

Available online at www.sciencedirect.com

Steroids 68 (2003) 447-450

www.elsevier.com/locate/steroids

Steroids

A new ecdysteroid, 2-deoxy-5β,20-dihydroxyecdysone from the fruits of *Diploclisia glaucescens*

Lalith Jayasinghe^{a,*}, B.M. Mallika Kumarihamy^a, B.G. Suranga Arundathie^a, Luckshmi Dissanayake^a, Noriyuki Hara^b, Yoshinori Fujimoto^b

^a Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka ^b Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan

Received 4 October 2002; received in revised form 17 January 2003; accepted 24 January 2003

Abstract

Chemical investigation of ethyl acetate extract of the fruits of *Diploclisia glaucescens* of the family Menispermaceae furnished a new ecdysteroid 2-deoxy-5 β ,20-dihydroxyecdysone, together with 20-hydroxyecdysone, 3-deoxy-1 β ,20-dihydroxyecdysone, 2-deoxy-20-hydroxyecdysone, 24-ethyl-20-hydroxyecdysone (makisterone C). Latter two ecdysteroids are reported first time from the family Menispermaceae.

© 2003 Elsevier Science Inc. All rights reserved.

Keywords: Diploclisia glaucescens; Menispermaceae; Ecdysteroids; 2-Deoxy-5β,20-dihydroxyecdysone; 20-Hydroxyecdysone; 3-Deoxy-1β,20-dihydroxy-ecdysone; 2-Deoxy-20-hydroxyecdysone; 24-Ethyl-20-hydroxyecdysone

1. Introduction

Diploclisia glaucescens (Bl.) Diels (=Cocculus macrocarpus W. & A.) is a liana of the family Menispermaceae growing in India and Sri Lanka. The leaves of the plant have been used in the treatment of biliousness and venereal diseases [1]. Five phytoecdysteroids, 20-hydroxyecdysone (1), makisterone A, 24(28)-dehydromakisterone A, 24-epimakisterone A and pterosterone have been reported from the seeds of the plant [2]. We have previously reported the isolation of 1 (>3%), the highest recorded yield from a plant) from the stem [3] and 3-deoxy-1 β ,20-dihydroxyecdysone (2) from the leaves of the plant [4]. In this paper, we report the isolation and structure elucidation of a new ecdysteroid, 2-deoxy-5\beta,20-dihydroxyecdysone (3) together with 1,2,2-deoxy-20-hydroxyecdysone (4) and makisterone C (24-ethyl-20-hydroxyecdysone, lemmasterone, podecdysone) (5) from the fruits of the plant. Ecdysteroids 4 and 5 are reported first time from the family Menispermaceae.

2. Experimental

2.1. General methods

Melting points (mps) were determined by Gallenkamp apparatus and are uncorrected. Optical rotations were measured with a JASCO DIP-360 polarimeter at 25 °C. UV spectra were recorded on a UV-160 A spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded on a Brucker DRX500 (500 MHz for ¹H and 125 MHz for ¹³C) spectrometer in C₅D₅N or CD₃OD solution. Tetramethylsilane was used as an internal standard for ¹H shifts and d₅-pyridine ($\delta = 149.8$) or CD₃OD signal ($\delta = 49.0$) was used as a reference for ¹³C-chemical shifts. Positive ion FABMS were obtained on a JEOL JMS-AX505HA spectrometer with glycerol as matrix. HPLC analyses were carried out on Shimadzu LC-6A apparatus equipped with UV detector under reversed phase C₁₈ and isocratic solvent condition.

2.2. Plant material

The unripe fruits of *D. glaucescens* were collected from the central province of Sri Lanka in April 2001 and identified by Mr. S.P. Ekanayake (Environmental and Forestry Division, Mahaweli Authority, Polgolla, Sri Lanka). A voucher

^{*} Corresponding author. Tel.: +94-8-232002; fax: +94-8-232131. *E-mail address:* lalith@ifs.ac.lk (L. Jayasinghe).

specimen is deposited at the Institute of Fundamental Studies.

