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Abstract 

In this study we explore the environmental covariates that are useful in mapping SOC 

contents in tropical paddy growing soils in Northern Sri Lanka.  We carried out digital mapping 

of SOC contents across the study area using a spatial soil prediction function with auto correlated 

errors via linear mixed models (LMM). Two separate LMMs were fitted considering two depth 

intervals, 0 to 0.15 m and 0.15 to 0.30 m respectively. Results revealed that environmental 

covariates of SOC content for the two depth intervals considered in this study were different 

despite being situated within a zone typically considered as the top soil (0 to 0.3 m). Landsat 8 

bands and its products derived from those bands (namely Landsat 8 band 2, band ratios 4/3 and 

4/7) were identified as SOC significant environmental covariates for both depth intervals. In 

terms of spatially auto correlated residuals, optimum spatial models for both depth intervals were 

identified as a spherical model. Residuals were found to be spatially auto correlated up to 10000 

m and 5000 m for 0 to 0.15 m and 0.15 to 0.30 m depth intervals respectively. Cross validation 

results suggest that fitted LMMs are adequate to carry out mapping across the study area with 

little difference between estimated bias (- 0.006 % for 0 to 0.15 m and -0.004 % for 0.15 to 0.30 

m depth intervals) and accuracy (0.441 % for 0 to 0.15 m and 0.367 % for 0.15 – 0.30 m depth 

intervals) for fitted LMMs considering two depth intervals. However, in case of Lin’s 
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concordance correlation value, 0 to 0.15 m depth interval reported higher value (0.81) compared 

to 0.15 to 0.30 m depth interval (0.60) suggesting upper depth interval model is much superior to 

the lower one.  In conclusion, this study provides; a) firsthand information on current status of 

SOC contents in northern paddy growing soils in Sri Lanka, b) generated information that are 

useful to optimize spatial sampling of SOC in future applications and c) provided firsthand 

information vital to establishment of a national carbon accounting system in future.  

 

Keywords: Soil organic carbon, digital soil mapping, spatial modeling, tropical paddy fields 

 

1. Introduction 

 SOC is continuously subjected to decomposition and other biologically mediated 

transformations that generate or consume greenhouse gases (Baldock et al., 2012). In the global 

context, soils and their management have the potential to either increase or reduce atmospheric 

concentrations of greenhouse gases and the magnitude of any associated climate change 

(Baldock et al., 2012). Additionally, SOC plays a vital role in maintaining different biological, 

chemical and physical properties and processes that exist in soils and are important in sustaining 

the ecosystem services (Baldock and Broos, 2011). Therefore, a decline in SOC will have 

negative consequences in relation to soil health and productivity. 

Due to the importance of SOC, much attention has been given to the digital mapping of 

SOC and its fractions or conceptual pools in space (e.g. Karunaratne et al., 2014a), space and 

depth (3D) (e.g. Poggio and Gimona, 2014) and, space and time (e.g. Karunaratne et al., 2014b). 

Digital soil mapping (DSM) techniques are used to estimate SOC contents/concentration and 

stock/density (Minasny et al., 2013). Methods of mapping soil properties including SOC using 

the DSM approach can be broadly categorized under three main approaches i.e. geostatistical; 

deterministic and hybrid geostatistical approaches. Out of these three approaches, the most 

common approach practiced is the hybrid geostatistical approach. Among the different hybrid 

geostatistical approaches, such as co-kriging, universal kriging and regression-kriging, latter 

described by Odeh et al. (1995) is the most commonly applied method. In this study we adopted 

a similar approach to regression-kriging approach in terms of linear mixed model (LMM) as 

described by Lark et al. (2006). The application of LMMs for DSM of carbon stocks and the 
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associated measureable fractions were successfully demonstrated by Karunaratne et al.  (2014b) 

and Karunaratne et al.  (2014a). 

As with many countries in South and South East Asia, rice is the staple food of Sri 

Lanka. It has been reported that paddy fields have higher SOC storage and sequestration capacity 

compared to dry land cropping systems (Pan et al., 2004). Rice cropping under waterlogged 

conditions enhances the soil organic matter (SOM) accumulation (Lal, 2002).   The 

decomposition rates of SOM are considered to be smaller under anaerobic conditions than under 

aerobic conditions (Sahrawat, 2003), resulting in SOM accumulation and ensuring the carbon 

remains sequestered in the soils. Wu (2011) reported that SOC accumulation in paddy 

ecosystems was faster and more pronounced than in other arable ecosystems.  Additionally, 

higher content of silt and clay in paddy soils compared with upland soils contributes to the larger 

SOC accumulation (Lal, 2002). Therefore, the maintenance of SOC in paddy fields is important 

not only for improving agricultural productivity but also for the reduction of greenhouse gas 

emission. However, little information is available on the SOC contents/stocks in tropical and 

sub-tropical paddy soils. It has been reported that SOC in China’s paddy growing top soils 

contribute approximately 1.3 Pg, which is about 2% of the total SOC storage in the topsoil (Pan 

et al., 2004). A study conducted in Indo Gangetic Plains of India reported the total organic 

carbon (TOC) concentration is 6.8 g kg
−1

 in the surface 0 to 0.15 m soil layer (Nayak et al., 

2012). Few studies have mapped the SOC contents and stocks in paddy growing soils (Sumfleth 

and Duttmann, 2008; Minasny et al. 2012). So far, no studies have investigated the spatial 

distribution of SOC in paddy growing soils at a regional scale within Sri Lanka. 

