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Abstract Fluoride is one of the most widespread

groundwater pollutant. More than 200 million people, from

25 nations, are suffering from fluorosis. This review pre-

sents an overview of fluoride distribution in groundwaters,

and defluoridation techniques. Adsorption is the most

common technique; however, the efficiency, sorbate dis-

posal and continuous supply of efficient sorbates are still

problematic. Membrane processes are quite efficient but not

economical for developing communities. This article there-

fore highlights the importance of further research on efficient

and cost-effective defluoridation for the rural developing

communities not only to be used for household filtration units

but also for use in community water supply schemes.

Keywords Fluorosis � Groundwater � Adsorption �
Ion exchange � Coagulation � Co-precipitation

Introduction

Fluorine is the most electronegative and reactive element in

the periodic table, occurring primarily as the fluoride ion

(F-) in the natural environment. Fluoride mobilization in

the natural conditions is the cause of most environmental

fluoride problems. However, in some special cases, such as

the recent incident happened (October 2012) in the

Republic of South Korea with the hydrofluoric gas leakage

in an industrial accident may also provide fluoride into the

environment in heavy loadings. Fluorine, the element of

fluoride, associates with many mineral deposits containing

fluoride-bearing minerals, and weathering, dissolution and

other pedogenic processes can release fluoride into

groundwater. Even though fluoride is considered as an

essential element for human health, especially for the

strengthening of tooth enamel, excessive doses can be

harmful. While fluoride is present in air, water and food,

the most common way it enters the food chain is via

drinking water (Fawell et al. 2006).

Fluoride-rich drinking water is a widespread problem

which can be seen all over the world. Fluorosis is endemic

in at least 25 countries around the world, and is most

prevalent in India, China, and parts of Africa. It is not

known how many people are currently afflicted with the

disease, but conservative estimates are in the tens of mil-

lions of people (WHO 2004). According to the WHO, at

concentrations above 1.5 mg/L, fluoride is considered as

dangerous to human health. Excessive fluoride can lead to

dental and skeletal fluorosis, a disease that can cause

mottling of the teeth and calcification of ligaments (Fig. 1)

(Fawell et al. 2006; Kowalski 1999). Long-term ingestion

of fluoride-rich drinking water may show the way to

crippling bone deformities, cancer (Kowalski 1999; Yi-

amouyiannis 1993), decreased cognitive ability, lower in-

telligence quotient and developmental issues in children

(Li et al. 1994). The populations in tropical belt are having

close contacts with their surrounding environment, and

thereby, the geochemical anomalies play a role in the

people’s health (Dissanayake and Chandrajith 2009). One

argument is that the fluoride toxicity increases with the
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amount of drinking water consumed especially in the hu-

mid tropics; thus, the maximum permissible fluoride con-

centration in drinking water has to be lowered from the

existing WHO limit (Dissanayake 2005; WHO 1996,

2004).

The presence of fluoride in water does not impart any

color, odor or taste. Hence, it acts as an invisible poison

such as arsenic in groundwater. Unless otherwise tested,

one cannot reveal the high concentrations of fluoride in

their waters. This review therefore focuses on the sources,

distribution and treatment methods of fluoride available in

the literature. Furthermore, we discuss the problems of the

processes involved in the removal methods which have

been proposed as well as future perspectives of fluoride

research. This mini review is an abridged version of our

book chapter published in the book Environmental for a

Sustainable World (Vithanage and Bhattacharya 2014).

Different sources of fluoride in the environment

The possible sources of fluoride in the environment are

schematically shown in Fig. 2. The largest fluoride reserve

is considered as the natural input from the rocks and

minerals containing fluoride in there composition.

Rocks and minerals

Fluoride is one of the most abundant trace elements in the

Earth’s crust, with an average concentration of 625 mg/kg

in different rock types (Edmunds and Smedley 2005;

Tavener and Clark 2006). The largest fluoride reserve is the

rocks containing fluorine-rich minerals (WHO 1984). The

highest fluoride levels are associated with syenites, gran-

ites, quartz monzonites, granodiorites, felsic and biotite

gneisses, and alkaline volcanics (Apambire et al. 1997a;

Chae et al. 2006, 2007; Dissanayake 1991; Handa 1975;

Hyndman 1985; Jones et al. 1977; Moore 2004; Nanyaro

et al. 1984; Ozsvath 2006; Robinson and Kapo 2003; Rosi

et al. 2003; Stormer and Carmichael 1970; Taylor and

Fallick 1997). In Coimbatore district in Tamil Nadu, rocks

are found to contain 180–2600 mg/kg F (Table 1).

