

Conductivity and Thermal Properties of PAN Based Polymer Electrolytes for Possible Application in Photo Electrochemical Solar Cells

Warakawe Jayasundara Mudiyanselage Jayabahugedara Saumya Rajinie Jayasundara^{1, 2}, Tennakoon Mudiyanselage Wijendra Jayalath Bandara³, Pierisge Sadeesha Leonard Fernando³, Hewage Dhanushka Naleen Sampath Fernado³, Malavi Achchi Kankanamge Lakshman Dissanayake¹, Lekam Ralalage Anura Kalinga Bandara⁴ and Bengt-Erik Mellander⁵

1. Institute of Fundamental Studies, Kandy 20000, Sri Lanka

2. Postgraduate Institute of Science, University of Peradeniya, Peradeniya 20404, Sri Lanka

3. Department of Physical Sciences, Rajarata University of Sri Lanka, Mihinthale 50300, Sri Lanka

4. Department of Physics, University of Peradeniya, Peradeniya 20404, Sri Lanka

5. Department of Applied Physics, Chalmers University of Technology, Goteborg 41296, Sweden

Received: November 13, 2013 / Accepted: December 4, 2013 / Published: December 25, 2013.

Abstract: Two gel or quasi-solid-state electrolyte complexes based on PAN (polyacrylonitrile) host polymer and salts Hex₄NI (tetrahexylammonium iodide), MgI₂, LiI were prepared by incorporating plasticizers EC (ethylene carbonate) and PC (propylene carbonate). These are: PAN/EC/PC/I₂/Hex₄NI:MgI₂ and PAN/EC/PC/I₂/Hex₄NI:LiI. A clear glass transition was observed around -100 °C for all the electrolyte complexes. In the PAN/EC/PC/I₂/Hex₄NI:MgI₂ system, a decrease in conductivity was observed with the addition of MgI₂ and the electrolyte with Hex₄NI alone as the iodide salt gave the maximum ionic conductivity of 2.51×10^{-3} S·cm⁻¹ at 25 °C. In the PAN/EC/PC/I₂/Hex₄NI:LiI system, an increase in conductivity of 3.14×10^{-3} S·cm⁻¹ at 25 °C. The diffusion coefficient (*D*), the mobility (μ) and the density of charge carriers (*n*) in the electrolytes were calculated using complex impedance data and equations obtained for dielectric loss tangent. The measured data for dielectric loss tangent were fitted to the model equation. Calculated, *n*, μ and *D* values are around ~ 10^{24} m⁻³, ~ 10^{-7} m²·V⁻¹·s⁻¹ and ~ 10^{-9} m²·s⁻¹ respectively for the two electrolyte systems. This type of iodide ion conducting electrolytes could be suitable materials for PEC (photo electrochemical) solar cells.

Key words: Quasi-solid-state, polyacrylonitrile, photoelectrochemical, dielectric.

1. Introduction

Fast ion conductors or electrolytes have many applications in the field of electrochemistry. Polymer electrolytes [1] have attracted much attention because of their use in practical application such as batteries, fuel cells, PEC solar cells, sensors and displays. Anion conducting PAN based polymer electrolytes are good candidate materials for the fabrication of photo-electrochemical solar cells [2]. Even though the PEC cell efficiencies are better with liquid type electrolytes, the usage of liquid type electrolytes in the cells meets durability issues. Use of polymer electrolytes in solar cell applications shows many advantages such as compatibility, no leakage, easy to prepare in different forms, chemical and physical

Corresponding author: Warakawe Jayasundara Mudiyanselage Jayabahugedara Saumya Rajinie Jayasundara, Ph.D. student, research fields: polymer electrolytes and dye sensitized solar cells. E-mail: sjayasundara@yahoo.com.

stability and easy to process [2, 3]. A large number of studies were so far carried out by several groups using variety of single salt systems as electrolyte with the aim of enhancing cell efficiency [3-5]. The present study compares the novel polymer electrolyte different systems with double salts intended for PEC solar cells by analyzing electrical and thermal properties. Especially, the density of charge carriers and mobility in electrolytes were calculated by analyzing complex dielectric measurements.