In Sri Lanka, land cultivated under paddy covers approximately 34 % of the total 

cultivated lands (Central Bank of Sri Lanka, 2014). Rice is cultivated mainly using two cropping 

systems i.e. mono crop and crop rotation using either irrigated or rainfed. Rain is received from 

two major monsoon namely: South West monsoons (Yala season) [May to September] and North 

West monsoons (Maha season) [October to February]. In northern dry zone of Sri Lanka, rice is 

cultivated mainly in the Maha season and in the Yala season those lands either kept as fallow 

lands or crop with other field crops.  

Currently the Sri Lankan rice sector is facing numerous issues such as low yield, 

increasing fertilizer cost, adverse weather conditions and insufficient supply of irrigation 

(Central Bank of Sri Lanka, 2014). Therefore, firsthand information vital for regional scale land 
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resource planning will be provided through DSM of SOC which includes current status and 

information on soil health in the paddy growing regions.    

In this study we have applied DSM techniques to quantify the SOC content across the 

paddy growing soils covering the Northern Province of Sri Lanka. We have concentrated on 

mapping SOC contents due to absence of bulk density data, which prevented the calculation of 

SOC stocks/densities. Significantly this is the first detailed study on digital mapping of any soil 

property covering a large area of extent using DSM approach in Sri Lanka.  Specific aims of this 

study were to; (a) develop an appropriate spatial soil prediction function with an auto correlated 

error (SSPF) model for the identification of environmental drivers and to carry out prediction of 

SOC contents across the study area; (b) validate the developed SSPF and finally (c) discuss the 

possible use of derived DSM products in regional and national level planning related to soil and 

land resources.  

 

2. Methods 

2.1. Study area 

This study was carried out in paddy growing soils in the Northern Dry Zone of Sri Lanka. 

Samples were selected from the following districts (administrative units) namely: Jaffna, 

Kilinochchi, Vavuniya, Mannar and Mullaitivu. Major soil types in the study area that grow rice 

incudes; Low Humic Gley Soils (USDA Soil taxonomy order: Alfisols; Word reference base  

Major group: Gleysols), Calcic Red Yellow Latosol (USDA Soil taxonomy order: Oxisols; Word 

reference based  Major group: Ferralsols), Solodized solonetz (USDA Soil taxonomy order: 

Alfisols; Word reference base Major group: Solonetz) and Alluvials (USDA Soil taxonomy 

order: Entisols; Word reference base Major group: Fluvisols)  (Panabokke, 1996). The average 

mean temperature of the study area varies in between 25.0 to 27.5 
o
C while annual cumulative 

rainfall is reported in between 1000 to 1500 mm (Survey Department of Sri Lanka, 2007). 

Rainfall of the study area is seasonal and mainly governed by the North East Monsoon. Terrain 

of the study is characterized with undulating terrain which is common in the defined dry zone 

catena of Sri Lanka.  
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2.2. Soil sampling collation design  

A purposive sampling design was adopted in this study considering the limited budget 

and accessibility. A brief description on the sampling design adopted in this study is described as 

follows. Twenty one (n = 21) main sampling sites were selected considering the percentages of 

land area under paddy in each administrative district (Table 1). These 21 main sites were selected 

depending on accessibility for the paddy sites. In order to determine the local variation of SOC, 

additional sampling site was selected for each main sampling site. This is similar to approach 

adopted by Dorji et al. (2014) where paired sampling was carried out for main sampling 

locations at approximately distance of 1 km which resulted total of 42 sampling sites. Finally, 

considering those resulted 42 sampling sites, another close range sample was taken at 

approximate distance of 100 m away similar to approach described by Karunaratne et al. (2014b) 

except in one location. In total, 83 samples were selected to represent the paddy growing soils of 

northern Sri Lanka (Table 1). Soil samples were collected at two depth intervals namely 0 to 0.15 

m and 0.15 to 0.30 m respectively targeting SOC content of top soils. Sampling was carried out 

in January 2015. Figure 1 depicts the distribution of sampling locations and paddy fields within 

the study area. 

 

Tables 1 here 

 

 Figure 1 here 

 

2.3. Preparation of soil sample and analysis 

All visible organic debris, stones and plant roots were removed and large soil aggregates 

were crushed prior to sieving of samples. Then samples were sieved using a 2 mm mesh sieve. 

Prepared samples were analysed for SOC, soil moisture content, soil pH (1:2 soil: water 

suspension) and conductivity. For the current study we concentrated on the analytical values of 

SOC contents. For the SOC analysis, samples were air dried and ground to a powder to less than 

0.15 mm and determination of TOC was carried out using ‘wet’ oxidation by acidified 

dichromate of organic carbon (Baker, 1976). In this study TOC is considered as equal to SOC.  
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2.4. Preparation of environmental covariates 

Table 2 summarises different environmental covariates used in the development of SOC 

spatial models in this study. These environmental covariates can be grouped into four main 

categories; topographic, climatic, biological, and spatial which represent some elements of the 

SCORPAN prototype DSM model described by McBratney et al. (2003). In preparation of the 

environmental covariates all the covariates were re-projected to Sri Lankan national grid 

(projected coordinate system). Prior to spatial modeling all the environmental covariates were re-

sampled to a common grid which is equivalent to 100 m spatial resolution.  