Among all fluoride-rich minerals, fluorite (CaF2),

fluoroapatite (Ca5(PO4)3F), micas, amphiboles, cryolite

(Na3AlF6), villiaumite (NaF) and topaz (Al2(SiO4)F2) are

considered as the most abundant minerals which occur in

most rocks and sediments (Apambire et al. 1997a; Chae

et al. 2007; Cronin et al. 2000; Edmunds and Smedley

2005; Handa 1975; Hem 1985; Saxena and Ahmed 2003).

The granitic rocks containing fluoride minerals such as

amphibolites, pegmatites, hornblende, muscovite and bi-

otite micas supply fluoride to soils and groundwater by

weathering and soil-forming processes. Among the few

laboratory model studies, it has been observed that gran-

ites, acid volcanic rocks, basic dikes and hornblende in

gneisses contribute to fluoride-rich soils and waters in the

surrounding (Saxena and Ahmed 2001).

Fluoride dissolution into the environment

Wall rock interaction is believed to be the foremost process

on fluoride release to groundwater (Abdelgawad et al.

2009; Handa 1975; Saxena and Ahmed 2003). High-F

groundwaters are common in the dry parts of the world.

The reason behind is that the fluoride originates mainly

from hydroxypositions in biotite and hornblende and is

concentrated through evapotranspiration in soil and

groundwater exhibiting residual alkalinity. Such waters are

common in areas with generally alkaline soils. Along the

flow paths of the water from hill tops to valley bottoms,

calcite, dolomite and fluorite seem to precipitate, in that

order (Jacks et al. 2005).

The high-fluoride groundwater typically has high pH

value, high HCO3
- content and high Na? content (Guo

et al. 2007; Handa 1975; Jacks et al. 1993, 2005). Guo et al.

(2007) indicated that the fluoride concentration is

positively correlated with HCO3
- and Na? contents. Al-

kaline conditions, moderate specific conductivity and their

ratios play a significant role in F dissolution from rocks

(Saxena and Ahmed 2001, 2003). For the dissolution of

fluorite in groundwater with high HCO3
- contents, the

reaction is as follows:

CaF2 þ 2HCO�3 , CaCO3 þ 2F� þ H2Oþ CO2 ð1Þ

Moreover, groundwaters with high HCO3
- and Na?

content are usually alkaline and have relative high OH-

content, so the OH- can replace the exchangeable F- of

Fig. 1 Dental fluorosis-affected child in Anuradhapura, Sri Lanka
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fluoride-bearing minerals, increasing the F- content in

groundwater. The reactions are basically as follows:

Muscovite:

KAl2 AlSi3O10½ �F2 þ 2OH� , KAl2 AlSi3O10½ �OH2 þ 2F�

ð2Þ

Biotite:

KMg3 AlSi3O10½ �F2þ2OH�,KMg3 AlSi3O10½ �OH2þ2F�

ð3Þ

Evaporation is another important factor resulting in the

occurrence of high-fluoride groundwater. Calcium ions

precipitate out as CaCO3, due to high evaporation resulting

in reducing Ca2? concentration of the groundwater, and

consequently, the solubility control of CaF2 on fluoride

enrichment in the aqueous phase becomes weaker. This has

been described in detail by Handa (1975). Also, secondary

mineral deposition has shown a great potential to act as

sinks for fluoride and with their quick dissolution release

fluoride based on the pH of the media (Jacks et al. 1993,

2005).

Fluoride mobility in soils and groundwater

Although the fluorine content of most rocks ranges from

100 to 1,300 mg/kg (Faure 1991), soil concentrations

typically vary between 20 and 500 mg/kg (Edmunds and

Smedley 2005). In some cases, higher concentrations have

Fig. 2 A schematic diagram showing the fluoride-existing sources in the environment

Table 1 Fluorine in fresh rocks, weathered material and soils from Coimbatore district in Tamil Nadu, India (Modified from Jacks et al. 2005)

Sample/site Fraction Weight (%) F concentration

(mg/kg)

Fluoride in

groundwater (mg/L)

Fluoride in calcrete

(mg/kg)

Gneiss/Nallur Light 74 1520 5.9 800–900

Dark 26 5700

Fresh rock 2500

Weathered 1880

Soil (\2 mm) 2000

Gneiss/Ponnandakavundanur Light 70 1270 4.0 510–1300

Dark 30 5400

Gneiss/Kodavadi Light 65 195 5.2 1600–2500

Dark 38 2700

Fresh rock 1070

Weathered 900

Soil (\2 mm) 690

Granite/Karunagarapuri Light 95 360 1.5

Dark 5 2100

Vedasandur Fresh rock 380 1080

Weathered 360

Soil (\2 mm) 470
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been reported in soils affected by anthropogenic inputs,

such as phosphate fertilizers (Kabata-Pendias and Pendias

2001), sewage sludge (Rea 1979) and industrial pollution

(Cronin et al. 2000).

