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Abstract. Recurrence in classical random walks is well known and the idea has been investigated in quan-
tum walks in many aspects. The recurrence in quantum walks is termed when the walker returns to the
origin with a nonzero probability and if the final coin state is also the same as the initial coin state then
the quantum walk is said to have a full revival. So far, full revival 2D quantum walks with a period larger
than two steps have not been found and it has been argued that four-state quantum walks cannot have
periods longer than two steps. In this paper, with the aid of simple 2D non-local coins we show that some
four-state quantum walks can have full revivals with any even period and the periodicity can be controlled
with a slight change of a single parameter within the coin operator.

1 Introduction

Quantum walks (QWs) are the quantum equivalent of Classical Random Walks (CRW) which provide useful tools
for powerful algorithm developments and testing grounds for various physical phenomena. Diverse types of quantum
walks and their properties such as recurrence of states, localization, entanglement, walks on Graphs and cycles have
been investigated [1–12] and used as resources in quantum computing. Quantum walks on cycles can be used as simple
powerful models for investigating quantum as well as classical-quantum hybrid networks [13]. In coin based quantum
walks among many coin operators, Hadamard, Grover, and Fourier Coins are the widely used coin operators. The
distributions of quantum walks due to these coins have been rigorously studied [1–12]. The Grover walk is noticeable
as the walk generated by Grover coin exhibits localization regardless of whether the initial state is a product state or an
entangled Bell state. In addition, recently, a new set of non-local coins has been introduced to study the manifestation
of classical conditions imposed upon CRWs in corresponding QWs [14].

In both CRWs and QWs, one of the interesting properties is the returning of the walker to the original location.
The recurrence in the quantum walk takes place when the probability of returning the walker to the origin is nonzero.
However the final state of the coin does not have to be the same as the initial state. If the final coin state is the same
as the initial state of the coin then the walk is said to have full revivals. This recurrence in classical random walks is
characterized by the Polya number and it is generalized for quantum walks by Štefaňák et al. in [15].

Dimensionality of the lattice, the choice of the coin operator as well as the initial coin state of the walker determine
the recurrence of quantum walks in [15]. The Grover walk is generalized in [16] to show that one can construct a
quantum walk in arbitrary dimensions which is recurrent even though the classical walks are recurrent only for the
dimensions d = 1, 2. Štefaňák et al. in [17] have determined the range of parameters for which the biased quantum
walks remain recurrent and found that there exit genuine biased quantum walks that are recurrent. The walk having
unequal step lengths is defined as the genuine biased quantum walk [17].

So far, full revival 2D quantum walks with a period larger than two steps have not been found. Further Štefaňák et
al. have argued in [18] that revivals with a longer period than two steps cannot be achieved for a four-state quantum
walk. In this paper, with the aid of simple 2D non-local coins we show that some four-state quantum walks can have
full revivals with any even periods.
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2 2D quantum walks with non-local coins

Let us consider a two-particle system. The Hilbert space of the two particles can be expressed as

H = Hp ⊗ Hc. (1)

The position Hilbert space Hp is spanned by the vector |x, y〉 where x and y represent the location of the two
particles. The coin space Hc is spanned by |i, j〉 where i and j represent the coin states ({|i〉; 0, 1}). Then the wave
function of the two particles can be expressed as

|ψ(t)〉 =
∑

x,y

∑

i,j

ax,y;i,j(t)|x, y; i, j〉. (2)

The time evolution operator is given by
U = S(I ⊗ C), (3)

where C denotes the coin operator and the shift operator S is given by

S =

∞∑

x,y=−∞

(|x + 1, y + 1〉〈x, y| ⊗ |0, 0〉〈0, 0| + |x + 1, y − 1〉〈x, y| ⊗ |0, 1〉〈0, 1|

+ |x − 1, y + 1〉〈x, y| ⊗ |1, 0〉〈1, 0| + |x − 1, y − 1〉〈x, y| ⊗ |1, 1〉〈1, 1|). (4)

In this paper we focus on non-local coins. In [14] a class of non-local quantum coins which reflect classical conditions
has been introduced as

CN (α, θ, φ) = A1 ⊗ B1 + A2 ⊗ B2, (5)

where A1 =
[

cos α sin α
0 0

]
, A2 =

[
0 0

sin α − cos α

]
, B1 =

[
cos θ sin θ
sin θ − cos θ

]
, B2 =

[ cos φ sin φ
sin φ − cos φ

]
, and α, θ, φ ∈ [0, 2π]. Note that

the coin CN (α, θ, φ) is unitary ∀α, θ, φ ∈ [0, 2π] while A1, A2 are non-unitary and B1, B2 are unitary.
The four-state Grover coin is also a non-local coin. It cannot be written as a tensor product of two one-dimensional

coins but can be written in the form given in (5) as a summation of two tensor products, each term containing a unitary
and a non-unitary coin as G2D = I ⊗ E + G1D ⊗ F , where I =

[
1 0
0 1

]
, E = 1

2

[
−1 1
1 −1

]
, F = 1

2

[
1 1
1 1

]
and G1D =

[
0 1
1 0

]
.

