Solar Energy Materials and Solar Cells 28 (1993) 335–343 North-Holland

Photoreduction of N₂ to NH₃ and H₂O to H₂ on metal doped TiO₂ catalysts (M = Ce, V)

O.A. Ileperuma^{a,b}, C.T.K. Thaminimulla^a and W.C.B. Kiridena^a

^a Institute of Fundamental Studies, Kandy, Sri Lanka

^b Department of Chemistry, University of Peradeniya, Peradeniya, Sri Lanka

Received 28 May 1991; in revised form 20 May 1992

The photosynthesis of NH_3 from N_2 and the photogeneration of H_2 from H_2O under non-sacrificial conditions on M/TiO₂ (M = Ce, V) are reported. The yields are superior to those earlier reported for similar metal doped TiO₂ catalysts. The flat band potentials of these catalysts have been determined and correlated to their catalytic activity.

1. Introduction

Metal doped TiO₂ catalysts have been widely investigated for the photosplitting of water and also for several other reactions in organic and inorganic conversions. Some of these include the photoreduction of N₂ [1–5], CO₂ [6–8], metal ions [9,10], organic conversions [11] and for generating H₂ from organic wastes [12]. Metal ions doped into the TiO₂ lattice create defects in the rutile structure resulting in modified adsorption properties of the substrate [13]. Metal ion doping also shifts the absorption spectrum of the undoped semiconductor more into the visible region [14]. Sometimes, free metals such as Pt, Pd and Hg are deposited on the semiconductor particles to improve photocatalytic effeciency [15]. In this case, such metal islands rapidly conduct away the photogenerated electrons and hence act as electron reserviors for photoredox reactions.

Several investigations on the use of metal doped TiO_2 catalysts have been reported [1–5]. The role of the metal ions in the catalyst is poorly understood. We have reported [16] that in the case of Mg/TiO₂ catalysts, the conditions in the preparation of the catalyst determine the degree of photocatalytic activity. Transfer of photogenerated electrons to the metal ions followed by its reduction may also be an important factor in determining photocatalytic activity. The present investigation reports the photoreduction of N₂ and H₂O on M/TiO₂ (M = Ce, V) and the variables in the preparation of the catalyst which affect such catalytic activity.

Correspondence to: O.A. Ileperuma, Institute of Fundamental Studies, Kandy, Sri Lanka.

2. Experimental

2.1. Preparation of catalysts

All reagents used were AR grade and further purified to remove all traces of NH_4^+ , NO_2^- and NO_3^- by warming with Al/NaOH. Metal doped TiO₂ was prepared by mixing TiO₂ powder (Aldrich, 99.99%, anatase) with purified ceric sulphate or vanadyl sulphate in aqueous solution. The resultant slurries were first evaporated to dryness and the solids obtained were next calcined at the following temperatures for varying periods of time in air using a muffle furnace: 250°C, 500°C, 750°C and 1000°C.

A sample dried at room temperature was also used for subsequent irradiations. Other variables investigated in the catalyst preparation were, the percentage of metal doped, heating time and pH.

2.2. Characterisation of the catalysts

X-ray powder diffraction measurements were carried on a Shimadzu model XD-7A diffractometer with Cu K α radiation. The reflectance spectra of the samples were obtained using the full integration sphere of a Shimadzu model 365 UV–VIS spectrophotometer. Particle size analyses were carried out on a Horiba model CAPA-700 particle size analyzer using the sedimentation technique. Differential thermal analysis measurements were performed on a Shimadzu model DT 40 DTA analyzer.

2.3. Irradiation procedure

 M/TiO_2 catalysts (M = Ce, V) prepared under different conditions (calcination temperature, heating time and the percentage of metal doped) were suspended in 250 ml of distilled water in an immersion well type photochemical reactor (Applied Photophysics, UK). The water was freshly distilled form an all glass still. For each run 0.200 g of the composite catalyst was used. Irradiations were carried out using a 400 W medium pressure mercury lamp housed inside a water cooled quartz jacket. The lamp emits $> 7 \times 10^{19}$ photons s⁻¹ inside the reaction flask. A slow stream of N₂, purified by passing through a heated copper pellet column, chromic acid solution, NaOH solution, and H₂O was passed through the reactor.

Effluent gases from the reactor were bubbled through a trap containing 10 ml of 0.1 M HCl. The suspension in the reactor was magnetically stirred throughout the irradiation. Control experiments were carried out under N_2 in the dark and also under irradiation with argon.

After irradiation, the mixture in the reactor flask was treated with 10 ml of 0.2 M NaOH and the ammonia in solution was distilled into the trap containing 10 ml of 0.1 M HCl. The ammonia in the distillate was determined colorimetrically by the indophenol blue method [17].

The nitrate content of the solution was determined colorimetrically by the coupling reaction of sulphamide with N-(1-naphthyl)ethylenediamine dihydrochloride after cadmium reduction.

2.4. Hydrogen evolution experiments

Hydrogen evolution during photolysis under both N_2 and argon was determined by gas chromatography (Shimadu GC-9AM gas chromatrgraph, molecular sieve column and carrier gas argon). These results were independently checked by carrying out photolysis in a reaction vessel provided with a polarographic detector (Applied Photophysics).

2.5. Determination of flat-band potentials

Pellets prepared from catalyst powders (diameter 13.0 mm, thickness 1.80 mm) compacted to a pressure of 40 MPa were used to measure electrical conductivity. Mott-Schottky plots at frequencies 500 Hz and 1 kHz were obtained on these pellets using a Hewlett-Packard LCR meter model 4192 A and a Kenwood DL-707 digital multimeter.