The digital elevation model (DEM) for the study area was obtained from the NASA 

Shuttle Radar Topography Mission. The DEM was processed to ensure that there were no 

artificial sinks, using SAGA version 2.0.6 software as described by Wang and Liu (2006) 

(www.saga-gis.org/en/index.html). A topographic wetness index (TWI) was created using the 

corrected DEM employing TWI module within the SAGA software. The TWI represent the 

spatial distribution of potential soil moisture. It is a secondary terrain attribute and widely used in 

DSM.  

Climate data including annual cumulative rainfall, annual mean maximum temperature 

and annual mean minimum temperature data were obtained from the WorldClim climate 

database (http://www.worldclim.org/). Annual mean temperature was derived using annual mean 

maximum and annual mean minimum temperature layers.  

Three Landsat 8 image tiles available from United States Geological Survey (USGS) 

covering the entire study area, acquired on 14
th

 June 2014 (Path - 141, Row – 54), 05
th

 June 2014 

(Path - 142, Row – 53) and 21
st
 June 2014 (Path - 142, Row – 54) were selected considering 

minimum impact on cloud cover which is a difficult factor to avoid in tropical environments. 

Acquired images were converted to top of atmospheric reflectance using the information 

available in the associated meta data files. Individual Landsat 8 bands namely: band 2 - blue 

(0.45 – 0.51 µm), band 3 - green (0.53 – 0.59 µm), band 4 – red (0.64 – 0.67 µm), band 5 – near 

infrared (0.85 – 0.88 µm), band 6 – short wave infrared 1 (1.57 – 1.65 µm), and band 7 - short 

wave infrared 2 (2.11 – 2.29 µm) were included as environmental covariates. Additionally, 

Landsat 8 band ratios namely band 4 / band 3, band 4 / band 7, band 6 / band 7 were derived. 
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Furthermore, normalized vegetation index (NDVI = [band 5 – band 4] / [band 5 + band 4]) was 

derived and included as an environmental covariate. Landsat image processing was carried out 

using Erdas Imagine software version 11. Additionally, X and Y coordinates were included as 

environmental covariates in the current modeling.  

 

 Table 2 here 

 

2.5. Development of spatial soil prediction function with auto correlated error 

The environmental covariates were intersected with the sampling sites and values were extracted. 

Ranges of values of extracted for the environmental covariates at sampling sites and their 

original range values are depicted in Table 2. The DSM modeling in this study was performed 

using LMMs. LMMs belong to hybrid geostatistical modeling class and more details on them 

and how they differ from popular regression-kriging approach can be found in Lark et al., 2006. 

The main difference between regression-kriging and LMM is that, in the latter estimation of 

parameters both fixed effect terms (i.e. regression coefficients) and random effect terms (i.e. 

variogram parameters for residuals) are done simultaneously rather than in two separate steps. 

The general form of LMM used for spatial prediction can be written as (after Lark et al., 2006); 

 

z = Xτ + Zu + ε          1 

   

where z is a vector of observed responses (n) (SOC content values for respective depth interval), 

X is an n x p design matrix that associates each of the n observations with a value of each p 

environmental covariates/fixed effect terms (See Table 2 and selected based on most the 

parsimonious model as described below), and τ is a vector that contains the p fixed effect terms 

coefficients (parameters that describe the relationship between the fixed effect terms, X and the 

response, z). The vector u contains q random effect terms, realisations of a variable u, that are 

associated with the n observations by the n x q design matrix Z. The u is spatially dependent 

random variable and the term ε is a vector of independent random errors. These terms are 

independent of each other and; contain random errors which are spatially correlated such that; 
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 2 

        

where G is the correlation matrix where the correlation depends only on the relative locations of 

the observations, I is the identity matrix, σ
2
 is the variance of the independent error and ξ is the 

ratio of the variance of u to σ
2 

(Lark et al., 2006). Here  refers to the vector of means of

. Also, refers to the variance-covariance matrix. So the variance-covariance 

matrix of u is , the variance-covariance matrix for  is , i.e. 

independent random errors, and cov(u, ε) = 0, means a matrix of all zeros, implying that the 

spatial effects u are independent of the random errors . 

The most parsimonious spatial LMM model for two depth intervals was selected using 

backward elimination similar to Karunaratne et al. (2014,ab). Backward elimination stopped 

when all P-values were equal or less than 0.1.  

 

2.6. Assessment of fitted model quality 

Assessment of the model quality was performed using leave-one-outcross-validation 

(LOOCV) where each observation was removed from the data set and the SOC content at that 

location was predicted using the remaining observations. Four measures of model quality were 

calculated: 

Mean error (ME) 

         3 

where is the measured SOC content while  is the predicted SOC content from LOOCV.  

 

Root mean square error (RMSE) 

        4 
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Mean standardized squared deviation ratio (MSDR)  

         5 

where is the prediction variance from empirical best linear unbiased predictor (E-BLUP). 

 

Lin’s concordance correlation coefficient (LCC) 

        6 

where;  is the estimated LCC,  and  are the means for the measured and predicted SOC 

contents and  and are the corresponding variances of measured and predicted SOC 

contents and  is the Pearson correlation coefficient between the measured and predicted SOC 

contents.  