In this paper, we study QWs governed by the coins CN (π
2 , θ, π

2 ), θ ∈ [0, 2π] and compare the results with QWs
based on the Grover coin G

G =

(
E F

F E

)
. (6)

The coin CN (π
2 , θ, π

2 ) can be expressed in the terms G1D and B1 as

CN

(π

2
, θ,

π

2

)
=

(
O G1D

B1 O

)
, (7)

where O is the zero matrix.
As mentioned earlier the coin CN (π

2 , θ, π
2 ) is unitary. The state of the two particles after time t is obtained by

applying the evolution operator U on the initial state of the walker.

3 Conditions for full revivals

First, Fourier transform is carried out on the evolution operator and obtain the k, l momentum representation of U .
The time evolution in the Fourier picture simplifies to

Uk,l = D(k, l) · C, (8)

D(k, l) = D(k) ⊗ D(l), (9)

where D(·) = Diag(ei(·), e−i(·))
Periodicity is understood as the full revival of a quantum state. A quantum walk is evolved under a evolution

operator acting on the state of the particle. The final state |ψ(T )〉 of the walkers after T steps in terms of the initial
state |ψ(0)〉 is

|ψ(T )〉 = UT
k,l|ψ(0)〉. (10)
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Table 1. The first 6 steps of the QW generated by the coin CN (π

2
, π

6
, π

2
) for a product state (ψi = (0, 1, 0, 0)T ⊗ |0; 0〉) at

the origin as the initial state. |ψ(t)〉 = (a00, a01, a10, a11)
T ⊗ |x; y〉 represents the respective coin states in the location (x, y) at

time t.

Quantum state

|ψ(t = 0)〉 = 1
√

2

0

B

B

@

0
1
−1
0

1

C

C

A

⊗ |x = 0; y = 0〉

|ψ(t = 1)〉 = 1
√

8

0

B

B

@

0
0
0
1

1

C

C

A

⊗ |x = −1; y = −1〉 −
q

3

8

0

B

B

@

0
0
1
0

1

C

C

A

⊗ |x = −1; y = 1〉 − 1
√

8

0

B

B

@

0
1
0
0

1

C

C

A

⊗ |x = 1; y = 1〉

|ψ(t = 2)〉 = − 1
√

8

0

B

B

@

√
3

−1
1
0

1

C

C

A

⊗ |x = 0; y = 0〉 +
q

3

8

0

B

B

@

0
0
0
1

1

C

C

A

⊗ |x = 0; y = 2〉

|ψ(t = 3)〉 = − 1
√

8

0

B

B

@

0
0
1
0

1

C

C

A

⊗ |x = −1; y = −1〉 −
q

3

8

0

B

B

@

0
0
0
1

1

C

C

A

⊗ |x = −1; y = 1〉 + 1
√

8

0

B

B

@

√
3

−1
0
0

1

C

C

A

⊗ |x = 1; y = 1〉

|ψ(t = 4)〉 = − 1
√

8

0

B

B

@

√
3

1
−1
0

1

C

C

A

⊗ |x = 0; y = 0〉 +
q

3

8

0

B

B

@

0
0
0
1

1

C

C

A

⊗ |x = 0; y = 2〉

|ψ(t = 5)〉 = − 1
√

2

0

B

B

@

0
0
0
1

1

C

C

A

⊗ |x = −1; y = −1〉 + 1
√

8

0

B

B

@

√
3

1
0
0

1

C

C

A

⊗ |x = 1; y = 1〉

|ψ(t = 6)〉 = − 1
√

2

0

B

B

@

0
1
−1
0

1

C

C

A

⊗ |x = 0; y = 0〉

Note that for an arbitrary initial state |ψ(0)〉, |ψ(T )〉 = UT
k,l|ψ(0)〉 = |ψ(0)〉 if and only if each of the eigenvalues

(λi) of Uk,l simultaneously satisfies

λT
i = 1, (11)

leading to
UT

k,l = I, (12)

for some time T .
By imposing the condition given in (12) on the coin CN (π

2 , θ, π
2 ) we obtain two conditions on θ for the quantum

walk to become periodic. When θ has the form θ = n
2m

π, n, m ∈ Z and 0 < n ≤ 4m, then the period is 4m. On the

other hand, when θ = (4n±1)
2m+1 π, n,m ∈ Z and 0 < n ≤ 2m, the period is 4m + 2. Note that any even period can be

obtained by choosing suitable n and m with the above formulae and hence there is an angle θ of the coin operator
corresponding to every even period. Therefore there can be periods longer than 2 for four-state quantum coins and as
m → ∞ there are infinitely many even periods. It is interesting to note that the periodicity is very sensitive to the
angle parameter θ in the coin operator and the period can be controlled by a large amount with a slight change of θ.
As an example consider the case when n = 3 and m = 5 with the formula θ = n

2m
π. For this combination θ = 0.3π

and period is 4m = 20. If we reduce the angle θ by an amount 0.0001π, the new angle θ̃ = 0.2999π = 2999π/10000
and hence new n = 2999 and m = 5000 giving the period 20000. Furthermore, there are infinitely many angles θ
(e.g., θ = aπ where a is irrational) for which the quantum walk is non-periodic (having infinite periods). Since rational
numbers are dense in real numbers, a rational number r can be found arbitrary close to any irrational a (i.e., |r−a| < ǫ
for arbitrary ǫ > 0) and hence one can generate arbitrarily large periods.