2.3. Extraction and isolation

The dried unripe, ground fruits of D. glaucescens (800 g) were defatted with cold *n*-hexane and extracted with ethyl acetate. Evaporation of the ethyl acetate gave brown colored solid (10.8 g). The ethyl acetate extract (10 g) was chromatographed over a column of silica gel (Merck Art 7734) with EtOAc-MeOH. The column fractions, which contained UV active spots on TLC, were combined and passed through a column of Sephadex LH-20 with methanol as eluent. Further purification of the UV active fractions by HPLC (STR Prep-ODS 20 mm × 250 mm column, 60% H₂O-MeOH: 5 ml/min, UV detection: 243 nm) yielded 1 (300 mg), 2 (120 mg), 3 (12 mg), 4 (40 mg) and 5 (30 mg). All these compounds were identified by the detailed analysis of spectral data and identification of 1, 2, 4 and 5 were further confirmed by the direct comparison with authentic samples.

2.3.1. 20-Hydroxyecdysone (1)

Mp: 242–244 °C; UV λ_{max} (EtOH): 243 nm; ¹H and ¹³C NMR identical with reported data [3].

2.3.2. 3-Deoxy-1 β ,20-dihydroxyecdysone (2)

Mp: 152–155 °C; $[\alpha]_D^{25} = +63.3^{\circ}$ (c = 0.72, MeOH); UV λ_{max} (EtOH): 241 nm; ¹H and ¹³C NMR identical with reported data [4].

2.3.3. 2-Deoxy-5 β ,20-dihydroxyecdysone (3)

Mp: 128–130 °C; $[\alpha]_{D}^{25} = +62.4^{\circ}$ (c = 0.34, MeOH); UV λ_{max} (EtOH): 241 nm; ¹H & ¹³C NMR (C₅D₅N): see Table 1; ¹H-NMR data (CD₃OD, 500 MHz): δ 0.89 (3H, *s*, 18-Me), 1.18 (3H, s, 19-Me), 1.18 (3H, s, 21-Me), 1.18, 1.19 (3H each, s, 26-Me, 27-Me), 2.39 (1H, m, 17-H), 5.79 (1H, d, J = 2.2 Hz, 7-H), 3.28–3.33 (2H, m, 9-H, 22-H, overlapped with the solvent signal), 4.06 (1H, m, 3-H), 5.84 (1H, m, 7-H); 13 C NMR (CD₃OD): see Table 1; HRFABMS(+) m/z: 481.3124 [M + H]⁺, C₂₇H₄₅O₇ requires 481.3165.

2.3.4. 2-Deoxy-20-hydroxyecdysone (4)

Mp: 215–218 °C; UV λ_{max} (EtOH): 241 nm; ¹H NMR identical with reported data [5]; FABMS(+) m/z: 465 [M + H]⁺, 447, 429, 411.

2.3.5. Makisterone C (5) Mp: 268–270 °C; $[\alpha]_D^{25} = +54.8^{\circ}$ (c = 1.3, MeOH); UV λ_{max} (EtOH): 243.4 nm; ¹H NMR identical with reported data [6]; ¹³CNMR (CD₃OD, 125 MHz): δ 37.36 (C-1), 68.69 (C-2), 68.50 (C-3), 32.84 (C-4), 51.78 (C-5), 206.43 (C-6), 122.10 (C-7), 168.01 (C-8), 35.09 (C-9), 39.25 (C-10), 21.53 (C-11), 32.50 (C-12), 49.50 (C-13), 85.17 (C-14), 31.79 (C-15), 21.62 (C-16), 50.41 (C-17), 18.07 (C-18), 24.43 (C-19), 78.01 (C-20), 20.96 (C-21), 77.20 (C-22), 25.97

Table 1					
¹ H and ¹³ C NMR	data for co	mpound 3	(500 MHz/	125 MHz,	C_5D_5N)