The ME gives an estimate of the bias in the predictions while the RMSE indicates the 

accuracy of the predictions. The LCC indicates how well a plot of the measured SOC contents 

values vs. predicted SOC content values follows a 45 degree line (Lin, 1989). A LCC value close 

to 1 indicates that the measured vs. predicted values closely match each other.  

 The bootstrapping approach outlined by Lark (2002) was used to estimate the 95% 

confidence interval (CI) around the median and mean MSDR. A mean value of 1.00 and median 

of 0.455 indicates that the prediction variance accurately reflects the actual errors and in that case 

our models for spatial variation of SOC contents is considered as acceptable (Lark, 2002). 

 Fitting of the LMMs for two depth intervals, cross validation of derived optimum spatial 

models including bootstrapping were carried out using geoR package (Ribeiro Jr and Diggle, 

2001) using a customized routine programmed in R statistical programming language (R 

Development Core Team, 2014).  

 

 

2.7. Predictions: mapping across the study area 

The optimal models identified in the model fitting process were used to predict SOC contents 

across the study area. Estimated fixed effect terms and variance parameters from the geoR 
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package were extracted and included as suitable for model fitting process in gstat package. 

Finally, prediction was carried out using E-BLUP using the gstat package in R statistical 

programming language (Pebesma, 2004).  

 

 

3. Results 

3.1. Summary statistics for SOC contents 

Summary statistics revealed that mean SOC content for the 0 to 0.15 m reported as 1.78 

% (±0.78) while 1.03 % (±0.47) for the 0.15 to 0.30 m depth interval. SOC in the upper depth 

interval also had a higher standard deviation (Table 3). Reported skewness values for both depth 

intervals are less than one (1) which is proxy for normal distribution of the measured data 

(Webster and Oliver, 2007). Many SOC studies reported to have a skewed distributions and most 

instances negative skewed (Karunaratne et al., 2014b; Minasny et al., 2013).   

Summary of SOC values with respect to major soil types are depicted in Table 4.  

Highest mean SOC for two depth intervals was recorded for Low Humic Gley Soils which are 

situated in low slopes and valley bottoms in the characteristics undulating terrain in the dry zone 

of Sri Lanka. These soils further characterize with poorly drained soils. Lowest mean SOC 

content for two depth intervals are reported for Alluvials soils.  

 

 

 Table 3 here 

 Table 4 here 

 

3.2. Estimated fixed and random effect terms 

Estimated fixed effect terms of the LMMs for the two depth intervals are depicted in 

Table 5. Based on the results; main environmental covariates that were significant and explains 

the variability of SOC across the landscape for the 0 to 0.15 m depth interval SOC were 

elevation, Landsat 8 bands 2,4,7, X coordinate, Landsat 8 band ratios4/3 and 4/7. For 0.15 to 

0.30 m depth interval main environmental covariates that were significant and explains the SOC 

variability across  the landscape were Landsat 8 bands 2,5,6, Y coordinate, Landsat 8 band ratios 
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4/3 and 4/7 and NDVI. Landsat band 2 and band ratios; 4/3 and 4/7 were identified as common 

environmental covariates that were related to of both depth intervals.  

Estimated spatially correlated random effect terms of the LMM residuals of the two depth 

intervals are depicted in the Table 6. Results revealed that for 0 to 0.15 m depth interval residuals 

are spatially auto correlated to up to 10000 m while only 5000 m for the depth interval 0.15 to 

0.30 m depth interval. The Nugget to Sill ratio was 41.21 % and 61.00 % for 0 to 0.15 m and 

0.15 to 0.30 m depth intervals respectively.  

 

Table 5 here 

 

Table 6 here 

 

 

3.3. Model validation  

Model validation results based on LOOCV are depicted in Table 7. Both the ME and 

RMSE values for two depth intervals were close to zero (0) (Table 7). The reported CCC value 

for upper depth interval SOC content was higher than the lower depth interval (Table 7). The 

graphical summary of the LOOCV results for each depth interval is depicted in the Figure 2.  

 

 Table 7 here 

 

 Figure 2 here  

 

 The results of the bootstrap analysis are summarized in Table 8.  Results revealed the 

estimated median MSDR value for both depth intervals were quite close to 0.455. However, the 

mean MSDR value of 0.98 and 0.99 reported for depth interval 0 to 0.15 and 0.15 to 0.30 m 

respectively. Furthermore, median MSDR values for the lower 5 % and upper 95 % confidence 

interval for both depth interval reported similar values (Table 8).  

 

 Table 8 here  
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3.4. Mapped distribution of SOC across the study region  

 Figure 3 shows the spatial distribution of SOC content (Figure 3a,b) and the associated 

uncertainty in terms of prediction variance (Figure 3c,d). It is evident that the northern part of the 

study area reported lower SOC content for both depth intervals (Figure 3a,b). Additionally, 

variance maps provide estimates of the   uncertainty of the created maps. It is therefore, essential 

to report this prediction uncertainty since these maps are later used for policy decision making in 

country’s agricultural context. Predictions were carried out across a land extent of 1169.95 km
2 

covering all the paddy growing regions identified in the study area based on 1:50,000 map sheets 

produced by Survey Department of Sri Lanka.  