Fluoride is commonly found in soils ranging from 200 to

300 mg/kg (WHO 2002), however, strong association of

fluoride with the soil components does not readily released

from soil (Ayoob and Gupta 2006 and references therein).

The chemical speciation, soil chemistry and climate are the

factors influencing the fluoride release from soils. Below

pH 6, in acidic soils, fluoride forms complexes with Fe and

Al in the soil, and the adsorption is significantly high in

low pHs (below pH 4.0) and decreases above pH 6.5

(WHO 2002). Alkalinization of soils by application of

fertilizers under irrigation may increase the fluoride release

from soils to the groundwater. Study conducted in China

has reported values up to 2860 mg/kg of fluoride in soils

(Zhu et al. 2007).

Other sources

Several studies conducted in India have reported different

sources of fluoride for soil and groundwater other than

weathering.

Other common sources of fluoride in soil and ground-

water are the following (Datta et al. 1996):

1. Hydrogeothermal sources

2. Volcanic ash

3. Wet and dry depositions of gaseous (e.g., HF, SiF4),

particulate fluoride (e.g., A1F3, NaAlF6, CaF2) emis-

sions from steel, aluminum, glass, phosphate fertilizer,

brick and tile industries, soil dust and crustal material.

Burning of coal and fly ash deposition (Pickering 1985;

Skjelkvåle 1994).

4. Phosphate fertilizers, fumigants, rodenticide, insecti-

cides and herbicides containing fluoride as impurity or

constituent (Poovaiah 1988; Ware 1975), e.g., cryolite,

barium fluorosilicate, sodium silicofluoride, sulfuryl

fluoride and trifluralin.

It has been found that the hydrothermal vein deposits and

rocks that crystallize from highly evolved magmas contain

fluorite, fluorapatite, and fluoride-enriched micas and/or

amphiboles (Dolejš and Baker 2004; Hyndman 1985;

Stormer and Carmichael 1970; Taylor and Fallick 1997).

The natural atmospheric sources of fluorine in pre-

cipitation include marine aerosols, volcanic gas emissions

and air-borne soil dust (De Angelis and Legrand 1994;

Saether et al. 1995; Tavener and Clark 2006). Volcanic

eruptions are common in Iceland, and fluorosis poisoning

in livestock and humans was identified long ago in 1978

from the Laki eruption (Brindha and Elango 2011). The

fluoride content in ash from Hekla eruption in 2010 was

23–35 mg/kg (Matvaelastofnun 2010). Volcanic ash is

readily soluble, and thus, the risk of fluoride contamination

in groundwater is very high. These volcanic sources have

also been found to cause fluoride contamination in

groundwater of Kenya (Gaciri and Davies 1993). The in-

dustrial aerosols from brickworks, aluminum smelters, iron

and steel production, fossil fuel burning, ceramic industries

and phosphate fertilizer plants are the primary anthro-

pogenic sources of fluorine (Bonvicini et al. 2006; Cronin

et al. 2000; Feng et al. 2003; Fuge 1977; Tavener and Clark

2006; Walna et al. 2007). Both gaseous (e.g., HF, SiF4, F2,

and H2SiF4) and particulate forms (e.g., CaF2, NaF, and

Na2SiF6) of fluoride is being released by the industrial

sources. It has been reported that the rainfall contaminated

by such industrial emissions may contain fluoride con-

centrations exceeding 1 mg/L (Feng et al. 2003; Neal 1989;

Saether and Andreassen 1989; Walna et al. 2007), and

these concentrations can persist up to 2 km from the source

(Mirlean and Roisenberg 2007).

