

Steroids

Steroids 67 (2002) 555-558

3-Deoxy-1β,20-dihydroxyecdysone from the leaves of *Diploclisia glaucescens*

Lalith Jayasinghe^{a,*}, Champika P. Jayasooriya^a, Kiyoshi Oyama^b, Yoshinori Fujimoto^b

^aInstitute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka ^bDepartment of Chemistry and Material Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan

Received 20 September 2001; accepted 17 October 2001

Abstract

Chemical investigation of methanol extract of the leaves of *Diploclisia glaucescens* of the family Menispermaceae furnished a new ecdysteroid, 3-deoxy-1 β ,20-dihydroxyecdysone. The structure of the new ecdysteroid was established on detailed analysis of spectral data. The 3-deoxy ecdysteroid showed 40% potency of 20-hydroxyecdysone in the spiracle index assay using the fourth instar larvae of the silkworm *Bombyx mori*. © 2002 Elsevier Science Inc. All rights reserved.

Keywords: Diploclisia glaucescens; Menispermaceae; 3-Deoxy-1 β,20-dihydroxyecdysone; 20-Hydroxyecdysone; Spiracle index assay; Bombyx mori

1. Introduction

Diploclisia glaucescens of the family Menispermaceae is a creeper growing in the mid-country region of India and Sri Lanka. The leaves of the plant have been used in the treatment of biliousness and venereal diseases [1]. We have previously reported the isolation of stepharine [2], stigmasterol [3], serjanic acid (3 β -hydroxy-30-methoxycarbonylolean-12-en-28-oic acid), phytolaccagenic acid (3 β , 23dihydroxy-30-methoxycarbonylolean-12-en-28-oic acid) [4], 20-hydroxyecdysone (> 3%, the highest recorded yield from a plant) [3] and six new triterpenoidal saponins from the stem of the plant [4–7]. In a continuation of our investigation on *D. glaucescens* we now describe the isolation and structural elucidation of a new ecdysteroid, 3-deoxy-1 β ,20-dihydroxyecdysone, from the leaves of the plant.

2. Experimental

2.1. General methods

Mps were determined by a Gallenkamp apparatus and are uncorrected. Optical rotations were measured on a Per-

kin-Elmer 241 instrument. ¹H NMR and ¹³C NMR spectra were recorded on a JEOL EX 400 (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR) spectrometer in CD₃OD or CDCl₃ solution with tetramethylsilane as an internal reference. Positive ion FABMS were obtained on a JEOL JMS-AX505HA spectrometer with glycerol as matrix. HPLC analysis were carried out on Shimadzu LC-6A apparatus equipped with UV detector under reversed phase C-18 and isocratic solvent condition. IR spectra were recorded on a Shimadzu IR-460 spectrophotometer. UV spectra were recorded on a UV-160 A spectrophotometer.

2.2. Plant material

The leaves of *Diploclisia glaucescens* were collected from the Central Province of Sri Lanka in April 2000 and identified by Mr. S.P. Ekanayake, Environmental and Forestry Division, Mahaweli Authority, Polgolla, Sri Lanka. A voucher specimen is deposited at the Institute of Fundamental Studies.

2.3. Extraction and isolation

The dry ground leaves of *D. glaucescens* (190 g) were sequentially extracted with hot hexane, dichloromethane and methanol. Evaporation of the methanol gave a dark brown solid (49 g). A portion (45 g) was chromatographed on a column of silica gel (Merck Art 7734) with EtOAc-

^{*} Corresponding author. Tel.: +94-8-232002; fax: +94-8-232131. *E-mail address:* lalith@ifs.ac.lk (L. Jayasinghe).

