to examine the scale specific variability of SOC stocks. The EMD, a
mathematical analysis, separates dominant frequencies within a spatial/temporal series representing variability
created by various underlying processes operating at different scales into a finite number of scale components or
intrinsic mode functions (IMFs). Decomposition of SOC spatial series for the considered transects resulted up to 7
IMFs. The scale components with lower IMF numbers separated higher frequency oscillations, whereas higher
IMF numbers separated lower frequency oscillations, which is the representative of smaller and larger scale
processes, respectively. Spectral analysis was performed to identify the scales of IMFs and the correlation
analysis was carried out with different environmental covariates to identify the dominant controlling factors at
different depths. Majority of the large-scale variations (e.g. 2037–8149 m for IMF’s 6 for depth interval 0–0.15 m
for transect 1–4) were attributed to the elevation and climatic factors controlling the forest type, while small-
scale (e.g. 69–118 m for IMF’s 1 for depth interval 0–0.15 m for transect 1–4) variations were more attributed
terrain derived attributes. Similar scales were identified for the depth 0.15–0.30 m. The scale-specific controlling
factors at different locations and their relative controlling factors may help in selecting environmental covariates
that enables us to model SOC more accurately rather than fitting one global model. The study provided firsthand
information on baseline SOC stock values from a tropical forest ecosystem with six different vegetation types.
The information revealed in this study will be useful in the conservation of tropical forests in the region and
towards providing vital firsthand information to establishing a national carbon accounting system for land sector
in the future.

https://doi.org/10.1016/j.foreco.2020.118285
Received 18 January 2020; Received in revised form 23 May 2020; Accepted 26 May 2020

⁎ Corresponding authors: Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Ellinbank, VIC 3821, Australia.
E-mail addresses: senawusl@gmail.com (S.B. Karunaratne), renuka.ra@nifs.ac.lk (R.R. Ratnayake).

1 Current Address: Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.

Forest Ecology and Management 474 (2020) 118285

0378-1127/ © 2020 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03781127
https://www.elsevier.com/locate/foreco
https://doi.org/10.1016/j.foreco.2020.118285
https://doi.org/10.1016/j.foreco.2020.118285
mailto:senawusl@gmail.com
mailto:renuka.ra@nifs.ac.lk
https://doi.org/10.1016/j.foreco.2020.118285
http://crossmark.crossref.org/dialog/?doi=10.1016/j.foreco.2020.118285&domain=pdf


1. Introduction

Soil organic carbon (SOC) is a key driver of ecosystem functioning
(Lal, 2015) and may also contribute to climate change mitigation
through the sequestration of carbon (McBratney et al., 2014; Ottoy
et al., 2017; Ratnayake et al., 2017). An understanding of the key dri-
vers of SOC is required to inform management changes that will en-
hance SOC stocks, and hence, ecosystem functions and for climate
change mitigation (Mishra et al., 2009; Xia et al., 2010; Stockmann
et al., 2013).

Quantification of baseline SOC stocks and identification of drivers in
spatial domains are challenging (Karunaratne et al., 2014b). In natural
systems, SOC stocks are influenced by a number of processes occurring
together at different intensities and different scales. The emerging
technologies of Digital Soil Mapping (DSM) together with Empirical
Mode Decomposition (EMD) analysis may provide an assessment of key
factors influencing SOC stocks at specific spatial scales (McBratney
et al., 2003; Biswas and Si, 2011; Biswas et al., 2013), with the EMD
analysis identifying unique processes as unique Intrinsic Mode Func-
tion’s (IMF) (Huang et al., 2015). Such methodologies may facilitate
efficient monitoring of management-induced changes to baseline stocks
(Zhu et al., 2017).

While there are many research outputs on global scale modelling
and mapping of SOC (e.g. Hengl et al., 2014, Viscarra Rossel et al.,
2014, Stockmann et al., 2015), only limited number of work is available
on detailed analysis of SOC and the factors that influence C in tropical
forest soil (Clark, 2004; Houghton, 2005). Research reported so far
recorded that the labile C pools are primarily influenced by inputs of
organic matter such as plants and animals, which contribute sig-
nificantly to nutrient cycling (Bolton et al., 1993; Hoyle et al., 2008;
Kölbl et al., 2014; Ratnayake et al., 2017). The alteration of native
vegetation causes a reduction in surface total organic carbon stocks
mainly through a reduction in the quantity of plant inputs into the soil,
increasing erosion rates, and an acceleration of the decomposition of
soil organic matter (Assis et al., 2010; Sousa et al., 2012; Albaladejo
et al., 2013). The different types of vegetation, which are in different
climate, soil and landscape conditions, have also found to affect SOC
content of forest soils (Fissore et al., 2008). The quantity and quality of
SOC decreased with increasing mean annual temperatures because,
temperature sensitivity values were strongly and positively related to
SOC decomposition rates (Fissore et al., 2008). The natural dis-
turbances such as wind, fire, drought, insects and diseases can cause
changes in soil moisture, temperature regimes and succession of forest
species with differences in quantity and quality of biomass returned to
the soil (Overby et al., 2003; Lal, 2005; Scheller et al., 2011). These
natural disturbances (e.g. fire) may also change the canopy cover, and
thereby affect soil erosion (Elliot, 2003), which also affects SOC content
in the surface layer.

