
Vol. 73 (2014) REPORTS ON MATHEMATICAL PHYSICS No. 3

EXTENDING THE RANGE OF VALIDITY FOR ASYMPTOTIC ENERGY
EXPANSION METHOD BY PADÉ APPROXIMATION
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In general, the Asymptotic Energy Expansion method (AEE) produces accurate eigenvalues
for higher eigenstates when parameters of the nonleading power terms of the potential are small.
However, the ground state and low eigenstates energies calculated from the AEE method are
usually inaccurate. Further, when the parameters of the potential are large, accuracy of the AEE
method becomes significantly deteriorated. In this paper we show that by applying the Padé
approximation, the accuracy of AEE for the ground state and low eigenstates can be significantly
improved and eigenenergies for large parameters can be accurately determined.

Keywords: semiclassical expansion, asymptotic energy expansion, eigenspectra, Padé approxi-
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1. Introduction
The Asymptotic Energy Expansion method has useful features which are not

available in semiclassical nonperturbative methods such as WKB approximation
or perturbative methods like Rayleigh–Schrödinger perturbation expansions [1–3].
Semiclassical methods such as higher order WKB methods are useful not only for
solving the time independent Schrödinger equation and obtain accurate eigenvalues
numerically but also for some cases, obtaining both lower order as well as higher
order terms in the WKB series as algebraic expressions [4–7], enabling these
systems to be investigated analytically. As a nonperturbative method, the higher
order WKB has been applied successfully for certain types of potentials to obtain
analytic expressions for the terms in the WKB series. One of the major difficulties
in applying higher order WKB to solve systems such as polynomial potentials is
that most of the integrals involved in the higher order terms cannot be evaluated
analytically. On the other hand for polynomial potentials having any number of
terms, the AEE expansion up to any order can be obtain analytically in term of
Gamma functions [3]. As in the case of WKB, eigenenergies obtained by AEE are
mainly valid for higher eigenstates. Especially, it fails to predict the ground state
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energies accurately for most of the potentials [4]

V (x) = x2N
+ a1x

2N−1
+ a2x

2N−2
+ · · · + a2N−2x

2
+ a2N−1x. (1)

Perturbative methods such as the Rayleigh–Schrödinger perturbation theory are
very valuable in determining eigenenergies numerically for a Hamiltonian system
which can be expressed as a sum of an unperturbed Hamiltonian with known
eigenstates and a perturbation potential. In other words, the terms in the Rayleigh–
Schrödinger perturbation expansion cannot be obtained unless the Hamiltonian can
be expressed as a sum of unperturbed Hamiltonian with known eigenstates and
a perturbation potential. One example is the general polynomial potential given
in (1) when a2N−2 = 0. Moreover, when parameters of the perturbation potential
are not small, usually, the perturbation theory fails to predict accurate eigenvalues.

Similarly to the Rayleigh–Schrödinger perturbation theory, the AEE expansion
for the polynomial type systems is also valid when parameters in the not leading
terms of the potential are small. When these parameters are large, the accuracy
of the AEE significantly deteriorates. Nevertheless, the AEE method is especially
suitable for solving polynomial type potentials [3, 8]. Since, in AEE, the quantum
momentum function is expanded as a power series in reciprocal of energy, it is
found to be very accurate for higher eigenstates. The AEE expansion is identical
to higher order WKB expansion for power potentials such as V (x) = x2N [2]
while they are completely different for polynomial type potentials. The AEE has
also been applied successfully to many systems other than polynomial systems
[9, 10]. Recently, the AEE has been successfully utilized to obtain a simple formula
for the semiclassical energy of the general odd-degree polynomial potential [11].
Furthermore, the AEE method has been used to show that the complex non-Hermitian
PT-symmetric Hamiltonian H = p2

− gx4
+ 4ih̄

√
gx and the conventional Hermitian

Hamiltonian h = p2
+ 4gx4

+ 6h̄
√
gx have the same eigenspectra [12]. Similarly,

using AEE, it was recently shown that the Hamiltonians H = p2
− gx4

+ a/x2 and
h = p2

+ 4gx4
+ bx are isospectral if a =

(
b2
− 4gh̄2) /16g [13].

The AEE is a diverging series which is Borel summable. Generally, finite partial
sums of the AEE do not show convergence with increasing order, but tend to diverge
exponentially for small value of E. Nevertheless, through a simple resummation
using the Padé approximants it is possible to extract rapidly converging and highly
accurate results for the eigenvalues. Several years ago, Bender et al. [14] have studied
the large-order behaviour of the Rayleigh–Schrödinger perturbation theory for the
ground-state energy of the complex PT-symmetric Hamiltonian H = p2

+
1
4x

2
+ iλx3.