2. Experiments

2.1 Materials

PAN, LiI, MgI₂, Hex₄N⁺T, iodine (I₂), PC and EC all with purity greater than 98%, all from Aldrich were used as starting materials. Prior to use Hex₄N⁺T and PAN were vacuum dried for 24 h at 50 °C and LiI was vacuum dried for 4 h at 150 °C in a vacuum oven.

2.2 Gel Electrolyte Preparation

Two gel electrolyte complexes were prepared by keeping the mass fractions of PAN (0.10 g), PC (0.40 g), EC (0.40 g) unchanged and varying the amount of salt according to Table 1. The amount of iodine added was fixed at 0.1 times of the total number of moles of salts in the electrolyte.

Initially the relevant weights of EC, PC and salts were mixed in a closed glass bottle by continuous stirring at 50 °C for about 3 h. Then PAN was added to the mixture which was stirred further keeping it at 40 °C for about 2 h. Finally, iodine was added to the mixture and heated to ~100 °C along with continuous stirring for a few more minutes until a homogeneous viscous solution was obtained. The resulted hot viscous gel was pressed between two glass plates (laboratory microscope glass slides) in order to obtain a quasi-solid-state polymer electrolyte film of a thickness of about 0.5 mm.

2.3 Measurements

The complex impedance measurements were

performed using a HP 4292A RF impedance analyzer in the 10 Hz-10 MHz low frequency range to evaluate the samples. The temperature of the sample varied from 0 % to 60 % and the measurements were taken at 5 % intervals.

DSC (differential scanning calorimetric) thermograms were obtained using a Mettler Toledo 30 differential scanning calorimeter to DSC understand the thermal behavior of the sample. The glass transition temperature (T_{g}) was extracted from DSC thermograms. Each sample was scanned between -130 $^{\circ}$ and 100 $^{\circ}$ with a rate of 10 $^{\circ}$ min⁻¹. Thermal measurements were carried out with several consequent heating and cooling cycles with the same sample. A flow of nitrogen gas was maintained over the perforated pan to avoid any contact with atmospheric moisture.

3. Theory

The conductivity (σ) of a single ion conducting electrolyte is given by the equation

$$\sigma = n e \mu \tag{1}$$

In order to characterize the electrolyte, it is important to calculate mobility (μ) and charge carrier density (n).

According to the Refs. [5, 6] the effective dielectric constant of an electrolyte sandwiched between two blocking electrodes can be represented by

$$\varepsilon^* = \varepsilon'_{\infty} \left\{ \left(1 + \frac{\delta}{1 + (\omega\tau)^2 \delta} \right) - i \left(\frac{\omega\tau\delta^{3/2}}{1 + (\omega\tau)^2 \delta} \right) \right\}$$
(2)

where, ε'_{∞} is the high frequency permittivity, ε^* is the effective complex dielectric constant, ω is the angular frequency of the signal, δ is a constant and τ is the dielectric relaxation time corresponding to the maximum dielectric loss tangent. Therefore, $\tan(\phi)$, the dielectric loss tangent can be obtained by equation

$$\tan(\phi) = \frac{\omega \tau \sqrt{\delta}}{1 + \omega^2 \tau^2}$$
(3)