Global distribution of fluoride in aqueous environment

Fluoride content in drinking water varies around the world

depending on the geographical location. Fluoride con-

tamination is widely reported in groundwater in different

parts of the world especially from the humid tropics. These

areas include Africa, China, South Asia and Middle East

(Ayoob and Gupta 2006). It is estimated that more than 200

million people worldwide rely on drinking water with

fluoride concentrations that exceed the present WHO

guideline of 1.5 mg/L (WHO 2004). In Mexico, it has been

estimated that about more than 5 million people are affected

by fluoride in groundwater (Ayoob and Gupta 2006 and

references therein). Dangerous levels of fluoride that are

increasingly found in groundwater in south and southeastern

Asia are of growing concern, along with infectious or other

toxic substances (WHO 2000). A detailed description on the

concentration of fluoride in groundwater and its sources in

various regions of the world based on literature (Ayoob and

Gupta 2006; Brindha and Elango 2011) are given in Table 2.

Asian setting

The big picture: India

Of the 85 million tons of fluoride deposits on the earth’s

crust, 12 million tons are found in India (Teotia and Teotia

1994). Hence, fluoride contamination is widespread, in-

tensive and alarming in India. About 50 % of the ground-

water in Delhi exceeds the maximum permissible limit for

fluoride in drinking water (Datta et al. 1996). Jacks et al.

(2005) observed that high fluoride in groundwater in many
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Table 2 Fluoride levels reported in different countries

Country Location Water source Fluoride

concentration

or range (mg/L)

References

Ghana Upper regions Shallow and deep groundwater 0.11–4.6 Apambire et al. (1997b)

Ghana Nathenje and Lilongwe Shallow and deep groundwater 0.5–7.02 Msonda et al. (2007)

Pakistan Naranji Shallow groundwater 1.08–1.38 Tahir Shah and Danishwar (2003)

Pakistan Faisalabad Groundwater 0.38–1.15 Kausar et al. (2003)

Pakistan Kalalanwala Shallow groundwater 2.47–21.1 Farooqi et al. (2007b)

Pakistan Lahore Shallow and deep groundwater ND–8.46 Naeem et al. (2007)

Pakistan Sialkot Shallow groundwater 0.41–0.99 Ullah et al. (2009)

Pakistan Nagar Parkar Groundwater 1.13–7.85 Naseem et al. (2010)

Canada Gaspe, Quebec Shallow, intermediate and deep

groundwater

0.05–10.9 Boyle and Chagnon (1995)

India Nalgonda Shallow groundwater 0.1–8.8 Brindha et al. (2011)

India Majhiaon Shallow and deep groundwater – Avishek et al. (2010)

Guntur, Andhra Pradesh Shallow groundwater 0.6–2.5 Rao (2009)

Anantapur, Andhra Pradesh Shallow groundwater 0.56–5.8 Rao and Devadas (2003)

Hyderabad, Andhra Pradesh Shallow and intermediate

groundwater

0.38–4.0 Sreedevi et al. (2006)

Ranga Reddy, Andhra Pradesh Groundwater 0.4–4.8 Sujatha (2003)

Karbi Anglong, Assam Groundwater 0.4–20.6 Chakraborti et al. (2000)

Bihar Shallow groundwater 0.1–2.5 Ray et al. (2000)

Delhi Groundwater 0.2–32.5 Raju et al. (2009)

Gujarat Groundwater 0.1–40 Raju et al. (2009) and reference

therein

Bellary, Karnataka Groundwater and surface water 0.33–7.8 Wodeyar and Sreenivasan (1996)

Karnataka Shallow groundwater 1–7.4 Latha et al. (1999)

Palghat, Kerala Shallow, intermediate and deep

groundwater

0.2–5.75 Shaji et al. (2007)

Chandidongri, Madhya Pradesh Shallow groundwater 1.5–4.0 Chatterjee and Mohabey (1998)

Shivpuri, Madhya Pradesh Groundwater 0.2–6.4 Ayoob and Gupta (2006)

Orissa Groundwater 0.1–10.1 Kundu et al. (2001)

Churu/Dungarpur, Rajasthan Groundwater 0.1–14 Muralidharan et al. (2002),

Choubisa (2001)

Kacnheepurum, Tamil Nadu Shallow–deep groundwater 1–3.24 Dar et al. (2011)

Tamil Nadu Shallow–deep groundwater 0.5–4.0 Handa (1975); Raju et al. (2009)

and references therein

Varanasi, Uttar Pradesh Groundwater 0.2–2.1 Raju et al. (2009) and references

therein

Agra, Uttar Pradesh Shallow–deep groundwater 0.1–17.5 Gupta et al. (1999)