The terrestrial C pool has been greatly reduced by human activities
such as conversion of forests into agricultural land and urban areas
(Jandl et al., 2007). This has been a major issue in the tropics in
comparison to other regions and thereby leads to take actions for the
conservation and management of these valuable tropical forest eco-
systems (Gupta and Sharma, 2011; Jeyanny et al., 2014; Tanner et al.,
2016).

The overall objective of this study was to characterize and quantify
the scale-specific spatial variability of SOC stocks in tropical ecosystems
and identify their dominant controls. The study was carried out in
Knuckles Forest Reserve (KFR) in Sri Lanka. The specific objectives
were to; (i) identify the key environmental drivers and then use them to
develop a spatial prediction function to model and map SOC stocks at
two different depth intervals across the landscapes using spatial linear
mixed models (LMM) (ii) quantify the scale-specific variability of SOC
stocks using EMD analysis, and (iii) identify the dominant controls of
SOC stock variability at different scales. Although KFR inherits majority
of the area still covered by primary forest types, but some parts of the

forested area are degraded due to anthropogenic activities. Therefore, it
is vital to identify how the belowground SOC stocks change with these
different vegetation types in KFR. We hypothesized that different ve-
getation types and different environmental covariates will drive SOC
stocks at different spatial scales. We deployed a novel approach to test
our hypothesis where initially high spatial resolution digital maps of
SOC stocks were derived using spatial LMM and subsequently EMD was
carried out on linear transect extracted from the digital maps to assess
detailed scale-specific variation.

2. Materials and methods

2.1. Study area

The detailed analysis of SOC was carried out in an area of highly
ecologically importance, KFR (Bambaradeniya and Ekanayake, 2003), a
tropical forest ecosystem located in the central massif of Sri Lanka. The
climatic conditions such as precipitation, wind, temperature are highly
heterogeneous in KFR. South-western and North-eastern monsoonal
rains directly influence the distribution of rainfall resulting a climatic
variation within the KFR as it is located almost perpendicular to the
direction of the respective wind currents (de Rosayro, 1958; Legg,
1995; Werner, 1982). This diverse climatic condition coupled with a
rugged terrain provides a good case study region with diverse types of
vegetation that can be considered as main drivers of SOC. The KFR
(7°17′ to 7°21′N and 80°49′ to 80°57′E) covers approximately 21,000 ha
of upland and highland peneplains of Sri Lanka (Fig. 1a). The major
vegetation types are montane forests (MF), sub montane forests (SM),
moist monsoon forests (MM), open and sparse forests (OS), grasslands
(GL) and forest plantations (FP) (Bambaradeniya and Ekanayake, 2003)
(Fig. 1b). The area has two main soil groups: Reddish Brown Earth
(Word reference base Major group: Luvisols) and Red - Yellow Podzolic
soils (Word reference base Major group: Acrisols) (Panabokke, 1996,
IUSS Working Group WRB, 2015).

2.2. Soil sampling and laboratory analysis

A stratified random sampling scheme was adapted to collect soil
samples using a soil core (5 cm diameter), with vegetation types as
strata. Consistent with guidelines prepared by Food and Agriculture
Organization (FAO) to share national datasets to compile Global Soil
Organic Carbon (GSOC) Map, the soil samples were collected from
0–0.30 m, including 0–0.15 m and 0.15–0.30 m depth intervals (FAO,
2017). The litter layer was removed from the soil surface prior to collect
the soil sample using the soil core. Following the approach of Dorji et al.
(2014) and Karunaratne et al. (2014a), small-scale variations across
each stratum were accounted by sampling an additional sample ap-
proximately distance of 1000 m. In total of 190 sites of soil sampling
locations were included in the current study, spatially distributed across
the study area (Table 1). At each sampling site, GPS locations were
recorded using a Garmin eTrex 30 handheld GPS receiver.

In laboratory, first soil samples were air dried and sieved using a
2 mm mesh sieve after removing all visible organic debris, stones and
plant roots. Prior to SOC analysis, the sieved soil samples were ground,
and 1 ± 0.001 g of ground soil sample was used for the analysis. The
SOC contents were determined using ‘wet’ oxidation by acidified di-
chromate of organic carbon (Baker, 1976). The bulk density of the soil
samples were determined using the approach outlined in Blake and
Hartge (1982). In summary, bulk density of soil was determined by the
core method. The samples for bulk density were drawn after removing
surface litter layer. The soil cores collected from each site were dried in
an oven at 105 °C for 2 days. Bulk density was calculated as the ratio of
dry mass of soil core and internal volume of the metallic core (Eq. (1)).