Table 1 1 H and 13 C NMR data for compound **1** (400 MHz/100 MHz, CD₃OD)

C No.	$\delta_{\rm C}$ ppm	$\delta_{\rm H}~{\rm ppm}$
1	73.78	3.72 (d, J = 2.4 Hz)
2	68.94	3.95 (m)
3	27.64	1.62, 1.73 (<i>m</i>)
4	25.62	1.52, 1.63 (<i>m</i>)
5	52.12	2.29 (<i>dd</i> , $J = 11.6$, 5.6 Hz)
6	206.14	
7	121.70	5.78 (d , $J = 2.4$ Hz)
8	167.14	_
9	35.76	3.14 (td, J = 8 Hz, 2 Hz)
10	43.65	_
11	21.93	1.70 (<i>m</i>)
12	32.56	1.90 (<i>m</i>)
13	49.00	_
14	85.08	_
15	31.78	2.00 (<i>m</i>)
16	21.39	1.70 (<i>m</i>)
17	50.58	2.39 (t , $J = 9.2$ Hz)
18	18.03	0.89 (s, Me)
19	20.16	1.03 (s, Me)
20	77.91	_
21	21.05	1.19 (s, Me)
22	78.44	3.30 (<i>m</i>)
23	27.37	1.26, 1.28 (<i>m</i>)
24	42.39	1.79, 1.44 (m)
25	71.30	_
26	28.97	1.18 (s, Me)
27	29.69	1.18 (s, Me)

MeOH. The column fractions, which contained UV active compounds on TLC, were passed through a column of Sephadex LH-20 with methanol as solvent. Further purification of the UV active fraction by HPLC (STR Prep-ODS 20×250 mm column, H₂O/MeOH (6:4); 5 ml/min, UV detection 243 nm) yielded compound **1** (68 mg) and **2** (170 mg).

2.3.1. 3-Deoxy-1 β ,20-dihydroxyecdysone (1)

mp. 152–155°C (MeOH). $[\alpha]_{25}^{D} = +63.3^{\circ}$ (c = 0.72, MeOH). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm: 241. IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3450, 1660, 1640. ¹H NMR and ¹³C NMR (CD₃OD), see Table 1. HRFABMS (+) m/z: 481.3123 [MH]⁺. C₂₇H₄₅O₇ requires 481.3165. FABMS (+) m/z: 481, 463, 445, 427.

2.3.2. Acetylation of 1

Compound **1** (20 mg) was allowed to react overnight with $Ac_2O(1 \text{ ml})$ and pyridine (1 ml). The reaction mixture was evaporated to dryness with methanol and the products were purified by prep. TLC to give acetates **1a** (12 mg) and **1b** (6 mg).

2.3.3. 1,2,22-Triacetate (1a)

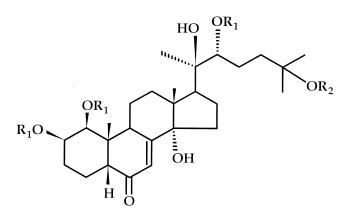
mp. 109°C; ¹H NMR (CDCl₃): $\delta_{\rm H}$ 0.86 (3H, s, 19-Me), 0.95 (3H, s, 18-Me), 1.21 (3H, s, 26-Me), 1.23 (3H, s, 27-Me), 1.27 (3H, s, 21-Me), 1.99, 2.11, 2.12 (each 3H, s, -OAc), 3.17 (1H, m, H-9), 4.85 (1H, brd, J = 10.4 Hz,

H-22), 5.19 (1H, m, H-2), 5.34 (1H, d, J = 1.6 Hz, H-1), 5.86 (1H, *brd*, J = 2.0 Hz, H-7).

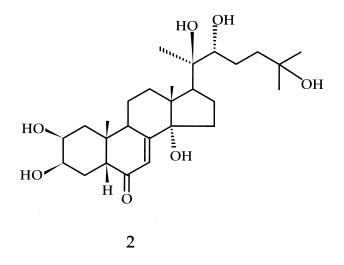
2.3.4. 1,2,22,25-Tetraacetate (1b)

mp. 130°C, ¹H NMR (CDCl₃): $\delta_{\rm H}$ 0.86 (3H, *s*, 19-Me), 0.96 (3H, *s*, 18-Me), 1.26 (3H, *s*, 21-Me), 1.41 (3H, *s*, 26-Me), 1.44 (3H, *s*, 27-Me), 1.987, 1.995, 2.111, 2.128 (each 3H, *s*, -OAc), 3.17 (1H, *m*, H-9), 4.81 (1H, *brd*, *J* = 10.4 Hz, H-22), 5.19 (1H, *m*, H-2), 5.35 (1H, *d*, *J* = 1.7 Hz, H-1), 5.87 (1H, *brd*, *J* = 2.2 Hz, H-7).