Mathura, Uttar Pradesh Shallow–deep groundwater 0.6–2.5 Misra et al. (2006)

Sonbhadra, Uttar Pradesh Shallow–deep groundwater 0.48–6.7 Raju et al. (2009)

Cambay, North Gujarat Deep groundwater 0–10 Gupta et al. (2005)

Sri Lanka Dry Zone Shallow–deep groundwater 0.02–5.30 Chandrajith et al. (2011)

Udawalawe Shallow groundwater 0.09–5.9 Van der Hoek et al. (2003)

Manitoba Lake Saint Martin Groundwater 0–15.1 Desbarats (2009)

Camaroon Mayo Tsanaga Shallow groundwater 0.19–15.2 Fantong et al. (2010)

Yemen Hidhran and Alburayhi Basin and

Taiz City

Groundwater 1.08–10 Al-Amry (2009)

Ethiopia Shallow–deep groundwater 0–204 Ayenew et al. (2008)

Iran Posht-e-Kooh-e-Dashtestan Shallow groundwater 0.7–6.6 Battaleb-Looie and Moore (2010)
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parts of India was due to evapotranspiration of groundwater

with residual alkalinity. Fluoride content was higher in

deeper aquifers of Maharashtra (Madhnure et al. 2007)

which was due to long residence time than shallow

groundwater. The rocks in southern India are rich with

fluoride which forms the major reason for fluoride con-

tamination in groundwater. It is a well-established fact that

groundwater in Nalgonda district, Andhra Pradesh, has

high fluoride due to the inherent fluoride-rich granitic rocks

with 325–3200 mg/kg. The mean fluoride content in Hy-

derabad granites is 910 mg/kg (Ramamohana Rao et al.

1993). In Kurmapalli watershed, rocks are enriched in

fluoride from 460 to 1706 mg/kg (Mondal et al. 2009). Co-

precipitation and/or adsorption of fluoride by calcrete de-

posits in Wailapalli watershed had resulted in high fluoride

in groundwater (Reddy et al. 2010).

Considerably higher concentrations, around 0.1–0.3 mg/L,

have been reported from two sites in Uttar Pradesh (Satsangi

et al. 1998) and Madhya Pradesh in India (Das et al. 1981;

Singh et al. 2001). The reason behind this was predicted as

the deposition of soil dust. Jain et al. (2000) found wet

deposition of crustal material in Haryana south of New

Delhi. About 0.05–0.22 mg/L fluoride concentrations have

been reported by Chandrawanshi and Patel (1999) from

eastern Madhya Pradesh comprising 13 sites, and this area is

close to an industrial Al plant. Recently published mea-

surements of dry deposition near Agra, Satsangi et al. (2002)

indicate even larger amounts of F derived by atmospheric

deposition. Thus, as several authors claim that the atmo-

spheric deposition is largely from a crustal source.

East Asia

Excessive fluoride in drinking water has been reported from

many different parts of China (Guo et al. 2007; Zhu et al.

2007). In Taiyuan Basin of China, interaction between

recharge area and fluoride-containing minerals was the sour-

ces for high fluoride, whereas in discharge area, evaporation

and mixing of karst water contributed to high fluoride (Guo

et al. 2007). In Yuncheng Basin of China, a salty lake water

intrusion has been reported as the source of high concentra-

tions of fluoride in groundwater (Gao et al. 2007).

Groundwater studies on fluoride in South Korea show

that the concentration of fluoride depends on the residence

time (Kim and Jeong 2005) due to geogenic source of

fluoride (Chae et al. 2007; Kim et al. 2011). People living

in Ikeno district of Japan were exposed to drinking water

containing 7.8 mg/L fluoride for 12 years (Ish and Suck-

ling 1991). Ash from the volcanic explosion of Sakurajima

volcano, Japan, was found to contain average fluoride

concentration of 788.1 mg/kg (Nogami et al. 2006).

Oversaturation of fluoride in groundwater in Mizunami

area, Japan, is due to weathering and alteration of granitic

rocks (Abdelgawad et al. 2009).

South Asia

Fertilizer containing leachable fluoride ranging from 53 to

255 mg/kg and coal containing fluoride ranging from 5 to

20 mg/kg were reported to pollute groundwater with high

fluoride in east Punjab, Pakistan, by Farooqi et al. (2007a)

where 2 million people are at risk of being exposed to high

fluoride. The granitic rocks with average fluoride concen-

tration of 1939 mg/kg in Nagar Parkar area, Pakistan,

contain fluoride in kaolin deposits between 468 and

1722 mg/kg and secondary kaolin deposits have 270 mg/kg

which are the source of fluoride up to 7.85 mg/L in

groundwater in this area (Naseem et al. 2010).