=−Soil Bulk Density (g cm )
Dry mass of soil (g)

Core volume (cm )
3

3 (1)
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Finally, SOC stocks were calculated as below (Benbi et al., 2015)
(Eq. (2));

= ×

× ×

− −SOC Stock (C Mg ha ) C content (%) Bulk Density (Mg m )

Depth (m) 100

1 3

(2)

2.3. Mapping spatial distribution of SOC stocks

2.3.1. Spatial modelling and mapping framework
The SOC stocks at each depth interval were first modelled and

mapped using spatial LMM. The general form of LMM applied was as
below (Karunaratne et al., 2014a,b; Lark et al., 2006; Ratnayake et al.,
2016) (Eq. (3));

= + +τ u εz X Z (3)

where z is a vector of observed n observations (SOC stock C Mg ha−1),
X is an n× p design matrix that associates each of the SOC observations
with a value of each p environmental covariates/fixed effect terms (see

Table 2 and parsimonious model is selected as described below), and τ
is a vector that contains the p fixed effect terms coefficients. The vector
u contains q random effect terms, realisations of a variable u, that are
associated with the n observations by the n × q design matrix Z. The u
is spatially dependent random variable and the term ε is a vector of
independent random errors.

2.3.2. Preparation of the environmental covariates
Environmental covariates were used to represent X design matrix,

Eq. (3). These environmental covariates represented the different ele-
ments of the scorpan model as the general soil spatial prediction model
(McBratney et al., 2003) (Table 2). The scorpan model represents
quantitative relationships between SOC stocks and environmental
covariates within the spatial soil prediction function. It is an extension
to well-known five factors of soil formation outlined by Jenny (1994).

All data sources (Table 2) were converted into 100 m spatial re-
solution. The DEM, slope and wetness index datasets were resampled
into 100 m spatial resolution using nearest neighbor technique. All
climatic variables and mean EVI data were extracted to a common grid
considering its original spatial resolution and then fitted a spline model
in order to re-interpolate into a grid of 100 m spatial resolution. This
approach was adapted due to the artifact that resulted in predicted SOC
maps when these environmental covariates were resampled to 100 m
spatial resolution using nearest neighbor technique from lower spatial
resolution data to higher spatial resolution. The spline interpolation
was carried out using ArcGIS Version 10.2 (ESRI, 2011) using the spline
toolbox with the default settings.

2.3.3. Model fitting and mapping
Initially, all the environmental covariates (Table 2) were included in

the LMM. Then the most parsimonious spatial LMM model was selected

Fig. 1. The Knuckles Forest Reserve in Sri Lanka. (a) The location map. (b) Major vegetation types (Note: FP-Forest Plantations, GL-Grasslands, MF-Montane Forests,
MMF-Moist Monsoon Forests, OSF-Open and Sparse Forests, SMF-Sub Montane Forests) and its distribution within the Knuckles Forest Reserve (Coordinate System:
Sri Lankan National Grid; Source: Forest Department, 2007).

Table 1
Distribution of soil sampling locations across the major vegetation groups in the
Knuckles Forest Reserve.

Forest type Depth 0–0.15 m Depth 0.15–0.30 m Total

FP 12 11 23
GL 38 39 77
MF 14 14 28
MMF 49 49 98
OSF 27 27 54
SMF 50 50 100

Key: FP-Forest Plantations, GL-Grasslands, MF-Montane Forests, MMF-Moist
Monsoon Forests, OSF-Open and Sparse Forests, SMF-Sub Montane Forests.
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using backward elimination based on Wald tests through iterative
model fitting process (Karunaratne et al., 2014a,b), ensuring that
p ≤ 0.10 at a confidence interval of 90%. Prediction of SOC across the
landscapes were carried out using empirical best linear unbiased pre-
diction (E-BLUP, Karunaratne et al., 2014a,b). Entire analysis was
carried out using customise R code using geoR (Diggle and Ribeiro,
2007) and gstat (Pebesma, 2004) R packages.

2.3.4. Model quality assessment
Model quality was assessed using leave-one-outcross-validation

where each observation was removed from the data set and the SOC
stock at that location was predicted using the remaining observations.
Four measures of model quality were calculated:

Mean error (ME)

̂∑= −
=

ME
n

y y1 ( )
i

n

i i
1 (4)

where yi is the measured SOC stock while ̂yi is the predicted SOC stock
from leave-one-outcross-validation.

Root mean square error (RMSE)

̂∑= −
=

RMSE
n

y y1 ( )
i

n
i i1

2
(5)

Mean standardized squared deviation ratio (MSDR)

̂
∑=

−
=

MSDR
n

y y
σ

1 ( )
i

n i i

i1

2

2 (6)

where is the prediction variance from E-BLUP.

Lin’s concordance correlation coefficient (CCC)

=
+ + −

ρ
ρσ σ

σ σ μ μ
2

( )c
x y

x y x y
2 2 2 (7)

where; ρc is the estimated CCC, μx and μy are the means for the mea-
sured and predicted SOC stocks and σx

2 and σy
2 are the corresponding

variances of measured and predicted SOC stocks and ρ is the Pearson
correlation coefficient between the measured and predicted SOC stocks.