 

 

 Figure 3 here 

 

4. Discussion 

4.1. Comparison of SOC content values with paddy growing soils vs. dryland cropping systems 

in the study area 

 Any vegetation will possess the ability to sequester atmospheric carbon and store it in 

their above ground biomass. This biomass will eventually fall onto the soil and be sequestered 

into soil carbon primarily through the continuous process of microorganisms activities. Rates of 

decomposition of SOM in low land conditions are considered to be slower under continuous 

water logging resulting a relatively greater accumulation of SOC in soil (Kölbl et al., 2014). A 

study conducted by Ratnayake et al., (2014) in the Jaffna district of Sri Lanka which is situated 

within the current study area focused on upland land uses with annual crops (such as Chili and 

Onion crop rotation) and perennial crops (such as banana) showed that the average SOC contents  

are considerably lower (<0.4%) in comparison to SOC contents reported in our current study 

(Table 3). Additionally, these low levels of SOC content are explained by the amount of crop 

residues returned to the soil, excessive tillage and imbalance in fertilizer use (Ratnayake et al., 

2014). Therefore, compared with the upland cropping systems, rice fields situated in the low land 

landscape accumulated more SOC which exhibits greater potential to store SOC in terms of 

carbon sequestration.  

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

13 
 

4.2 Sampling, sampling density and its representativeness of environmental covariates 

 Soil sampling surveys are costly and time consuming. Therefore, it is important to 

allocate soil samples in an optimal manner especially if it is intended to collect data for mapping 

purpose. Due to the associated cost of sampling and laboratory analysis it is common for DSM 

studies to have low sampling densities especially in developing counties where soil information 

is rarely collected across the landscape.  In this study sampling density was 14.1 km
2 

for one 

sample.   

The sampling scheme adopted in this current study was designed to capture the inherent variation 

of SOC, specifically the short range variation based on the work carried out by Dorji et al. (2014) 

and Karunaratne et al. (2014a,b), whilst considering the limited budget and accessibility of the 

sampling sites. In this study the main sampling locations were selected without considering the 

inherent variation of the environmental covariates. Therefore, the adoptation of sampling 

methods such as conditional latin hypercube sampling (cLHS) will enable the allocation of a 

limited number of sampling sites optimally considering distribution of respective environmental 

covariates (Minasny and McBratney, 2006). The cLHS algorithm select samples that form a 

Latin hypercube in the feature space created using environmental covariates (Minasny and 

McBratney, 2006). This enables covariates at sampling locations to have a similar distribution to 

the original environmental covariates used in the spatial modeling process. Comparison of 

summary statistics values of the environmental covariates and those extracted environmental 

covariate values at sampling locations were closely match with each other in case of their ranges 

(see Table 2). However, application of algorithms such as cLHS in low sampling density DSM 

mapping will be useful in future applications. Previous research has successfully applied cLHS 

for DSM of SOC (Dorji et al., 2014; Kidd et al., 2015). In the work presented by Dorji et al. 

(2014), a similar sampling method as applied in this current study was adopted, where, the main 

sampling sites were selected based on cLHS and additional samples within a close range to the 

main sample site (approximately 1 – 2 km) were also chosen. Additionally, recent modifications 

performed on cLHS sampling algorithm by Clifford et al. (2014) and Roudier et al. (2012) made 

possible to incorporate cost constrains and other factors in designing spatially optimum sampling 

schemes which might be useful in DSM studies in less data rich counties like Sri Lanka.  

 

4.3. Spatial modelling of soil organic carbon and model accuracy  
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It is evident that environmental covariates that explains SOC contents across the 

landscape for the two depth interval are different (Table 5). Many SOC studies investigating 

multiple depth intervals based on GlobalSoilMap specifications (Arrouays et al.,, 2014) have 

reported that environmental covariates that explains the SOC are different depending on the 

depth interval considered from soil surface (Adhikari et al., 2014; Dorji et al., 2014). In the 

current study, environmental covariates that explains the SOC contents across the landscape 

were represented under three main categories; as relief (elevation and SAGA - WI), organism 

(Landsat 8 bands, ratios and NDVI) and spatial (X and Y coordinates). Both depth intervals 

reported that either of the spatial coordinates were included as significant fixed effect terms in 

the most parsimonious LMM (Table 5). Similar to previous DSM research work, spatial 

coordinates were included in the DSM studies to represent the environmental covariates which 

are not included in the current modelling approach and were used as a proxy for environmental 

gradients (Bishop et al., 2015). In this instance the X and Y coordinates can present the 

environmental variation that is potentially caused by geology and soil types not included in the 

current modelling.  