2.4. Spiracle index assay

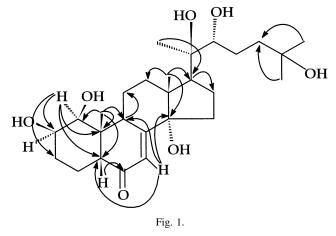

The assay was carried out using fourth instar larvae of *Bombyx mori* in a similar manner as reported previously [8]. The concentrations to induce 50% response were determined to be 0.29 μ g and 0.71 μ g for 2 and 1, respectively.

3. Results and discussion


The dry ground mature leaves of *D. glaucescens* were defatted with *n*-hexane and extracted with dichloromethane and methanol. A combination of chromatographic separation over silica gel, Sephadex LH-20 and reversed phase HPLC of the methanol extract resulted in the isolation of a new ecdysteroid 1, along with 20-hydroxyecdysone (2) which was identified by direct comparison with an authentic sample.

The highly positive response in the UV absorption and the polarity on a silica gel TLC plate (**1** showed a slightly larger R_f value than **2**) readily identified compound **1** as an ecdysteroid. The UV spectrum of **1** showed a maximum at 242 nm, indicating an α , β -unsaturated carbonyl group. The IR spectrum of **1** revealed a broad hydroxyl absorption (3450 cm⁻¹) and strong conjugated carbonyl absorptions (1660 & 1640 cm⁻¹) characteristic of an α , β -unsaturated keto group and also corresponding to the 7-en-6-one of ecdysteroids. FABMS of **1** gave a peak at m/z 481 for [M+H]⁺, which is consistent with the molecular formula $C_{27}H_{44}O_7$. The other prominent peaks observed are m/z 463 [M+H-H₂O]⁺, 445 [M+H-2H₂O]⁺, 427 [M+H-3H₂O]⁺.

The ¹³C NMR spectrum of **1** gave evidence for the presence of 27 carbons in the compound. Analysis of the ¹H and ¹³C NMR, and DEPT spectra provided evidence that **1** possessed five methyl groups, one α , β -unsaturated ketone, three oxygenated quaternary carbons, three oxymethines and eight methylenes in the compound **1**. The ¹H NMR spectrum of **1** showed five methyl singlets at δ 0.89, 1.03, 1.18, 1.18 and 1.19. The chemical shifts of these methyls were in good agreement with the reported data except for the 19-Me singlet observed at δ 1.03, which appeared significantly down field than that (δ 0.96) of 20-hydroxyecdysone [9]. This observation gave the first clue regarding the structural changes of the A ring of **1** in comparison with 20-hydroxyecdysone. Strong HMBC correlations were ob-



1 $R_1 = R_2 = H$ 1a $R_1 = Ac, R_2 = H$ 1b $R_1 = R_2 = Ac$

served from the 19-Me (δ 1.03) to carbons at δ 73.78 (C-1) and 43.65 (C-10), 35.76 (C-9) and 52.15 (C-5). Further in the HMQC spectrum, δ 73.78 carbon was correlated to δ 3.72 proton (d, J = 2.4 Hz, equatorial proton). The 2.4 Hz coupling is due to the proton at δ 3.95 (m, axial proton, attached to δ 68.94 carbon), as revealed by the H-H COSY spectrum. Hence the carbon signal observed at δ 68.94 was unambiguously assigned to C-2. Decoupling of the δ 3.72 proton simplified the signal shape of δ 3.95 proton into a doublet of a doublets (J = 8.8, 5.2 Hz), thus forcing to place six membered axial and equatorial protons at the adjacent C-3 position.