2.4. Evaluation of soil organic carbon stock among the vegetation types

Additional analysis was performed to evaluate the SOC stock among
the vegetation types. This analysis is aimed at assessing whether SOC
stocks differ among the vegetation types. For this an ANOVA was per-
formed using linear mixed model. The linear mixed model was fitted

considering vegetation type as a fixed effect term and location as a
random effect term. Parameters of the linear mixed model were esti-
mated using Restricted Maximum likelihood (REML). Here two separate
linear mixed models were fitted considering two depth intervals con-
sidered in the current study. In order to assess the statistical sig-
nificance of SOC stocks among the vegetation type, mean separation
was carried out using least square means method (considering 0.05
probability level). Data were modelled using R statistical programming
environment using nlme R package (Pinheiro et al., 2019).

2.5. Analysis of scale specific variation

A total of four transects were derived representing the different
direction of the study area with sampling distance of 100 m (Appendix,
Fig. A.1). Transect 1 runs from north-west to south-east with total
distance of 30.1 km. Other three transects runs from south-west to
north-east directions and almost parallel to each other and reported
distance of 10.6 km, 17 km, 12.9 km for transect 2, 3, and 4, respec-
tively. The directions were set based on the major directions of varia-
bility accommodating the longest distance. Predicted SOC stock (for
two depth intervals) using spatial LMM and corresponding environ-
mental covariates at those locations were extracted along the transects.

Extracted SOC stock values along the transects were then decom-
posed using the noise-assisted EMD (Biswas and Si, 2011). The varia-
bility of natural systems including SOC stocks are controlled by a
number of processes occurring together at different intensities and
scales. The EMD analysis was used to differentiate processes with si-
milar scales as mode functions commonly known as IMF (Biswas and Si,
2011) (Eq. (8)):

∑= +
=

Y x C x r x( ) ( ) ( )
j

n
j n1 (8)

where Y(x) is function of distance x, Cj is function of space and rn
(x) = residuals.

Measured soil properties represent the variations of underlying soil
processes. Multiple processes operating in different intensities and
scales can be reflected in the spatial series as multiple oscillations. The
EMD analysis can separate the influence of these individual processes
into multiple IMFs and decompose the overall variability. These IMFs
are generally extracted through a shifting processes after identifying
local maxima, minima and their average. The average is then subtracted
from the original spatial series. If the difference satisfies a set of con-
ditions, it can be considered as IMF and will separate the highest fre-
quency or smallest scale variations (Huang et al., 1998). This process is
then repeated until it does not satisfy the conditions to be an IMF. After
separating all the IMFs, the residuals generally show the overall trend
and presented by a monotonic function. Here the residual represented
the underlying trend in the SOC stocks over the study area. To identify

Table 2
Summary of the environmental covariates included in the development of spatial prediction function using spatial linear mixed modelling framework.

Name Units Original resolution/scale Component represents the
scorpan model

Source/Reference

Digital Elevation Model (DEM) M ~90 m R NASA SRTM data
http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-
v4-1

Slope Degrees ~90 R Derived from NASA STRM (primary terrain attribute)
Wetness index (WI) Unit less ~90 m R Derived from NASA STRM (secondary terrain attribute)
Mean annual cumulative rainfall mm 1000 m C Wordclim

http://www.worldclim.org/
Mean annual temperature °C 1000 m C Wordclim

http://www.worldclim.org
Mean Enhanced Vegetation Index

(EVI)
Unit less 500 m O NASA

https://modis.gsfc.nasa.gov/data/dataprod/mod13.php. Derived
from taking mean annual EVI data from 2005 to 2014.

Forest type map Unit less 1 cm = 2250 m O Forest Department, Sri Lanka, 2007

Key: R – Relief; C – Climate, O – Organisms.
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the scales of derived IMFs associated with each transect, periodogram
analysis was conducted. The scales of the IMFs were determined using
power spectral density analysis and the global maxima of the period-
ogram.

Additionally, number of analyses were performed to evaluate the
scale specific contribution of separated IMFs associated with each
transect. The variance associated with each IMF represents the con-
tribution of that particular scale processes towards the overall varia-
bility Eq. (9));

=
×

∑ +
=

VIMF Contribution Percentage ariance of an IMF 100
IMF Residualsi

n
1 (9)

Therefore, the total variation of the spatial series of SOC stocks for
the respective transects can be calculated as sum of variation of IMFs
and residuals. Once the IMF were derived, correlation analysis was
performed with SOC stocks and environmental covariates to identify
how they are correlated with the different IMFs. In this analysis the
vegetation type covariate was excluded from the analysis as it is a ca-
tegorical variable. Detailed theory associated with the EMD analysis
and subsequent analysis followed on this manuscript can be found in
Biswas and Si (2011) and Biswas et al. (2013) and explanation of the-
oretical aspects are beyond the scope of this paper. The EMD analysis
was performed using MATLAB software (MathSoft Inc., 2013) as ex-
plained by Biswas and Si (2011) and Biswas et al. (2013).

3. Results

3.1. Summary statistics for soil carbon stocks

The mean SOC stock for the study area was 30.3 Mg ha−1,
24.3 Mg ha−1 for 0–0.15 m and 0.15–0.30 m depths, respectively.
Among the different vegetation groups, the lowest mean SOC stocks
was in FP (23.9 Mg ha−1) while the highest was in MF (39.1 Mg ha−1)
within top 0–0.15 m depth (Table 3). Soil organic carbon stocks in SMF,
MMF, OSF and GL within 0–0.15 m depth were 36.0, 28.0, 27.1 and
27.0 Mg ha−1, respectively (Table 3). The distributions for SOC stocks
for considered vegetation types are depicted in the Fig. 2. For all the
considered vegetation types, the mean SOC stocks reported for
0–0.15 m were higher than the 0.15–0.30 m depth interval sampling
(Fig. 2/Table 3).