Landsat 8 bands 2, 4, 7 and 2, 5, 6 were identified as environmental covariates that 

drivers of SOC for 0 to 0.15 m and 0.15 to 0.30 m depth interval respectively. Landsat bands; 2, 

4 (namely blue and red) are within the visible spectrum while 5, 6 and 7 (namely near infrared, 

short wave infrared 1 and short wave infrared 2)  are within infrared and short wave near infrared 

spectrum regions of the electromagnetic spectrum. These Landsat reflectance data are good 

indicators of vegetation rather than soil properties (Bishop et al., 2015). Nevertheless, some of 

these Landsat bands namely red, near infrared and short wave infrared represents biological 

components and its state (e.g. actively growing vegetation or fallow) of the SCORPAN model 

outlined by McBratney et al. (2003). In this study we used single images. However, recent work 

by (Zhao et al., 2015) has highlighted the importance of considering time series images as 

environmental covariates for predicting SOM in low relief agricultural lands. In tropical 

countries sourcing cloud free or less optical remote sensing products such as Landsat satellite 

images from its archive is challenging. Zhao et al. (2015) states that in these environments 

selecting appropriate archived images based on (a) time of the year and (b) location. Using these 

data to derive for summary statistics (e.g. mean, median and standard deviation) are important 

when considered them as environmental covariates. This approach can be further extended by 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

15 
 

performing quantile analysis (e.g. 0.05, 0.50 and 0.95) on time series satellite data on either 

selected bands or derived vegetation indices and create innovative environmental covariates for 

DSM that will enable to capture more variation as opposed to using a single image as applied in 

the current study.   

NDVI was identified as a significant environmental covariate for SOC content for 0.15 to 

0.30 m depth interval. Landsat bands and NDVI are often used as a proxy to represent spatial 

variation of vegetation (Malone et al., 2009). In our study the target land use was paddy-growing 

areas, but there can be differences in vegetation within those considered areas. For instances, 

paddy fields in Northern Sri Lanka, is manly cultivated as seasonal crops in the Maha season 

based on North East monsoon and as a rain fed crop. In the dry season i.e. Yala season field 

crops are cultivated. Therefore, most of the paddy growing soils in Northern Sri Lanka cannot be 

considered as a paddy mono-culture, but are considered as paddy - field crop rotation farming 

system. Additionally, due to 30 years of civil war in Northern Sri Lanka, paddy field boundaries 

extracted from the 1:50,000 maps sheets produced by Survey Department of Sri Lanka, might 

have not been cultivated for a long time period and are potentially subjected to conditions of long 

fallow.  

For both depth intervals Landsat 8 band ratios 4/3 and 4/7 were included as 

environmental covariates for the SOC in Northern paddy fields in Sri Lanka.  Landsat band ratios 

have been reported as soil enhancement ratios and used to represent the carbonate radicals, 

ferrous iron, and hydroxyl radicals in soil (Saunders and Boettinger, 2006). 

Cambardella et al. (1994) categorized spatial dependence based variogram parameters 

namely on the nugget/sill ratio as; high (0-25 %), moderate (25-75 %) and low (>75 %). The 

results of this study indicated that the spatial dependence of spatially auto-correlated residuals 

can be considered as moderate spatial dependence for the both considered depth intervals (See 

Table 6). In this case, variogram parameters were estimated for the residuals. It is well 

documents that SOC inherent large variation which can be correlated spatially from ~ 100 m to 

3000 m (Hengl et al., 2004; Malone et al., 2009; McBratney and Pringle 1999).   

Minasny et al. (2013) reported that many SOC mapping studies do not carry out any form 

of validation. The results of both LOOCV (Table 7) and bootstrap analysis (Table 8) revealed 

that the fitted spatial models adequately and accurately represent the SOC distribution across the 

landscapes. The results of the model validation are acceptable and provide a baseline for SOC 
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modelling in the study region. Nevertheless, fully independent validation based on designed-

based sampling schemes as outlined by Brus et al. (2011) will provide unbiased estimates about 

the prediction quality in future studies as shown in DSM application of clay mapping by Bishop 

et al (2015).  

Interestingly the reported LCC value for the lower depth interval was lower than the 

upper depth interval (Table 7). This may be due to the fact that environmental covariates 

considered (Table 2) represent the variation of top depth interval rather than bottom depth 

interval more adequately.  Additionally, the confidence interval for the LCC of the lower depth 

interval is much wider compared with the upper depth interval (Table 7). Bishop et al. (2015) 

reported that the environmental covariates such as gamma radiometric data are capable to 

penetrate to much lower depth intervals compared to optical remote sensing products such as 

Landsat images similar to the images used in the current study. The inclusion of gamma 

radiometric data may have improved the accuracy of the predictions of the lower depth interval. 

However, in developing counties like Sri Lanka, rich datasets like gamma radiometric are rarely 

available. Recently, Gray et al. (2015) outlined methods to derive cost effective environmental 

covariates such as using terrain attributes (e.g. topo – slope index) and the use of regenerated 

coarse scale geology maps (considering the silica contents).  They demonstrated application of 

these newly derived environmental covariates in DSM of SOC and showed improvement of 

prediction capabilities which might be vital to explore in data limited DSM studies similar to 

current study.  

Lark (2002) reported that it is better to calculate median instead of mean to overcome the 

effect of outliers in calculation of MSDR. In the current study, both the mean and median of the 

MSDR were calculated. Lark (2002) further reported that a mean value close to 1.00 and median 

value close to 0.455 reflects the prediction variance is an accurate representation of the actual 

errors. The estimated mean and median MSDR values in this study were close to the desired 

values stated by Lark (2002) (Table 8).  

 

4.5. Uses of derived SOC digital soil maps  

 According to reviewed literature this is the first detailed study on DSM undertaken in Sri 

Lanka. Therefore, this study provides firsthand information for soil scientists and policy makers 

who are seeking fine resolution digital soil data. The outputs derived in this study can be coupled 
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with different agricultural planning activities from regional and to national scales. At a policy 

level this information is the representation of the current soil health condition or status for paddy 

growing soils in the Northern Sri Lanka.  