The Rayleigh–Schrödinger perturbation series is also Borel summable, and the Padé
summation provides excellent agreement with the real energy spectrum. Therefore
in this study we test the applicability of Padé to asymptotic series of AEE.

In this paper we show that the accuracy of eigenenergies of the ground state
and lower eigenstates obtained with AEE can be vastly improved by using the Padé
summation of AEE. Further we show that even when parameters of the potential
are large, the Padé summation of AEE produces accurate eigenenergies. As two
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illustrations, we study the AEE for the quantum action variable J of the quartic
Hamiltonian p2

+x4
+ax2 and the complex PT-symmetric Hamiltonian p2

+ ix3
+bx

and compare the results with exact eigenenergies of the same systems obtained with
the matrix diagonalization method. However, for these Hamiltonians, we find that
the AEE is divergent (zero radius of convergence).

The outline of the paper is as follows. In Section 2, the AEE for the quantum
action variable J of the even and odd degree polynomial potential are discussed.
In Section 3, we apply an alternative approach based on a rational approximation
to sum the AEE expansion. The ccuracies of lowest eigenvalues are illustrated by
using two example in Section 4. Concluding remarks are given in Section 5.

2. Description of the AEE method
In order for this paper to be self-contained, first we describe the AEE method

and derive the necessary equations. Since the method is slightly different for odd
degree and even degree potentials, derivations of recurrence relations are divided
into two steps. First consider the one-dimensional Schrödinger equation (2m = 1)

−h̄2 ∂
2U (x,E)

∂x2 + V (x)U (x,E) = EU (x,E) , (2)

where V (x) is a potential and assume V (x) =
∑N

k=0 Vk (x), where Vk(x) has the
scaling property that Vk(λx) = λnkVk(x) and nk are distinct integers.

Substituting

P (x,E) =
h̄

i

∂U (x,E) /∂x

U (x,E)

in the above equation, we get

h̄

i

∂P (x,E)

∂x
+ P 2 (x, E) = E − V (x) = Pc (x, E) . (3)

Note that P (x,E) above corresponds to the derivative of the action in the usual
WKB ansatz. The quantity J (E) is now defined as

J (E) =
1

2π

∫
γ

P (x,E) dx, (4)

with the quantization condition J (E) = nh̄. The contour γ encloses two physical
turning points of Pc =

√
E − V (x). However, depending on the system this contour

becomes branch points of appropriate square root function [3, 11]. Boundary condition
imposed upon P (x,E) is P (x,E) → Pc (x, E) as h̄→ 0 [15, 16].

Also assume that Vk (x) are ordered in such a way that n0 > n1 > n2 > · · · > nN .
Now Eq. (3) becomes

h̄

i

∂P (x,E)

∂x
+ P 2 (x, E) = E − V0(x)−

N∑
k=1

Vk (x). (5)
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2.1. Even degree potentials

Assume that the potential is of even degree (i.e. n0 is even). Let n0 = 2m0 for
some m0 ∈ N . Let ε = E−1/2m0 and y = εx. Then (5) becomes, after simplification,

h̄

i
ε2m0

∂P (y, ε)

∂y
+ ε2m0P 2 (y, ε) = 1− V0(y)−

N∑
k=1

ε2m0−nkVk(y). (6)

Now we expand P (y, ε) as a power series in ε,

P (y, ε) = εs
∞∑
n=0

an (y) ε
n. (7)

Substituting (7) in (6) and equating coefficients of εn, we obtain s = −m0,
a0 =

√
1− V0(y) and

an =
−1
2a0

[
n−1∑
i=1

aian−i + h̄
dan−m0−1

dy
+

N∑
k=1

Vk (y)δ2m0−nk ,n

]
. (8)

In the above formula an = 0 ∀n < 0.
Now J (E) becomes, after simplification,

J (E) =
ε−m0−1

2π

∞∑
m=0

εm
∫
γy

P (y,∈) dx, (9)

where γy encloses the two branch points of
√

1− V0(y). The Asymptotic Energy
Expansion (AEE) can be obtained as

J (E) =

∞∑
m=0

bmE
−(m−m0−1)

2m0 , (10)

where
bm =

1
2π

∫
γy

am (y) dy. (11)

2.2. Odd degree potentials

When n0 is odd, the system has boundstates for certain Vk (y), especially when
they are PT symmetric. Let n0 = 2m0 + 1 for some m0 ∈ N . Let ε = E−1/(4m0+2)

and y = iε2x. Then (5) becomes, after simplification,

h̄ε4m0+4 ∂P (y, ε)