Table 3 summarises the estimated mean SOC values, and lower and
upper confidence intervals at 0.05 probability level. If the calculated
confidence intervals for respective vegetation types were overlapped
each other, then it was considered that estimated mean SOC stock

values were not statistically different at considered probability level
(p < 0.05) and vice versa (Table 3). The mean SOC stock reported in
FP was significantly different from SOC stocks reported in forest types
namely MF and SMF for both depth intervals (Table 3). Similarly, the
mean SOC stock for GL was significantly different from the MF and SMF
for both depth intervals. In terms of mean SOC stock for MF, it was
significantly different from MMF and OSF for depth interval 0–0.15 m.
The mean SOC stock in MMF, was significantly different from the mean
SOC stock reported in SMF for depth interval 0–0.15 m.

3.2. Spatial drivers of SOC stocks in Knuckles forest reserve and model
quality assessment

Two independent spatial LMMs were fitted to quantify the spatial
drivers and spatial auto-correlation for residuals i.e. unexplained
variability of SOC stocks by the environmental covariates. Summary of
the estimated fixed effects and random effects are depicted in the
Table 4 and Table 5 respectively.

3.2.1. Spatial drivers of SOC stocks in Knuckles forest reserve: Fixed effect
terms identified by spatial linear mixed models

Vegetation type and DEM were identified as the predominantly
drivers of SOC stocks for two depth intervals (Table 4). For the lower
depth layer, slope and WI were also identified as statistically significant
(p < 0.10) spatial drivers of SOC stocks. The elevation of the study
area varied between 300 m and 1900 m which resulted micro-climatic
conditions and was found to be a common driver for SOC stocks for two
depth intervals considered in this study.

3.2.2. Spatial drivers of SOC stocks: Random effect terms identified by
spatial linear mixed models

The estimated random effect terms for the spatially correlated errors
are depicted in the Table 5. These residuals represent the unexplained
variability by the fixed effect terms (included in the Table 4) associated
with the respective depth interval models. The nugget/sill ratio was
53% and 57%, indicating fitted models consisted of moderate spatial
structure (Cambardella et al., 1994). Cambardella et al. (1994) cate-
gorized spatial dependence based on variogram parameters namely on
the nugget/sill ratio as; high (0–25%), moderate (25–75%) and low
(>75%). It was reported that the spherical model correlation structure
was selected that the optimum model to explain the random effect
terms included in the spatial LMM for the two considered depth inter-
vals. Residuals were spatially correlated up to 4000 m and 3374 m for
0–0.15 m and 0.15–0.30 m sampling depth intervals respectively.

3.2.3. Validation of derived spatial models
Model prediction capabilities decreased at the lower depth where

CCC value was reported as 0.56 while 0.60 for upper depth interval
(Table 6). This is common in many DSM projects since environmental
covariates derived from remotely sensed datasets are most explained
the upper earth surface information rather below surface information
(Bishop et al., 2015). The MSDR value for both models reported value
closer to one (1) which indicated that the residuals were properly
modelled. With regard to the model accuracy (RMSE), higher accuracy
was reported for the 0–0.15 m model (6.93 C Mg ha−1) compared to
0.15–0.30 m model (7.93 C Mg ha−1) (Table 6). Lower model bias (ME)
was reported for the 0.15–0.30 m model.

Despite modelling and mapping is carried out using two depth in-
tervals similar spatial pattern has been reported for SOC (Fig. 3). The
distribution of the SOC stocks for both sampling depth intervals follows
the same pattern. Based on the maps, it is clearly evident the influence
of the DEM on SOC stocks. As per the maps, higher elevations reported
accumulation of higher SOC stocks while low lying areas represent less
SOC stocks. As reflected in the derived maps, the variation of the SOC
across the study area also associated with the vegetation type (see
Fig. 1b for vegetation types).

Table 3
The mean separation results among the vegetation types for two depth inter-
vals.

Model Vegetation
type#

Mean
SOC (Mg
ha−1)

Lower confidence
interval (Mg
ha−1)

Upper confidence
interval (Mg
ha−1)

0–0.15 m FP 23.9 19.3 28.5
GL 27.0 24.4 29.6
MF 39.1 34.9 43.4
MMF 28.0 25.8 30.3
OSF 27.1 24.0 30.1
SMF 36.0 33.8 38.3

0.15–0.30 m FP 16.6 11.2 22.0
GL 21.1 18.2 24.0
MF 34.5 29.7 39.3
MMF 21.4 18.8 24.0
OSF 23.0 19.5 26.5
SMF 29.0 26.5 31.6

# Vegetation type: Forest Plantations (FP), Grasslands (GL), Montane Forests
(MF), Moist Monsoon Forests (MMF), Open and Sparse Forests (OSF), Sub
Montane Forests (SMF).
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3.3. Scale specific spatial variability and their dominant controls