One of the major cost components of paddy production in Sri Lanka is the application of 

in-organic fertilizers. Therefore, in regional scale planning of agricultural production, 

information generated from this study can be used to direct paddy growers to incorporate organic 

matter to their lands especially in regions where there are low levels of SOC contents are 

reported.  

 Baldock et al. (2012) reported the possible use of the derived SOC content maps to be 

coupled with the design of spatially optimum sampling strategies. Their study reported that DSM 

products could be clustered using statistical algorithms such as K-means clustering.  This 

approach would enable the identification of homogenous areas based on SOC content map across 

the landscapes as specific regions or strata. Additionally, these regions or strata could be used to 

carry out future sampling of SOC.  

 Currently there is no mechanism to report national carbon accounting in Sri Lanka. 

Therefore, this information will lay a foundation for such a system. For example, derived DSM 

can be coupled with process models (e.g.  RothC carbon model) to predict the space - time 

variation of SOC which will contribute towards below ground carbon accounting. In Australia, 

the national carbon accounting system utilises the RothC carbon model to simulate the changes 

of SOC and assess the below ground carbon (Richards, 2001). Recently, Karunaratne et al. 

(2015) proposed the “Space-time observation system for SOC” to account for changes in SOC. 

This novel approach incorporates DSM, digital climatic layers and satellite derived products 

such as NPP (as a proxy for changes in carbon inputs to ecosystem). Therefore, derived digital 

SOC content maps can be incorporated to simulate changes of SOC through space and time. The 

development of new approaches which utilise satellite derived data are important as soil 

sampling across large regions scale is expensive and time consuming.  

 

5. Conclusions 

This study predicted the spatial distribution of SOC contents at two soil depth intervals 

(i.e. 0 to 0.15 and 0.15 – 0.30 m) across all the paddy growing soils in Northern Sri Lanka. 

Hybrid geostatistical modelling via LMMs were used to identify the environmental covariates 
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that were significant and contribute towards spatial variation of SOC across the landscapes. The 

validation of the results showed that the fitted spatial models were acceptable. It was revealed 

that, significant environmental covariates of SOC were different in the two considered depth 

intervals.  

This study provides: a) firsthand information on current status of SOC in northern paddy 

growing soils in Sri Lanka; b) useful information to optimize sampling of SOC in future 

applications; and c) provide information vital to establishment of national carbon accounting 

system in future.  
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Figure 1. Study area and sampling locations 
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Figure 2. Relationship between measured SOC content vs. predicted SOC content via LOOCV 

 

   

 

 

Depth interval 0 to 0.15 m  Depth interval 0.15 to 0.30 m  
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Figure 3. Predicted SOC contents and prediction variance maps for two depth intervals  
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Table 1.Distribution of main sampling sites and close range sampling sites  

District Number of main 

sampling sites 

Number of samples at  

approximately 1 km 

distance 

Number of samples at  

approximately 100m 

distance 

Jaffna 2 4 8 

Kilinochchi 6 12 24 

Vavuniya 5 10 20 

Mannar 4 8 15 

Mullaitivu 4 8 16 
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Table 2. Summary of the environmental covariates used in the study: ranges of values in 

environmental covariates and coincided sampling locations  

Environmental 

Covariate 

Original 

spatial 

resolution (m) 

SCORPAN 

factor 

Value range: 

prediction grid 

Value range: 

sample dataset 

DEM 90 R 0 - 129 1 - 118 

SAGA WI 90 R 0 – 22.26 8.34 – 19.68 

Annual 

cumulative 

rainfall 

1000 C 1050 -1544 1198 - 1447 

Annual mean 

temperature 

1000 C 27.2 – 28.1 27.3 – 27.9 

Landsat band 2 30 O 0.09 – 0.70 0.10 – 0.35 

Landsat band 3 30 O 0.06 – 0.96 0.09 – 0.34 

Landsat band 4 30 O 0.04 – 0.75 0.06 – 0.35 

Landsat band 5 30 O 0.06 – 0.87 0.17 – 0.52 

Landsat band 6 30 O 0.03 – 0.76 0.12 – 0.41 

Landsat band 7 30 O 0.02 – 0.54 0.07 – 0.30 

Landsat band 

ratio 4/3 

30 O 0.62 – 1.47 0.70 – 1.16 

Landsat band 

ratio 4/7  

30 O 0.51 - 4.86 0.64 – 1.35 

Landsat band 

ratio 6/7 

30 O 1.04 – 2.73 1.32 – 2.31 

NDVI 30 O -0.23 – 0.77 0.18 – 0.68 

X coordinate Unit less S 89516 - 220216 115662 - 190704 

Y coordinate Unit less S 371318 - 513218 387110- 503452 
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Table 3.Summary statistics for SOC content for two depth interval  

Depth 

interval (m) 

Min 

(%) 

Q 1 

(%) 

Median 

(%) 

Mean 

(%) 

Q 3 

(%) 

Max 

(%) 

SD Skewness 

0 to 0.15 0.31 1.28 1.80 1.78 2.21 4.38 0.78 0.48 

0.15 to 0.30  0.24 0.69 1.00 1.03 1.21 2.68 0.47 0.96 

Note: Min: Minimum; Max: Maximum, SD: Standard deviation; Q: Quantile 

 

 