C No.	$\delta_{\rm C}$ (ppm)	$\delta_{\rm H}$ (ppm)
1	24.94 (26.23) ^a	$1.51 \ (brd, J = 14.1), \ 2.17 \ (m)$
2	29.11 (29.92)	1.87 (<i>m</i>)
3	65.81 (67.89)	4.02 (m, $W_{1/2} = 14.2 \text{Hz}$)
4	36.48 (37.50)	1.75, 1.97 (each <i>brd</i> , $J = 14.4$ Hz)
5	80.23 (81.68)	_
6	209.31 ^b	_
7	119.66 (121.35)	6.27 ($d, J = 2.5 \mathrm{Hz}$)
8	167.33 (168.85)	_
9	37.03 (38.71)	3.60 (<i>m</i>)
10	42.37 (43.20)	-
11	21.76 (23.09)	1.79, 1.88 (each m)
12	32.02 (33.45)	2.07, 2.61 (each m)
13	48.09 ^b	_
14	84.01 (85.94)	_
15	31.60 (32.54)	1.90, 2.17 (each <i>m</i>)
16	21.32 (22.27)	2.07, 2.47 (each m)
17	49.95 (52.06)	3.00 (t, J = 9.0 Hz)
18	17.80 (18.84)	1.22 (s, Me)
19	17.24 (17.92)	1.11 (s, Me)
20	76.76 (78.70)	_
21	21.62 (21.83)	1.60 (s, Me)
22	77.50 (79.24)	$3.88 \ (brd, J = 8.5 \mathrm{Hz})$
23	27.41 (23.16)	1.87, 2.17 (<i>m</i>)
24	42.57 (44.04)	1.82, 2.28 (<i>m</i>)
25	69.47 (72.10)	_
26	29.92 (29.76)	1.37 (s, Me)
27	30.07 (30.50)	1.37 (s, Me)

^a The shifts in parentheses are in CD₃OD.

^b The shifts were not clear due to overlap of the solvent signal or poor signal to noise ratio.

(C-23), 50.28 (C-24), 74.11 (C-25), 25.60 (C-26), 29.10 (C-27), 33.02 (C-28), 14.37 (C-29); FABMS(+) m/z: 509 $[M + H]^+$, 491, 473, 455.

3. Results and discussion

The dry ground mature fruits of D. glaucescens were defatted with cold *n*-hexane and extracted with ethyl acetate. TLC analysis of ethyl acetate extract showed UV absorbing spots in a R_f range of ecdysteroids. Chromatographic separation of the ethyl acetate extract over silica gel, Sephadex LH-20, and reversed phase HPLC resulted in the isolation of ecdysteroids 1–5 (Fig. 1).

Compounds 1, 2, 4 and 5 were identified as 20-hydroxyecdysone, 3-deoxy-1B,20-dihydroxyecdysone, 2-deoxy-20hydroxyecdysone and makisterone C, respectively, by detailed analysis of spectral data [3-6] as well as direct comparison with authentic samples.

The UV spectrum of **3** showed a maximum at $\lambda = 243$ nm for an α , β -unsaturated carbonyl group characteristic to ecdysteroids. The FABMS of 3 gave a pseudomolecular ion peak at m/z 481 [M + H]⁺, which is consistent with the molecular formula C₂₇H₄₄O₇. The ¹H NMR (d₅-pyridine) spectrum of **1** showed five methyl singlets at δ 1.11, 1.22,

3

OH

Fig. 1. Structures of compounds 1-5.

1.37, 1.37 and 1.60. The chemical shifts of the four signals out of five were in accord with those reported for **1** [3], thus permitting us to assign the signals at δ 1.22, 1.37, 1.37 and 1.60 to 18-Me, 26-Me, 27-Me and 21-Me, respectively. In contrast, the signal at δ 1.11, which could be assignable to 19-Me, was downfield shifted by 0.05 ppm compared to that of **1**. The spectrum showed a signal of an oxymethine proton (δ 4.02) that was not flanked by another oxymethine group, as opposed to the signals due to a common C-2 and C-3 glycol moiety. Further, a signal for 5-H seemed lacking in the spectrum, while 7-H olefinic and 22-H oxymethine protons appeared at δ 6.27 and 3.88, respectively. The ¹³C NMR spectrum of **1** showed 27 peaks including a carbonyl

(C-6, δ 209.31) and two olefinic carbons (C-7 at δ 119.66 and C-8 at δ 167.33). In the region of oxygen bearing carbons, signals of two methine carbons at δ 77.50 (C-22) and 65.81, and four quaternary carbons at δ 69.47 (C-25), 76.76 (C-20), 80.23, 84.01 (C-14) were observed. The signals at δ 65.81 and 80.23 were unambiguously assigned to C-3 and C-5, respectively. The HMBC spectrum showed the correlation from 19-Me to the carbon signals at δ 24.94 (C-1, CH₂), 42.37 (C-10, quaternary C), 37.03 (C-9, CH) and 80.23. A HMBC correlation from 7-H to the last carbon signal was also observed. Thus, it became evident that the C-5 position was hydroxylated. The 5 β -OH substitution was evidenced by the chemical shift of C-19 (δ 17.24) which is significantly