Studies on fluoride in groundwater in Sri Lanka carried

out by Dissanayake (1991) and Young et al. (2011) show

Table 2 continued

Country Location Water source Fluoride

concentration

or range (mg/L)

References

Maku area Groundwater 0.46–5.96 Moghaddam and Fijani (2008b)

South Korea Thermal groundwater 0–40.8 Chae et al. (2007)

Gimcheon Deep groundwater 0.04–2.15 Kim et al. (2011)

China Yung–Chen Basin Shallow–deep groundwater 0–3.3 Currell et al. (2011)

Zhuiger Basin, Kuitun area Groundwater 0–21.5 (Wang et al. 1997)

Taiyuan Basin Groundwater 0.4–3.32 Guo et al. (2007)

Taiyuan Basin Shallow groundwater 0.4–2.4 Li et al. (2011)

Turkey Groundwater 0.51–33.0 Oruc (2008)

Germany Muenster Region Groundwater 0.01–8.8 Queste et al. (2001)

Mexico San Luis Potosi Basin Groundwater 0–3.7 Carrillo-Rivera et al. (2002)

Hermosillo city, Sonara Shallow groundwater 0–7.59 Valenzuela-Vásquez et al. (2006)
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that the condition has not changed even after about two

decades with fluoride above 4 mg/L in groundwater. It was

found that high-fluoride areas lie within low plains. It may

be due to the fact that contact time with the geological

material was longer in the plains, and there exists slow

groundwater movement compared to highlands (Dharma-

gunawardhane and Disanayake 1993).

Rest of the Asia

The public drinking water supply system in Isparta, Turkey,

which draws water from lakes and springs discharged from

volcanic rocks, Golcuk pyroclastic and Miocene clastic

rocks contained fluoride between 0.39 and 5.62 mg/L.

Moghaddam and Fijani (2008a) found that groundwater

occurring almost everywhere in basaltic rocks in north-

western Iran contain fluoride beyond the suitable range.

High concentrations of fluoride up to 2.3 mg/L have been

found in groundwater in Algeria (Messaı̈tfa 2008). It has

been estimated that about 70 % of the fluoride intake for the

people of this region is through groundwater used for

drinking. Apart from these, dates and tea contribute to 10

and 20 % of fluoride intake, respectively. Thus, the daily

intake of fluoride ingested by an adult exceeds the threshold

limit of 0.05–0.07 mg of fluoride/kg/day (Burt 1992).

European setting

The concentration of fluoride in spring and stream waters

was used to determine the occurrences of fluorite in Osor

district, Spain (Schwartz and Friedrich 1973). In Poland,

fluoride concentration of 1.38 mg/L was detected around a

phosphate industry waste disposal site (Czarnowski et al.

1996). The fluoride concentrations of about 7 mg/L occur

naturally in western Estonia which is due to Silurian-Or-

dovician aquifer system (Indermitte et al. 2009). Alumina

production plants had increased the fluoride concentration

in nearby soils (0.3–9.2 mg/L) in Greece (Haidouti 1991).

African setting

An example from around the world with volcanic activity

leading to high-fluoride concentration in the waters is

Tanzania and the area surrounding the East African Rift

system. Many of the lakes in this area have fluoride con-

centrations reaching up to 1640 and 2800 mg/L (IPCS

2002). Fluoride contents in some rivers (12–26 mg/L),

springs (15–63 mg/L) and alkaline ponds and lakes

(60–690 mg/L) were found to be very high in Tanzania

(Nanyaro et al. 1984). Gaciri and Davies (1993) noticed

that in natural waters of Kenya, fluoride concentration was

greater in lake water than groundwater and springs which

was greater than river water. Evaporation would have been

a major cause to increase the concentration of fluoride in

lakes of this region.

Fluoride distribution in America

High-fluoride concentrations in groundwater are reported from

USA in the industrial facility wells in Pennsylvania having 3.2

and 6.5 mg/L, deep aquifers of Western US with 5–15 mg/L

and Southern California Lakeland having 3.6–5.3 mg/L (Co-

hen and Conrad 1998). The prevalence of fluorosis in different

states of the USA such as Arizona, Arkansas, California,

Colorado, Idaho, Illinois, Iowa, Kansas, Minnesota, Nevada,

New Mexico, North Carolina, North Dakota, Oklahoma,

Oregon, South Carolina, South Dakota, Texas, Utah and Vir-

ginia is found. In Mexico, 5 million people (about 6 % of the

population) are affected by fluoride in groundwater.