 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

28 
 

Table 4. Summary statistics of SOC with respect to soil types 

Note: Min: Minimum; Max: Maximum, SD: Standard deviation; Q: Quantile 

 

 

Depth Interval 

(m) 

Local 

Major Soil 

Type 

USDA Soil 

taxonomy 

order  

n Min 

(%) 

Q 1 

(%) 

Median 

(%) 

Mean 

(%) 

Q 3 

(%) 

Max 

(%) 

SD Skewness 

 0-0.15                        

  Alluvials Entisols 16 0.58 0.90 1.32 1.30 1.50 2.75 0.58 0.92 

  Calcic Red 

Yellow 

Latosol  

Oxisols 8 0.80 1.45 1.64 1.70 1.91 2.73 0.60 0.24 

  Low 

Humic 

Gley Soils  

Alfisols 32 1.36 1.74 1.97 2.18 2.38 4.38 0.69 1.51 

  Solodized 

solonetz  

Alfisols 27 0.31 0.79 1.93 1.61 2.24 2.97 0.83 -0.09 

                        

0.15-0.30                        

  Alluvials Entisols 16 0.29 0.44 0.57 0.73 0.74 1.76 0.46 1.16 

  Calcic Red 

Yellow 

Latosol  

Oxisols 8 0.36 0.63 0.74 0.77 0.88 1.32 0.28 0.51 

  Low 

Humic 

Gley Soils  

Alfisols 32 0.64 1.01 1.14 1.25 1.41 2.68 0.43 1.44 

  Solodized 

solonetz  

Alfisols 27 0.24 0.82 0.97 1.04 1.15 2.39 0.46 1.02 
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Table 5. Estimated fixed effect terms for two depth intervals  

Model Name Estimate 

coefficient 

Std. error t value P value  

SOC (0 to 0.15 m)           

(Intercept) 1.01 * 10
+01

 2.67 * 10
+00

 3.801 < 0.001 
*** 

DEM 1.60 * 10
-02

 3.47 * 10
-03

 4.611 < 0.001 
*** 

Landsat band 2 -2.59 * 10
+01

 1.38 * 10
+01

 -1.876    0.064 
. 

Landsat band 4   3.75 * 10
+01

 1.53 * 10
+01

 2.448    0.017 
* 

Landsat band 7 -1.47 * 10
+01

 6.60 * 10
+00

 -2.229   0.029 
* 

X coordinate -1.40 * 10
-05

 5.26 * 10
-06

 -2.656   0.009 
** 

Landsat band ratio 4/ 3 -3.81 * 10
+00

 2.18 * 10
+00

 -1.748   0.084 
. 

Landsat band ratio 4/ 7 -2.47 * 10
+00

 1.17 * 10
+00

 -2.115    0.037 
* 

      
  

SOC (0.15 to 0.30 m)     
  

(Intercept) 1.40 * 10
+01

 3.47 * 10
+00

 4.018 < 0.001 ***
 

Landsat band 2 -2.18 * 10
+01

 5.86 * 10
+00

 -3.716 < 0.001 
*** 

Landsat band 5   1.71 * 10
+01

 3.97 * 10
+00

 4.315 < 0.001 
*** 

Landsat band 6 -6.82 * 10
+00

 3.64 * 10
+00

 -1.872    0.065 
. 

Y coordinate -6.72 * 10
-06

 2.78 * 10
-06

 -2.417    0.018 
* 

Landsat band ratio 4/ 3 -4.77 * 10
+00

 1.92 * 10
+00

 -2.489   0.015 
* 

Landsat band ratio 4/ 7 -1.54 *10
+00

 8.00 * 10
-01

 -1.929   0.057 
. 

NDVI -1.09 *10
+01

 2.63 * 10
+00

 -4.127 < 0.001 
*** 

Level of significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘
.
’ 0.1 
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Table 6. Estimated random effect terms (variogram parameters) for spatially correlated residuals 

for two depth intervals  

Depth 

interval (m) 
Model Nugget (%

2
) Sill (%

2
) Range (m) Nugget/Sill*100 

0 to 0.15 Spherical 0.136 0.330 10000 41.21 

0.15 to 0.30 Spherical 0.097 0.159 5000 61.00 
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Table 7. Model quality assessment through leave one out cross validation  

Depth interval 

(m) 
ME RMSE CCC 

0 to 0.15 -0.006 0.441 0.81 (0.72 to  0.87) 

0.15 to 0.30 -0.004 0.367 0.60 (0.45 to 0.71) 

Note: ME: Mean error; RMSE: Root mean squared error; CCC: Lin’s concordance correlation 
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Table 8: Calculated confidence interval for MSDR (mean and median) for two depth intervals 

Theta statistics 
Confidence interval 

(quantile) 
Depth 0 to 0.15 m Depth 0.15 to 0.30 m 

Median 0.05 0.291 0.291 

  0.50 0.458 0.455 

  0.95 0.699 0.689 

Mean  0.05 0.742 0.739 

  0.50 0.989 0.994 

  0.95 1.312 1.293 
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Highlights of the study 

 Derived detailed digital  soil organic carbon (SOC) map covering paddy growing soils 

 Assessed the accuracy of the fitted spatial prediction models 

 Provided firsthand information on baseline SOC content  

 First ever, detailed large extent digital soil map produce in Sri Lanka 