Decomposition of SOC spatial series for the considered transects
resulted up to 7 IMFs (Appendix, Fig. A.2). Then the dominant scales for

these IMF’s were identified through spectral analysis and summarised in
Table 7. The graphical summary of the scale analysis for transect 1 is
depicted in Fig. 4 as per the corresponding depth intervals. The en-
larged section of the Fig. 4 provides details of the variation at small
scales. The scale components with lower IMF numbers separated higher
frequency oscillations, whereas higher IMF numbers separated lower

Fig. 2. Distribution of soil organic carbon stocks under different vegetation types. Grasslands (GL), Montane Forests (MF), Moist Monsoon Forests (MMF), Sub
Montane Forests (SMF), Open and Sparse Forests (OSF), Forest Plantations (FP). In these boxplots mean SOC values are depicted in solid horizontal line while
whiskers represent the inter-quartile range and outliers are depicted as ‘dots’ for each vegetation type.

Table 4
Major drivers of soil organic carbon in Knuckles forest reserve.

Model Name of the coefficient Estimated coefficients Standard error t-value Probability

Depth 0–0.15 m Intercept 1.51 * 10+01 3.65 * 10+00 4.13 * 10+00 5.572 * 10−05***

GL 1.76 * 10−01 2.26 * 10+00 7.80 * 10−02 0.938
MF 8.76 * 10+00 3.19 * 10+00 2.74 * 10+00 0.007**

MMF 4.37 * 10+00 2.58 * 10+00 1.69 * 10+00 0.092
OSF −5.03 * 10−01 2.51 * 10+00 −2.01 * 10−01 0.841
SMF 6.82 * 10+00 2.35 * 10+00 2.89 * 10+00 0.004**

DEM 1.00 * 10−02 2.93 * 10−03 3.44 * 10+00 0.001***

Depth 0.15–0.30 m Intercept −5.75 * 10+00 6.32 * 10+00 −9.11 * 10−01 0.364
GL 1.08 * 10+00 2.66 * 10+00 4.05 * 10−01 0.686
MF 9.31 * 10+00 3.73 * 10+00 2.50 * 10+00 0.013*
MMF 6.41 * 10+00 3.01 * 10+00 2.13 * 10+00 0.035*
OSF 1.19 * 10+00 2.98 * 10+00 3.98 * 10−01 0.691
SMF 6.53 * 10+00 2.77 * 10+00 2.36 * 10+00 0.020
DEM 1.38 * 10−02 3.31 * 10−03 4.16 * 10+00 4.967 * 10−05***

Slope 1.74 * 10−01 7.30 * 10−02 2.39 * 10+00 0.018*
WI 1.03 * 10+00 4.60 * 10−01 2.25 * 10+00 0.026*

Level of significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘·’ 0.1.

Table 5
Estimated random effect terms for the spatially correlated errors obtained from
spatial LMM.

Model Nugget (C Mg
ha−1) 2

Partial Sill (C
Mg ha−1) 2

Range (m) Nugget/Sill *
100# (%)

0–0.15 m model 32.53 28.72 4000 53
0.15–0.30 m

model
43.11 32.35 3374 57

# Sill = Nugget + Partial Sill.

Table 6
Model quality indices derived from the leave-one-out cross-validation.

Model ME (C Mg
ha−1)

RMSE (C Mg
ha−1)

MSDR CCC

0–0.15 m model 0.10 6.93 1.00 0.60 (0.52–0.68)
0.15–0.30 m model 0.07 7.93 0.99 0.56 (0.47–0.64)
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frequency oscillations, which is the representative of smaller and larger
scale processes, respectively (Biswas et al., 2013). The residuals re-
presented the overall trend in SOC stock variation along the transects
for considered depth intervals. Scale interval of 69–118 m reported for
IMF’s 1 while 2037–8149 m for IMF’s 6, respectively for depth interval
0–0.15 m for transect 1–4. Similar scales were identified for the depth
interval 0.15–0.30 m for transect 1–4. Residuals for the decomposed
SOC stock spatial series reported a scale value up to 16,297 m for two
depth intervals for transect 1 (Table 7). Other three transects reported a
scale value of ~8000 m for considered two depth intervals.

The summary of the variation explained by the extracted IMFs for
each transect and depth interval together with the variation explained
by residual are summarised in the Table 8. Results revealed that the
variation explained by the IMFs for respective depth intervals explains
~60% of the total variation except for transect 2 depth interval
0.15–0.30 m and associated both depth intervals for transect 3
(Table 8). It should be noted that variation explained by decompose
SOC stock signal (i.e. IMFs) and overall trend (through residuals) varies
among the transects and considered depth intervals.

The correlation plot for the IMF’s, residuals and environmental
covariates for transect 1 depth intervals 0–0.15 m and 0.15–0.30 m is
given in the Fig. 5 while for other transects are included under the
Appendix, Fig. A.3. The correlation pattern for the two depth intervals
for the transect 1 followed the same pattern (Fig. 5). The correlation
analysis revealed that at large spatial scales, temperature, rainfall, EVI,
DEM, slope and WI showed either positive or negative correlation with
the IMFs 5, 6, 7. In contrast, for small spatial scales, DEM derived
covariates showed some correlation among the IMFs 1, 2, 3 and 4
(Fig. 5).