The δ is given by

$$\delta = \frac{d}{\left(D\tau\right)^{1/2}} = \frac{d}{\lambda} \tag{4}$$

System (1)	PAN/EC/P	C/I ₂ /Hex ₄ NI:Mg	I_2					
Electrolyte	A1	<i>B</i> 1	<i>C</i> 1	D1	E1	F1	G1	
MgI_2 / g	0.00	0.02	0.04	0.06	0.08	0.10	0.12	
$Hex_4N^+I^-/g$	0.12	0.10	0.08	0.06	0.04	0.02	0.00	
I_2 / g	0.0063	0.0071	0.0078	0.0086	0.0094	0.0102	0.0109	
System (2)	PAN/EC/P	PAN/EC/PC/I ₂ /Hex ₄ NI:LiI						
Electrolyte	A2	<i>B</i> 2	<i>C</i> 2	D2	<i>E</i> 2	F2	<i>G</i> 2	
LiI / g	0.00	0.02	0.04	0.06	0.08	0.10	0.12	
$Hex_4N^+I^-/g$	0.12	0.10	0.08	0.06	0.04	0.02	0.00	
I_2 / g	0.0063	0.0090	0.0118	0.0145	0.0173	0.0200	0.0227	

Table 1 Electrolyte composition, where the amount of PAN, PC and EC were kept at 0.10 g, 0.40 g and 0.40 g respectively.

$$D = \frac{d^2}{\delta^2 \tau} \tag{5}$$

where, 2d and λ are sample length and the Debye length. The Nernst-Einstein relation gives the relationship between the mobility (μ) and the diffusion coefficient (*D*).

$$\mu = \frac{eD}{k_B T} \tag{6}$$

Charge carrier density (*n*) is given by Eq. (5), where, k_B is the Boltzmann constant, σ is the conductivity and *T* is the absolute temperature.

$$n = \frac{\sigma k_B T}{e^2 D} \tag{7}$$

The conductivity (σ) can be calculated using

$$\sigma = \frac{l}{RA} \tag{8}$$

where, l is the sample length (2*d*), R is the resistance and A is the area of the sample.

4. Results and Discussion

Two different quasi-solid-state electrolyte systems were compared in this study. System 1 is PAN/EC/PC/I₂/Hex₄NI:MgI₂ electrolyte and system 2 is PAN/EC/PC/I₂/Hex₄NI:LiI electrolyte. The conductivity variation as a function of 1,000/*T* is shown in Fig. 1 for system 1. Eq. (8) was used to calculate the conductivity. Hex₄NI alone as the iodide salt (sample *A*1) gave the maximum ionic conductivity, 2.51×10^{-3} S cm⁻¹ at 25 °C out of samples in system 1. In this PAN/EC/PC/I₂/Hex₄NI:MgI₂ system, a reduction in conductivity is observed with added amount

Fig. 1 Conductivity vs. 1,000/T for PAN/EC/PC/Hex₄NI: MgI_2 electrolytes containing different Hex_4NI and MgI_2 compositions as given in Table 1.

Fig. 2 Conductivity vs. 1,000/*T* for PAN/EC/PC/Hex₄NI: LiI electrolytes containing different Hex₄NI and LiI compositions as given in Table 1.

of MgI₂ (Fig. 1) which may be a result of cross link formation of Mg⁺² ions with CN groups in PAN chains [4]. Hence, the lowest conductivity is given by sample *G*1. Higher flexibility in polymer chains is necessary to obtain higher conductivity. The higher the cross links the lower the polymer flexibility, leading to lower the conductivity.

In system 2 (PAN/EC/PC/I₂/Hex₄NI:LiI), an increase in conductivity is observed with added amount of LiI (Fig. 3). The maximum ionic conductivity of 3.14×10^{-3} S·cm⁻¹ at 25 °C is shown by the sample which contained only the LiI salt (sample G2). In system 1, neither Hex_4N^+ nor Mg^{2+} is moving since $\text{Hex}_4 N^+$ is a bulky cation and Mg^{2+} can form cross links [2-4]. In the present system, Li^+ ion can be considered as a moving ion and contributes to the conductivity [7, 8]. The mobility of Li^+ ion is higher than that of Hex_4N^+ and Mg^{2+} . The increasing trend in T_{g} observed with added amount of LiI reveals the reduction of flexibility of polymer chains with LiI amount. This may be a result of ionic complexes and undissolved solutes at higher LiI concentrations.