он

Fig. 2. The HMBC correlations of 3.

upfield shifted (7 ppm) compared to 1 [7] and the downfield shift of 19-Me (vide supra) [8] which can be explained by pyridine-induced deshielding effect of 5B-OH group. The HMQC spectrum allowed to assign C-1 methylene protons to the signals at δ 1.51 and 2.17, which were correlated only to signals at δ 1.87 as revealed by the ¹H–¹H COSY spectrum. It is of note that C-1 is upfield shifted (5 ppm) than those of ecdysteroids with 2,3-dihydroxy group. Taken together, it is obvious that C-2 is not hydroxylated but a methylene carbon which was successfully assigned to the signal at δ 29.11 by HMQC spectrum. Another methylene carbon resonating at δ 36.48, linked to protons at δ 1.75 (*brd*) and δ 1.97 (*brd*), was assigned to C-4, since decoupling experiments irradiating 3-H at δ 4.02 collapsed the methylene protons into sharp AB doublet ($J = 14.4 \,\text{Hz}$). The experiments clearly indicated that the spin-spin coupling constants between 3-H and 4α -H, and between 3-H and 4β -H are less than a few Hz, therefore indicating equatorial orientation of 3-H (axial orientation for 3-OH). The NMR signals due to protons and carbons of ring-C and D and side-chain are in excellent agreement with the reported data for **1** [9]. On the basis of the whole data described above, the structure of **3** was established as 2-deoxy-5 β ,20-hydroxyecdysone. The complete ¹H and ¹³C NMR assignments of **3** are listed in Table 1. The HMBC correlations are shown in Fig. 2. The ¹³C NMR data obtained in CD₃OD are also included in the Table (for ¹H data, see Section 2). In addition, the ¹³C NMR data for makisterone C (**5**) are reported for the first time (see Section 2).

References

- Chopra RN, Nayar SL, Chopra IC. Glossary of Indian medicinal plants. New Delhi: Council of Scientific and Industrial Research; 1956. p. 72–9.
- [2] Miller RW, Clardy J, Kozlowski J, Mikolajczak KL, Plattner RD, Powell RG, et al. Phytoecdysteroids of *Diploclisia glaucescens* seed. Planta Med 1985;40–2.
- [3] Bandara BMR, Jayasinghe L, Karunaratne V, Wannigama GP, Bokel M, Kraus W, Sotheeswaran S. Ecdysterone from stem of *Diploclisia* glaucescens. Phytochemistry 1989;28:1073–5.
- [4] Jayasinghe L, Jayasooriya CP, Oyama K, Fujimoto Y. 3-Deoxy-1β,20-dihydroxyecdysone from the leaves of *Diploclisia glaucescens*. Steroids 2002;67:555–8.
- [5] Suksamran A, Yingyongnarongkul B. Synthesis and biological activity of 2-deoxy-20-hydroxyecdysone and derivatives. Tetrahedron 1996;52:12623–30.
- [6] Girault J-P, Lafnot R, Varga E, Hajdu ZS, Herke I, Szendrei K. Ecdysteroids from *Leuzea carthamoides*. Phytochemistry 1988;27: 737–41.
- [7] Krepinsky J, Findlay JA, Danieli B, Palmisano G, Beynon P, Murakami S. Concerning carbon-13 n.m.r. spectroscopy of 5β-hydroxylated phytoecdysones. Org Mag Res 1977;10:255–7.
- [8] Camps F, Coll J, Cortel A. 29-Norsengosterone and 29-norcyasterone, new C-28 phytoecdysteroids from *Ajuga reptans (Labiatae)*. Chem Lett 1982;1313–6.
- [9] Girault J-P, Lafont R. The complete 1H-NMR assignment of ecdysone and 20-hydroxyecdysone. J Insect Physiol 1988;34:701–6.