∂y
+ ε4m0+2P 2 (y, ε) = 1− V0(y)−

N∑
k=1

i−nkε4m0+2−2nkVk(y). (12)

Now we expand P (y, ε) as a power series in ε,

P (y, ε) = εs
∞∑
n=0

an (y) ε
n. (13)
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Substituting (13) in (12) and equating coefficients of εn, we obtain s = −(2m0+1),
a0 =

√
1− V0(y) and

an =
−1
2a0

[
n−1∑
i=1

aian−i + h̄
dan−2m0−3

dy
+

N∑
k=1

i−nkVk (y)δ4m0+2−2nk ,n

]
. (14)

In the above formula an = 0 ∀n < 0.
The Asymptotic Energy Expansion (AEE) can be obtained as

J (E) =

∞∑
k=0

bmE
−(m−2m0−3)

4m0+2 , (15)

where
bm =

1
2iπ

∫
γy

am (y) dy. (16)

where γy encloses the two branch points of
√

1− V0(y).
For both cases of even degree and of odd degree, γy will depend on V0(y) and

Eqs. (11) and (16) can be evaluated analytically. In the next section we introduce
Padé approximants to improve the accuracy of AEE energy especially for the ground
state and lower eigenstates.

3. The Padé approximants
The Padé approximant is one of the standard tools in theoretical physics to

overcome problems with slowly convergent or divergent power series. Consequently,
there is a large number of publications on the mathematical properties of Padé
approximants as well as on their applications in theoretical physics [17]. A Padé
approximant is a rational function [18], i.e. a function expressed as a fraction whose
numerator and denominator are both polynomials, whose power series expansion
agrees with a given power series to the highest possible order. The primary application
of Padé approximants is for problems where it is possible to derive the solution
formally as a power series expansion in some parameter. The corresponding Padé
approximants often turn out to be much more useful than the power series itself.
In this study we apply Padé approximation to AEE.

For a given AEE expansion

J (E) =

∞∑
k=0

bkE
k (17)

the [L,M] Padé approximant RL,M(E) is defined by

RL,M(E) =

∑L
k=0 pkE

k

1+
∑M

k=1 qkE
k

(18)

such that
J (E)− RL,M(E) = O(E

L+M+1), (19)
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i.e. the first L + M + 1 terms of the power series of RL,M(E) match the first
L+M + 1 terms of the power series of J (E).

Equations for the coefficients pk, k = 0, . . . , L and qk, k = 1, . . . ,M, can
be obtained by multiplying (18) by the denominator of RL,M(E) and equating
coefficients of Ek for k = 0, . . . , L +M . The result is M simultaneous equations
for the qk, k = 1, . . . ,M ,

min(r,M)∑
k=1

qkbr−k = −br , r = L+ 1, . . . , L+M, (20)

and L+ 1 expressions for the pk, k = 0, . . . , L,

pk = bk +

min(k,M)∑
s=1

qsbk−s, k = 0, . . . , L. (21)

In many cases it is convenient to consider only ‘diagonal’ Padé approximants with
L = M .

4. Illustrations
In general, the AEE method does not produce accurate eigenvalues for low

eigenstates when parameters of the not leading term of the potential are large. In
this section we study the AEE of two simple systems and test the accuracy of the
AEE with Padé approximant.

The first system we study is the Hamiltonian

H = p2
+ x4
+ ax2, (22)

where a ∈ C. The AEE of this system is obtained as

J (E) = nh̄ ≈ −
h̄

2
+ E3/4

∞∑
k=0

bkE
−k/4. (23)

The first eight nonzero bk are

b0 =
0
[ 1

4

]
3
√
π0

[ 3
4

] , (24)

b2 = −
a 0

[ 3
4

]
√
π 0

[ 1
4

] , (25)

b4 =
a2 0

[ 1
4

]
32
√
π 0

[ 3
4

] , (26)

b6 = −
(a3
+ 8h̄2) 0

[ 3
4

]
32
√
π 0

[ 1
4

] , (27)
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b8 = −
a(5a3

+ 32h̄2) 0
[ 1

4

]
6144
√
π 0

[ 3
4

] , (28)

b10 =
a2(21a3

+ 400h̄2) 0
[ 3

4

]
10240

√
π 0

[ 1
4

] , (29)

b12 =
(15a6

+ 480a3h̄2
+ 1408h̄4) 0

[ 1
4

]
196608

√
π 0

[ 3
4

] , (30)

b14 = −
7a(11a6

+ 520a3h̄2
+ 3200h̄4) 0

[ 3
4

]
327680

√
π 0

[ 1
4

] . (31)

Since J (E) is expanded as an infinite power series in terms of the reciprocal
of eigenenergy E, the resulting series is divergent for small values of E. Now the
Padé approximant technique is applied to sum the divergent series

∑
∞

k=0 bkE
−k/4.