Eqs. (5)-(7) were used to calculate *D*, μ and *n*. The parameters δ and τ were obtained by fitting measured data to Eq. (3).

Calculated values D, μ , n for system 1 (in Table 2) also show minimum at the sample G1 (sample which contained only the salt MgI₂) providing evidence for

the observed lower conductivity. Highest mobility value of $6 \times 10^{-7} \text{ m}^2 \cdot \text{V}^{-1} \cdot \text{S}^{-1}$ observed for the system 1 containing only the Hex₄NI salt (sample *A*1) may be an effect of presence of large Hex₄N⁺ ion where large cations can place within the polymer network making polymer chains more separated and flexible. Diffusion coefficient values also shows maximum at sample *A*1 by giving $2 \times 10^{-8} \text{ m}^2 \cdot \text{s}^{-1}$. In general electrolyte containing LiI has shown higher mobilities than that of containing MgI₂. This can be due to the ability of Mg⁺² ions to make stronger interactions with ionic species in the electrolyte than Li⁺ ions.

Fig. 3 shows the DSC thermograms of electrolyte systems 1 and 2. All the samples have shown clear glass transition at around 100 °C. The T_g (glass transition temperature) also can be related to the flexibility of the polymer chains [9, 10] and the highest T_g is observed for the electrolyte containing only the MgI₂ salt (sample G1). Low T_g values were observed for the samples which contained salt mixtures and this may be a result of increased flexibility in polymer chains due to structural disorders imposed by small and large cations. Lower T_g values are shown for the electrolytes containing MgI₂ and then that of sample containing LiI. For electrolyte sample preparation the weights ratio of the salts were kept fixed. Since LiI has lower molar weight than other iodides in these electrolytes, the

Fig. 3 DSC thermograms of electrolyte samples given in Table 1 under heating rate of 10 °C min⁻¹.

Conductivity and Thermal Properties of PAN Based Polymer Electrolytes for Possible Application in Photo Electrochemical Solar Cells

Sample	$D(\mathrm{m}^2\cdot\mathrm{S}^{-1})$	$\mu(\mathbf{m}^2 \mathbf{V}^{-1} \cdot \mathbf{S}^{-1})$	$n ({ m m}^{-3})$			
System 1	PAN/EC/PC/I ₂ /Hex	K_4 NI :MgI ₂				
A1	2×10^{-8}	6×10^{-7}	2×10^{24}			
B1	6×10^{-9}	5×10^{-7}	5×10^{24}			
E1	5×10^{-9}	2×10^{-7}	3×10^{24}			
F1	6×10^{-9}	2×10^{-7}	2×10^{24}			
G1	8×10^{-10}	3×10^{-8}	9×10^{23}			
System 2	PAN/EC/PC/I ₂ /Hex ₄ NI :LiI					
A2	2×10^{-8}	6×10^{-7}	2×10^{24}			
B2	1×10^{-8}	4×10^{-7}	3×10^{24}			
E2	4×10^{-8}	2×10^{-6}	2×10^{24}			
F2	3×10^{-8}	2×10^{-6}	2×10^{24}			
G2	7×10^{-9}	3×10^{-7}	7×10^{24}			

Table 2 The diffusion coefficient (*D*), the mobility (µ) and the density of charge carriers (*n*) of some electrolyte samples at 25 °C.

number of ions in LiI containing electrolytes are higher. Hence, number of intermolecular interactions is higher for the electrolytes in system 2 leading higher T_{g} .