4. Discussion

Several previous estimations of SOC stocks on different land cover
types at global and regional scales are summarized in Table 9 and
compared with the current study estimates. In the current study, the
mean SOC stock of MF (39.10 Mg ha−1) at a soil depth of 0–0.15 m in
KFR was relatively higher than tropical montane forests in West Ma-
laysia (Jeyanny et al., 2014) for the same depth level and the SOC stock
within upper 0–0.10 m soil layer in tropical montane forests in Costa
Rica (Tanner et al., 2016). The primary forests of Singapore also re-
corded relatively lower SOC stock (34.3 Mg ha−1) even within
0–0.20 m depth interval (Ngo et al., 2013) compared to upper soil layer
(0–0.15 m) of MF (39.10 Mg ha−1) in KFR. Both evergreen forests and
deciduous forests in the tropical region reported relatively higher SOC
stocks for upper 0.30 m depths (Toriyama et al., 2011) compared to
MMF in the current study (Table 9). Soil organic carbon stock in MMF
was closely related with the open forests in Kashmir (Shaheen et al.,
2017). Similarly, carbon stocks in OSF soil were in accordance with the
open forests in Kashmir, while relatively higher than their disturbed
forests as reported by Shaheen et al. (2017). Soils under the GL in KFR
showed a relatively lower SOC stock within 0–0.15 m soil depth than
the SOC stock value in tropical Sparse shrub/Herbaceous within
0–0.30 m soil depth according to the study of Petri et al. (2010).

Plant residues are the major source of organic carbon inputs into
SOC. The quality and quantity of these residues will vary with vege-
tation types (Ratnayake et al., 2017). It is therefore to be expected that
vegetation type was a key factor influencing SOC stocks (Table 4). For
example, the relatively low SOC stocks associated with FP vegetation
may have been attributable to the relatively low decomposability of
pine needles (e.g. Edmonds, 1991). Vegetation type may have also

Fig. 3. Spatial distribution of soil organic carbon stocks in Knuckles forest reserve. The SOC stocks are expressed as C Mg ha−1.

Table 7
Scales (m) of IMFs determined from power spectral density analysis.

Transect 1 Transect 2 Transect 3 Transect 4

0–0.15 m 0.15–0.30 m 0–0.15 m 0.15–0.30 m 0–0.15 m 0.15–0.30 m 0–0.15 m 0.15–0.30 m

IMF1 79 64 118 104 77 77 69 72
IMF2 204 204 263 177 160 177 204 181
IMF3 204 243 407 263 263 263 326 240
IMF4 362 494 543 479 429 407 479 509
IMF5 1164 1254 1630 1164 1164 1019 1358 1358
IMF6 2037 2037 8149 2716 2716 2037 8149 2716
IMF7 16,297 5432
Residuals 16,297 16,297 8149 8149 8149 8149 8149 8149
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acted as a surrogate for climate influences on SOC stocks. For example,
MF and most of the SMF vegetation types are located in the wetter
south-western slopes of the ranges where average annual rainfall is
relatively high (3810–5080 mm, Cooray, 1998). These relatively highly
productive, dense, and species rich vegetation types not only results in
relatively large inputs of carbon into SOC, but minimises SOC loss from
erosion (Bambaradeniya and Ekanayake, 2003; Seely et al., 2010). Also,
the MMF vegetation growing in the eastern parts of KFR may have had
relatively low SOC stocks when compared to MF and SMF due to the
prevailing dry climatic conditions in this region (~2000 mm during the
monsoons) (Legg, 1995; Cooray, 1998).

The topography may have also been a surrogate for climate (Post
et al., 1982) and soil properties (Wilcox et al., 2002; Prichard et al.,
2000). For example, the relatively low temperature due to high eleva-
tion of MF and SMF vegetation types may have resulted in relatively
slow rates of turnover of SOC, thereby resulting in relatively high SOC

Fig. 4. Scale analysis for the transect 1 two depth intervals.

Table 8
Variation explained by the IMF and residuals for each transect and depth in the
spatial series.

Transect Depth Variation explained by
IMFs

Variation explained by the
residual

1 0–0.15 m 60.6 39.4
1 0.15–0.30 m 84.6 15.4
2 0–0.15 m 97.7 2.3
2 0.15–0.30 m 34.6 65.4
3 0–0.15 m 17.6 82.4
3 0.15–0.30 m 10.3 89.7
4 0–0.15 m 91 9
4 0.15–0.30 m 95.6 4.4
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stocks under these vegetation types (Post et al., 1982; Fissore et al.,
2008). Indeed the mean annual temperature could vary between 18.5
and 26 °C in KFR depending on the altitudinal changes (Cooray, 1998).