It was found that by this method, the summation of AEE and hence the accuracy
of the lowest eigenvalues are improved. Numerical eigenvalues determined with the
matrix diagonalization method and the proposed method are compared in Table 1.
It is clearly evident that the ground state energies improved significantly by the
Padé and AEE energies for large parameter values became accurate.

Table 1. Comparison between calculated eigenvalues by AEE, AEE with Padé and exact which are obtained
by the matrix diagonalization method for the Hamiltonian H = p2

+ x4
+ ax2. The calculation was carried

out for h̄ = 1.0.

a n EAEE EAEE+Padé EExact

0 1.5474951 1.3538472 1.3923516

1.0 1 4.6504891 4.6504604 4.6488127

2 8.6549860 8.6549867 8.6550499

3 13.156806 13.156806 13.156804

0 3.5690620 2.3682205 2.3682396

5.0 1 7.3332368 7.3322127 7.3322123

2 12.707509 12.707622 12.707622

3 18.424311 18.424327 18.424327

0 6.6616853 3.2313136 3.2335697

10.0 1 10.278051 9.8340666 9.8341133

2 16.642090 16.688358 16.688362

3 23.716931 23.773018 23.773018
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4.1. V (x) = ix3
+ bx

For this potential, the Hamiltonian is

H = p2
+ ix3

+ bx, (32)

where m0 = 1. The AEE can be obtained as

J (E) = nh̄ ≈ −
h̄

2
+ E5/6

∞∑
k=0

bkE
−k/6. (33)

The first eight nonzero bk are

b0 =
0
[ 1

6

]
5
√
π0

[ 2
3

] , (34)

b4 =
i b 0

[ 5
6

]
√
π 0

[ 1
3

] , (35)

b10 = −
h̄2 0

[ 5
6

]
12
√
π 0

[ 1
3

] , (36)

b12 = −
ib3 0

[ 1
6

]
648
√
π 0

[ 2
3

] , (37)

b16 =
5b4 0

[ 5
6

]
1296
√
π 0

[ 1
3

] , (38)

b18 = −
7b2h̄2 0

[ 1
6

]
2592
√
π 0

[ 2
3

] , (39)

b22 = −
55ib3h̄2 0

[ 5
6

]
3888
√
π 0

[ 1
3

] , (40)

b24 =
91b(2b5

+ 189ih̄4) 0
[ 1

6

]
4199040

√
π 0

[ 2
3

] . (41)

As in the previous case, the resulting series is divergent for small values of E.
The Padé approximant technique is applied to sum the divergent series

∑
∞

k=0 bkE
−k/3.

The accuracies of eigenvalues determined with the proposed method are compared
with numerical values obtained with matrix diagonalization method. The results are
shown in Table 2.

5. Summary and concluding remarks
The AEE method is valuable for obtaining eigenenergies of polynomial type

potentials. Usually the method is very accurate for higher eigenvalues. However, AEE
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Table 2. Comparison between calculated eigenvalues by AEE, AEE with Padé and exact which are obtained
by the matrix diagonalization method for the Hamiltonian H = p2

+ ix3
+ bx. The calculation was carried

out for h̄ = 1.0.

b n EAEE EAEE+Padé EExact

0 1.8535247 1.8547864 1.8561108

1.0i 1 5.1500657 5.1501751 5.1501689

2 8.8162193 8.8162452 8.8162452

3 12.736488 12.736497 12.736497

0 6.3057314 6.3134284 6.3136320

5.0i 1 10.462396 10.464588 10.464599

2 14.792884 14.793760 14.793762

3 19.272456 19.272882 19.272882

0 14.801125 14.533973 14.534073

10.0i 1 19.502800 19.331313 19.331307

2 24.354135 24.234597 24.234595

3 29.322512 29.234310 29.234310

does not produce accurate eigenvalues for the ground state and lower eigenstates as
well as when parameters of the nonleading terms of the polynomial type potentials are
large. The AEE expansion of J (E) is asymptotically divergent and Borel summable.
In this paper we have shown that by applying the Padé approximation method, the
accuracy of the divergent series of AEE can be significantly improved. Eigenenergies
of low eigenstates including ground state as well as eigenenergies of potentials having
large parameters can be accurately determined with the combined AEE method and
Padé technique. With the help of two examples, we have demonstrated the accuracy
of lowest eigenvalues for both small parameter values as well as for large parameter
values of the potential. Therefore, we conclude that the AEE method with the Padé
approximant technique can be used to determine the accurate energy eigenvalues
of low eigenstates of the polynomial type Hamiltonians.
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