Throughout Canada, there are a number of communities whose

sources of drinking water contain elevated levels of fluoride (as

high as 4.3 mg/L) from natural sources. However, in most of

the cases, the fluoride contamination reported by Canada and

USA are due to industrial emissions (Rose and Marier 1977).

Some parts of Argentina consist of groundwaters with fluoride

levels about 5 mg/L (Kruse and Ainchil 2003).

Defluoridation

Many defluoridation techniques already exist, but there is

still no one method that has been found effective, safe and

cheap enough to implement widely. The defluoridation

techniques can be broadly classified into four categories,

namely coagulation and precipitation, adsorption and/or ion

exchange, electrochemical and membrane techniques. An

in-depth analysis through the annals of defluoridation re-

search reveals that very few proven sustainable solutions

have been developed so far (Ayoob et al. 2008b; Jagtap et al.

2012). Furthermore, the coagulation and adsorption/ion-ex-

change processes are still the most widely used fluoride

removal techniques practiced in endemic areas of the de-

veloping world. Many countries like India and Tanzania use

both the domestic and community-based defluoridation

techniques in different levels. Of late, a paradigm shift has

occurred in the perception of people in India and Sri Lanka,

toward community-based water supply treatment systems,

using activated alumina like sorbents and electrocoagula-

tion, respectively. However, some of these defluoridation

systems are not affordable to the bulk of population in the

fluoride-endemic rural areas. Similarly, other techniques as

reverse osmosis, electrodialysis and nanofiltration assure

good quality water; however, very high cost and high

technical competence is a must, which limits the use of these

techniques in the developing community. An overview of

the different defluoridation techniques is given in Table 3.
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Coagulation

In this process of coagulation for defluoridation, the chemical

coagulant are placed in the raw water under specific dosages

and conditions to form a solid flocculent or flakes that may be

easily filtered from the water (Fawell et al. 2006). The pre-

cipitated floc removes the dissolved fluoride contaminant by

charge neutralization, adsorption and entrapment. Hence, this is

a combined process of coagulation and precipitation. This

process is also known as the Nalgonda process that was de-

veloped for low-income Indian and African households (Fawell

et al. 2006). Lime, other calcium salts, alum and magnesium

oxides are the cheapest and most commonly used coagulants

for this process (Ayoob et al. 2008b). This process will remove

fluoride up to 50 % and possibly more depending on the nature

and degree of the fluoride content in the water (Fawell et al.

2006). Addition of lime, calcium salts and magnesium oxides

allows fluoride to precipitate. However, in the case of lime, the

process is mainly co-precipitation. Co-precipitation is the

method used in Nalgonda process of fluoride removal.

Adsorption and ion exchange

Because of the limited applications of fluoride treatment

techniques, adsorption/ion exchange is the most frequently

used (Ayoob et al. 2008a; Jagtap et al. 2012). Alumina,

bone charcoal and many clays and soils have been tested

and used for defluoridation since 1930s (Ayoob et al.

2008b; Boruff 1934; Harmon and Kalichman 1965; Jagtap

et al. 2012; Mohapatra et al. 2009).

Activated alumina, made of aluminum oxide, has a very

high surface area to weight ratio allowing it to have many small

pores that run through it (Fawell et al. 2006). This process will

have a success rate of up to 80 % removal of fluoride with less

that 1 mg/L of fluoride content left in the water (Fawell et al.

2006). Similarly, many aluminum-based sorbents have shown

better adsorption capacity (Fig. 3); however, activation has

shown an increase in surface area and thereby increasing

fluoride adsorption (Shimelis et al. 2006). Defluoridation has

also been tested using aluminum-based adsorbents together

with calcium, iron and manganese oxides and minerals

(Vithanage et al. 2012). However, all these have shown dif-

ferent defluoridation capacities depending on dosage of

fluoride, adsorbate, temperature, reaction time, etc. In reality,

defluoridation using these sorbents can even show rather dif-

ferent results due to the differences in scale, the presence and

influence of other ions and differences in other environmental

conditions such as pH, EC, hardness, alkalinity, etc.