The anthropogenic activities have already had an influence on SOC
(e.g. Larionova et al., 2002). For example, agricultural expansion in the
area (tea and chena cultivation), fire and removal of timber from the
forest lands have led to the conversion of forests into grasslands over
time. Our results demonstrated that the SOC under GL were relatively
low when compared to MF and SMF vegetation types, but relatively
high when compared to FP vegetation (Table 3). Similarly, OSF vege-
tation resulted burning forest patches for cultivation purposes. The SOC
stocks under this vegetation type were also relatively low probably due
to the relatively low input of organic carbon into SOC due to isolated
trees scattered over vast expanse of grasslands (Larionova et al., 2002).

It has been reported, higher variation of SOC across the considered
transects (Appendix, Fig. A.2). As a result, decomposed SOC signal
through EMD analysis to different components of the IMFs and residue
resulted different scales (Table 7). The correlation among the IMFs and

continuous environmental covariates exhibited similar pattern (Fig. 5
for transect 1 and Appendix, Fig. A.3 for other transects). While general
SOC spatial drivers of the study were identified through spatial LMM,
the EMD analysis was able to explore more details about the SOC dri-
vers in KFR. For instance, impact of climatic variables at larger spatial
scales can be identified through the EMD analysis which did not reflect
in the LMM analysis. The scale specific SOC drivers at different loca-
tions may help in identifying the appropriate environmental covariates
for detail modelling and mapping of SOC in future applications (Zhou
et al., 2016). Additionally, identified scales can be used to determine
the sampling interval for detail analysis of SOC with a targeted region
in the study region. In current study, the outputs from the spatial LMM
analysis were included as inputs to the EMD analysis. Nevertheless, the
error propagation from the derived digital SOC maps from the spatial
LMM analysis were ignored. This is a limitation of the study and beyond
the aims of this manuscript.

As outlined by Sanderman et al. (2011), generally it is re-
commended to use a correction factor for coarse fragments in the SOC

Fig. 5. Correlation analysis for the SOC, environmental covariates, IMFs and residuals for transect 1 of depth interval (a) 0–0.15 m, and (b) 0.15–0.30 m.

Table 9
Soil organic carbon stocks in different vegetation types of Knuckles forest reserve in comparison with estimates of the other forests in the same region.

Landuse types SOC stock (Mg ha−1) Reference

0–0.15 m 0.15–0.30 m 0–0.30 m Other

Montane forests, West Malaysia 26.46 – – – Jeyanny et al. (2014)
Montane forests, Costa Rica – – – 20.5

(0–0.10 m)
Tanner et al. (2016)

Primary forests, Singapore – – – 34.3
(0–0.20 m)

Ngo et al. (2013)

Primary forests, Colombia – – 72.18 – Sierra et al. (2007)
Amazon – – – 23–217

(0–1 m)
Cerri et al. (2000)

Closed canopy forests, Kashmir 33.90 – – – Shaheen et al. (2017)
Evergreen forests, Cambodia – – 56.90 – Toriyama et al. (2011)
Deciduous forests, Cambodia – – 34.90 – Toriyama et al. (2011)
Open forest, Kashmir 28.60 – – – Shaheen et al. (2017)
Disturbed forest, Kashmir 20.60 – – – Shaheen et al. (2017)
Grasslands, Garhwal Himalaya – – 75.76 – Gupta and Sharma (2011)
Sparse shrub/Herbaceous – – 43.00 – Petri et al. (2010)
Pine forests, Gharwal Himalaya – – 46.07 – Gupta and Sharma (2011)
Montane forests 39.10 34.50 – – Current study
Sub montane forests 36.00 29.00 – – Current study
Moist Monsoon forests 28.00 21.40 – – Current study
Open and sparse forests 27.10 23.00 – – Current study
Grasslands 27.00 21.10 – – Current study
Forest plantations (Pine) 23.90 16.60 – – Current study

R.P.S.K. Rajapaksha, et al. Forest Ecology and Management 474 (2020) 118285

9



stock. However, in the current study such correction factor was not
included in SOC stock calculations that can lead to errors in the cal-
culated SOC stocks. This is a limitation of the current study. Ad-
ditionally, having sparse measurement locations across the study region
can underestimate the actual variation of SOC stocks in the study re-
gion. In the current study, the sampling density was reported as 0.90
per km2 (n = 190 and area = 210 km2). While this is a bit lower value,
for a catchment scale study this value can be considered as acceptable.
For example the work carried out by Karunaratne et al. (2014a,b) only
recorded sample density of 0.06 per km2 (n = 88 and
area = 1445 km2) for a catchment scale study.

5. Conclusions

Vegetation type (which in turn was partly influenced by climate)
was a key factor influencing 0–0.30 m SOC stocks in KFR. Topography
also influence 0–0.30 m SOC, the slower turnover of SOC at higher
altitudes with relatively low temperatures. Our results also indicated
anthropogenic activities influenced SOC, with SOC stocks being rela-
tively low where forests have been fully or partially cleared. This
baseline information on SOC stocks will be useful for informing future
conservation and management of the KFR considering its highly valu-
able ecosystem services provided. Additionally, scale specific analysis
through EMD provided detail information on influence of SOC drivers
at corresponding scales which will be useful in localised modelling of
SOC and designing sampling strategies for SOC in future applications.
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