5. Conclusions

Two gel type or quasi solid state electrolyte systems namelv PAN/EC/PC/I₂/Hex₄NI:MgI₂ and PAN/EC/PC/I₂/Hex₄NI:LiI were prepared and complex impedance measurements and differential scanning calorimetric measurements were carried out. The diffusion coefficient, the mobility and the density of charge carriers in the electrolytes were calculated using complex impedance data and equations obtained for dielectric loss tangent. In the PAN/EC/PC/I2/Hex4NI:MgI2 system a decrease in conductivity was observed with the increasing of MgI₂ amount while an increase in conductivity was observed with the increasing of LiI amount in the system PAN/EC/PC/I2/Hex4NI:LiI. All the samples show clear glass transition temperature around -100 $^{\circ}$ C. The resulted values for the density of charge carriers, the mobility and the diffusion coefficient are around 10^{24} m⁻³. 10^{-7} m²·V⁻¹·s⁻¹ and 10^{-9} m²·s⁻¹. These types of iodide ion conducting electrolytes are suitable to use in photoelectrochemical solar cells.

Acknowledgments

Research support from The National Research

Council Sri Lanka (Grant 11-196), as well as from the Swedish Research Council is gratefully acknowledged.

References

- M.B. Armand, M.J. Chabagno, M.J. Duclot, Fast ion transport in solids, Elsevier North Holland, New York, 1979, pp. 131-136.
- [2] T.M.W.J. Bandara, M.A.K.L. Dissanayake, W.J.M.J.S.R. Jayasundara, I. Albinsson, B.E. Mellander, Efficiency enhancement in dye sensitized solar cells using gel polymer electrolytes based on a tetrahexylammonium iodide and MgI₂ binary iodide system, J. Physical Chemistry Chemical Physics 14 (2012) 8620-8627.
- [3] T. Svensson, T.M.W.J. Bandara, E. Lundell, I. Svensson, M. Furlani, I. Albinsson, B.E. Mellander, Estimation of ion transport parameters by modeling space charge relaxation in PEO based solid polymer electrolyte intended for photoelectrochemical solar cells, in: Proceedings of Solar Asia 2011 Int. Conf., Institute of Fundamental Studies, Kandy, Sri Lanka, 2011, pp. 221-227.
- [4] T.M.W.J. Bandara, M.A.K.L. Dissanayake, I. Albinsson, B.E. Mellander, Dye-sensitized nono-porus TiO₂ solar cell with Polyacrylonitrile: MgI₂ plasticized electrolyte, J. Power Sources 195 (2010) 3730-3734.
- [5] T.M.W.J. Bandara, M.A.K.L. Dissanayake, I. Albinsson, B.E.Mellander, Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr_4N^+T using electrical and dielectric measurements, Solid State Ionics 189 (2011) 63-68.
- [6] T.M.W.J Bandara, B.E. Mellander, Evaluation of mobility, diffusion coefficient and density of charge carriers in ionic liquids and novel electrolytes, In: Alexander Kokorin (Ed.), Ionic Liquids: Theory,

Conductivity and Thermal Properties of PAN Based Polymer Electrolytes for Possible Application in Photo Electrochemical Solar Cells

Properties, New Approaches, In Tech, Rijeka, Croatia, 2011, pp. 383-406.

- [7] A.M. Stephan, Review on gel polymer electrolytes for lithium-ion batteries, Eur. Polym. J. 42 (2006) 21-42.
- [8] J.Y. Song, Y.Y. Wang, C.C. Wan, Review of gel-type polymer electrolytes for Lithium-Ion batteries, J. Power Sources 77 (1999) 183-197.
- [9] Y. Tominaga, S. Asai, M. Sumita, S. Panero, B. Scrosati,

A novel composite polymer electrolyte: Effect of mesoporous SiO_2 on ionic conduction in poly (ethylene oxide)-LiCF₃SO₃ complex, J. Power Sources 146 (2005) 402-406.

[10] Y.J. Wang, Y. Pan, L. Wang, M.J. Pang, L. Chen, Conductivity studies of plasticized PEO-Lithium chlorate-FIC filler composite polymer electrolytes, Mater. Lett. 59 (2005) 3021-3026.