The δ 3.95 proton (H-2) was coupled to hydrogens at ca. δ 1.62–1.73. The HMQC spectrum revealed that an unidentified CH₂ carbon (δ 27.64) showed connectivities to the methylene protons, thus establishing the assignments of C-3 and H2–3. The characteristic H-5 axial proton at δ 2.29 (*dd*, 11.6, 5.6 Hz attached to δ 52.15) was coupled only with

upper field protons at δ 1.52–1.63, to which another unassigned CH₂ carbon at δ 25.62 (C-4) was correlated as revealed by HMQC. The HMBC spectrum showed correlations from H-1 to C-2, C-3, C-5 and C-10. Stereochemistries at the chiral centers in the A-ring were confirmed as follows. Irradiation of 19-Me caused an NOE enhancement to the H-5 and H-1 signals. Irradiation of H-1 caused an NOE enhancement to the H-2 and 19-Me signals. Irradiation of H-2 caused an NOE enhancement to H-9 signal which appeared at δ 3.14 (attached to C-9) as a typical pattern of H-9 of ecdysteroids. This is reasonably explained by assuming that *cis*-A/B ring junction and β -orientation of the C-2 hydroxyl group (the distance of the two protons was calculated as 2.27 Å by MM2). The occurrence of 1β -OH would cause a down field shift of 19-Me. The NMR spectral data corresponding to the B, C, D rings and the side chain were almost superimposable over those of 20-hydroxyecdysone [9]. The HMBC correlations are shown in Fig. 1. The complete ¹H and ¹³C NMR assignments are given in Table 1. Thus the structure of **1** was established to be 3-deoxy- 1β ,20-dihydroxyecdysone. The ¹H NMR spectral data (see Experimental) of 1, 2, 22-tri-acetate (1a) and 1, 2, 22, 25-tetra-acetate (1b) prepared from 1 further supported the proposed structure of 1.

Compound 1 retained a significant amount of activity (40% of 20-hydroxyecdysone) when tested in a spiracle index assay using the fourth instar larvae of the silkworm *Bombyx mori*. It is of note that the new 3-deoxyecdysone showed such an activity, since it is generally accepted that the presence of 2β -OH in addition to 3β -OH is required for high hormone activity. In this unique molecule, 1β , 2β -glycol might play the role of the popular 2β , 3β -glycol in binding to the receptor.

Acknowledgments

We thank Prof. Sho Sakurai, Kanazawa University, for the spiracle index assay, and Mr. Noriyuki Hara, Tokyo Institute of Technology, for the measurements of MS spectra.

References

- Chopra RN, Nayar SL, Chopra IC. Glossary of Indian Medicinal Plants, Council of Scientific and Industrial Research. New Delhi, 1956. pp. 72–99.
- [2] Jayasinghe ULB, Wannigama GP, Balasubramaniam S, Nasir H, Attaur-Rahman. Benzylisoquinoline alkaloids from *Anamirta cocculus* and *Diploclisia glaucescens*. J Natl Sci Council of Sri Lanka 1992;20:187– 90.
- [3] Bandara BMR, Jayasinghe L, Karunaratne V, Wannigama GP, Bokel M, Kraus W, Sotheeswaran S. Ecdysterone from stem of *Diploclisia* glaucescens. Phytochemistry 1989;28:1073–5.
- [4] Bandara BMR, Jayasinghe ULB, Karunaratne V, Wannigama GP, Bokel M, Kraus W, Sotheeswaran S. Triterpenoidal constituents of *Diploclisia glaucescens*. Planta Medica 1990;28:290–2.

- [5] Bandara BMR, Jayasinghe L, Karunaratne V, Wannigama GP, Bokel M, Kraus W, Sotheeswaran S. Diploclisin, a bidesmosidic triterpenoid saponin from *Diploclisia glaucescens*. Phytochemistry 1989;28:2783–5.
- [6] Jayasinghe ULB, Wannigama GP, MacLeod JK. Saponins of Diploclisia glaucescens. Natural Product Lett 1993;2:249–53.
- [7] Jayasinghe ULB, Wannigama GP, MacLeod JK. Glucuronides of *Diploclisia glaucescens*. J Chem Soc of Pakistan 1998;20:131–7.
- [8] Bergamasco R, Horn DHS. Developments in Endocrinology. In: Hoffmann JA, editor. Progress in ecdysone research. Amsterdam: Elsevier, 1980. pp. 299–324; Dinan L, Hormann RE, Fujimoto T. An extensive ecdysteroid CoMFA. J Computer-Aided Molec Des 1999;13:185–207.
- [9] Vokac K, Budesinsky M, Harmatha J, Kohoutova J. Ecdysteroid constituents of the mushroom *Tapinella panuoides*. Phytochemistry 1998; 49:2109–14.