Electrochemical methods

Electrocoagulation (EC) utilizes an electrolytic process to

generate a coagulant in situ by oxidation of an appropriateT
a
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anodic material, and the coagulant ions then react with the

target pollutant ions, initiating coagulation (Ayoob et al.

2008b). The defluoridation of water by EC using aluminum

electrodes was introduced by Ming et al. (1983). With the

electric current passing through the aluminum electrodes,

an anodic reaction releases Al(III) ions, which then react

with hydroxide ions produced at the cathode and with

fluoride ions in solution. This method has been successfully

applied by a group of scientists and engineers (Padmasiri

et al. 2012) in the rural villages in Sri Lanka where people

are suffering from chronic kidney disease of unknown

etiology (CKDu) to provide drinking water with less

fluoride and hardness.

Membrane process

The most significant processes in water treatment for

membrane processes include reverse osmosis, ultrafiltra-

tion, micro-filtration and nanofiltration (Fawell et al. 2006).

These processes are now recently being applied to the

treatment of drinking water. Membrane operations gener-

ally utilize artificial membranes to separate the mixtures

and capture the undesired material. This process is suc-

cessful in fluoride removal from drinking water up to 80 %

or more, leaving the water with a fluoride content of

\1 mg/L (Chubar et al. 2005; Fawell et al. 2006; Ruixia

et al. 2002). Similarly, Schneiter and Middlebrooks (1983)

have reported 59–67 % removal of fluoride using a reverse

osmosis (RO) unit, employing spiral wound cellulose ac-

etate membranes, after adjusting the pH from 8.2 to 6.4.

Successful implementation of a pilot scale RO plant was

reported in Lakeland, southern California (Cohen and

Conrad 1998).

Nanofiltration (NF) was used in commercial level in

Finland with a capacity of 380–600 m3/day which was

intended for the removal of fluoride and aluminum from

groundwater (Kettunen and Keskitalo 2000). Selective

defluoridation was observed for the first time using an NF

membrane that has mass transfer properties very similar to

RO membranes (Pontie et al. 2003). Electrodialysis (ED) is

also used as an excellent technique for simultaneous de-

fluoridation and desalination of brackish water (Adhikary

et al. 1989). Fluoride removal by Donnan Dialysis (DD)

was investigated by many researchers (Dieye et al. 1998;

Garmes et al. 2002; Hichour et al. 1999a, b).

Problems and perspectives

Many defluoridation techniques have been examined since

the 1930s, when the danger of excess fluoride in drinking

water was first identified (Boruff 1934). More than

70 years since the problem was recognized, however, the

attempts to develop a method of defluoridation that can be

Fig. 3 Maximum adsorption capacities of fluoride sorption into different aluminum- and iron-based materials
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sustained under differing social, financial, environmental

and technical constraints have not been successful (Brunt

et al. 2004). Although coagulation methods are generally

effective and are in use commonly in defluoridation, the

major limitation is that the process is unsuccessful in

bringing fluoride to desired concentration levels. Ion ex-

change and/or adsorption are widely accepted technologies

utilized on a full-scale basis; however, the regeneration and

disposal of the material have made the process quite

questionable. Though a number of adsorbents with very

high potential have had been developed, only activated

alumina and bone char were reported successful at the

implementation level (Ayoob et al. 2008b). For many

methods, the most critical factor in the sorption process is

pH as it dictates the entire process chemistry of defluori-

dation. Membrane methods are relatively expensive to in-

stall and operate and prone to fouling, scaling or membrane

degradation as well as these need skillful operational ca-

pability which will be a limitation for the developing world

where the excessive fluoride problem is mostly reported.

Similarly, the electrochemical techniques are with high

cost factor, during both installation and maintenance.

Especially for developing countries, the high cost of

technology, cost of power supply, expensive chemicals,

operational and maintenance costs, regeneration cost and

use of sophisticated accessories act as major constraints for

implementation. In the developing world, people always

are in contact with the immediate environment, and they

prefer to use drinking water directly from the source or tap.

Such household filter systems do not succeed due to this

reason. Most of the techniques are not achieving the social

acceptance and the implementation fails. Very limited

studies have been carried out on bioremediation of fluoride

(Evans-Tokaryk 2011; Ramanaiah 2010). It may be im-

portant to focus on the bioremediation potential for the

defluoridation. Although defluoridation research has made

significant advancement, still no sustainable solution to this

salient crisis exists. Hence, still there is need for a best

available technology for defluoridation of drinking water.
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