In this quantum walk, if the initial state is a product state, during the subsequent walk the walker can be found
only at two possible locations in the x-direction and three possible locations in the y-direction. On the other hand, if
it is a Bell state the walker can have only three possible locations in the x-direction and four possible locations in the
y-direction before repeating the pattern as evident from tables 1 and 2. |ψ(t)〉 = (a00, a01, a10, a11)

T ⊗|x; y〉 represents
the respective coin states in the location (x, y) at time t.
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Table 2. The first 6 steps of the QW generated by the coin CN (π

2
, π

6
, π

2
) for a Bell state (ψi = 1

√

2
(0, 1,−1, 0)T ⊗ |0; 0〉) at

the origin as the initial state. |ψ(t)〉 = (a00, a01, a10, a11)
T ⊗ |x; y〉 represents the respective coin states in the location (x, y) at

time t.

Quantum state

|ψ(t = 0)〉 =

0

B

B

@

0
1
0
0

1

C

C

A

⊗ |x = 0; y = 0〉

|ψ(t = 1)〉 = 1

2

0

B

B

@

0
0
1
0

1

C

C

A

⊗ |x = −1; y = −1〉 −
√

3

2

0

B

B

@

0
0
0
1

1

C

C

A

⊗ |x = −1; y = 1〉

|ψ(t = 2)〉 = 1

2

0

B

B

@

−
√

3
1
0
0

1

C

C

A

⊗ |x = 0; y = 0〉

|ψ(t = 3)〉 = − 1

2

0

B

B

@

0
0
1
0

1

C

C

A

⊗ |x = −1; y = −1〉 −
√

3

2

0

B

B

@

0
0
0
1

1

C

C

A

⊗ |x = −1; y = 1〉

|ψ(t = 4)〉 = − 1

2

0

B

B

@

√
3

1
0
0

1

C

C

A

⊗ |x = 0; y = 0〉

|ψ(t = 5)〉 = −

0

B

B

@

0
0
1
0

1

C

C

A

⊗ |x = −1; y = −1〉

|ψ(t = 6)〉 = −

0

B

B

@

0
1
0
0

1

C

C

A

⊗ |x = 0; y = 0〉

According to tables 1 and 2, when θ = π
6 the quantum walk has a period of 12 for both Bell and product initial

states. In this example, |Ψ(t = 6)〉 = −|Ψ(t = 0)〉 and the steps from t = 0 to t = 6 repeat until t = 12 and
|Ψ(t = 12)〉 = |Ψ(t = 0)〉. In other words the walker returns to its exact initial state after 12 time steps. Note that the
Grover coin also shows localization effects for all initial states except ψi = 1

2 (1,−1,−1, 1)T with period 2 whereas the
above walk with CN (π

2 , π
6 , π

2 ) shows full revivals independent of the initial state with period 12.

Štefaňák et al. in [18] have proved that there cannot be full revivals of a quantum state with periods longer than
two steps for a four-state quantum coin. In their proof they have not considered the effects of the coin parameters on
the characteristic polynomial of Uk,l for the most general case. Hence they could only obtain two different eigenvalues.
The coin CN (π

2 , θ, π
2 ) is an example for a four-state quantum coin which produces full revivals longer than two steps as

it gives four different eigenvalues for the characteristic polynomial of Uk,l. It is worth noting that all four eigenvalues
of the propagator of the quantum walk which is governed by the coin CN (π

2 , θ, π
2 ) are constant and independent of

momenta k and l. In [18], this case was not considered seriously and discarded. Another difference between the present
work and ref. [18] is in their definition of the shift operator: while the present work assumes tensor product structure
D(k, l) = D(k)⊗D(l) (in the momentum representation), ref. [18] uses a direct sum D(k, l) = Diag(eik, e−ik, eil, e−il).
However their final result was not affected by this (i.e., for their example both shift operators produce the same result).

4 Conclusion

The full revival of a quantum walk emphasizes the difference between classical and quantum walks. Here we have been
able to govern the revival of the quantum walk by a simple change in the coin operator. The parameter θ of the coin
gives the freedom to manipulate the periodicity of the walk as desired. Until now full revival of a four-state quantum
walk with a period larger than two steps has not been found. It has been claimed in [18] that revivals with a longer
period than two steps cannot be achieved for a four-state quantum walk. In this paper we showed that quantum walks
governed by the coin CN (π

2 , θ, π
2 ) can produce full revivals with any even periods thereby giving a counter example for

the above-mentioned claim. Our curiosity to produce full revivals with periods longer than two steps has been purely
academic and hope that these results will help to build new quantum algorithms.
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