3. Results and discussion

3.1. Photoreduction of N_2

In order to optimize N_2 reduction with respect of the conditions of the catalyst preparation, the effects of the following variables on the yield of NH_3 were

Fig. 1. The variation of NH_3 yield with dopant amount. (a) Ce/TiO₂, (b) V/TiO₂.

Fig. 2. The variation of NH_3 yield with heating temperature. (a) Ce/TiO₂, (b) V/TiO₂.

studied; percentage doping, heating temperature, heating time and pH. (figs. 1–4). The optimal conditions obtained form these studies for the Ce/TiO₂ system were: dopant concentration of 10% (w/w), heating temperature of 250°C, heating time of 3 h and a pH of 12.5. The corresponding values for the V/TiO₂ catalyst were: dopant concentration of 10% (w/w), heating temperature 750°C, heating time 4 h and a pH of 3. With the latter system, at higher pH values, vanadium ions leach into solution. The time variations of NH₃ obtained for catalysts prepared under optimal conditions are given in fig. 5. The maximum yield of NH₃ in solution

Fig. 3. The variation of NH_3 yield with heating time. (a) Ce/TiO_2 , (b) V/TiO_2 .

Fig. 4. The variation of NH_3 yield with pH. (a) Ce/TiO₂, (b) V/TiO₂.

obtained for Ce/TO₂ is ca. 30 μ mol ℓ^{-1} while for the V/TiO₂ system it is ca. 28 μ mol ℓ^{-1} . Both these values are considerably higher than those reported by others for metal doped TiO₂ catalysts [1].

X-ray powder diffraction patterns and FT-IR spectra obtained on Ce/TiO_2 samples showed that sulphate ions are present in the catalyst used. The enhancement of N₂ reduction in similarly constituted catalysts has been observed by Xiao et al. [18] and attributed to the enhanced adsorption of N₂ on the catalysts.

Fig. 5. The variation of NH_3/NO_3^- yields with irradiation time. (a) NH_3 yield for Ce/TiO_2 , (b) NH_3 yield for V/TiO_2 , (a') NO_3^- yield for Ce/TiO_2 , (b') NO_3^- yield for V/TiO_2 .

Fig. 6. The variation of H₂ yield with irradiation time. (a) Ce/TiO₂ under argon, (a') Ce/TiO₂ under N₂, (b) V/TiO₂ under argon, (b') V/TiO₂ under N₂.

Particle size distribution for the Ce/TiO₂ catalyst prepared under optimal conditions shows that the average particle size is 0.9 μ m corresponding to a surface area of 1.54 m² g⁻¹.

With the V/TiO₂ catalyst where the optimum doping temperature is 750°C, the TiO₂ is present predominantly in the anatase form. The average particle size is 1.5 μ m corresponding to a surface area of 3.4 m² g⁻¹. The time development of NH₃ showed an unusual periodic variation when compared to the Ce/TiO₂ catalyst. In both cases, the reduction in NH₃ yields was followed by a concomittant slow increase in nitrate formation owing to the photooxidation of ammonia.

3.2. Photogeneration of H_2

Both catalysts yield H_2 upon irradiation in aqueous solution. Irradiations carried out with Ce/TiO₂ under both argon and N₂ indicate a steady increase in H_2 generation under non-sacrificial conditions. Nearly 1000 µl of H_2 are produced after 24 h (fig. 6). The yields of H_2 under N₂ and argon are not significantly different suggesting that "nitrogen assisted hydrogen evolution" [19] does not occur with this catalyst system. The yield of H_2 with V/TiO₂ under sacrificial conditions in the presence of ethanol are considerably enhanced (fig. 6).

3.3. Flat-band potentials

The Mott-Schottky plots for Ce/TiO₂ and V/TiO₂ pellets in aqueous solution (pH = 12.3) at frequencies 500 Hz and 1 kHz are presented in figs. 7 and 8. Table 1 gives the results on the positions of the E_{CB} and E_{VB} calculated from the

Fig. 7. Mott–Schottky $(1/C^2 \text{ versus } V)$ plot for Ce/TiO₂.

flat-band potential values and the band gaps determined from reflectance measurements. The carrier densities, n_D were calculated from the slopes of the Mott-Schottky plots using the formula $n_D = (2/\epsilon\epsilon_0 eA^2)/m$, where ϵ_0 is the pemittivity of vacuum, ϵ is the dielectric constant of the semiconductor, e is the electronic charge, A is the area of the electrode and m is the slope of the graph. The results on V/TiO₂ catalysts confirm its n-type behaviour with a E_{CB} value of -2.8 V at pH 3 (versus SCE) while for the Ce/TiO₂ system the corresponding

Fig. 8. Mott–Schottky $(1/C^2 \text{ versus } V)$ plot for V/TiO₂.

Catalyst	Type of semicon- ductor ^{a)}	pН	E _{FB} (versus SCE) ^{b)}	E _{BG} (eV) ^{c)}	E _{VB} (versus SCE)	E _{CB} (versus SCE)	$\frac{N_{\rm D}}{(\rm cm^{-3})^{\rm d}}$
$\overline{V/TiO_2}$	n	03	- 2.8	3.2	+0.4	-2.8	$(4-6) \times 10^{21}$
Ce/TiO ₂	р	12	+1.1	3.1	+1.1	-2.0	$(1-2) \times 10^{20}$

Table 1 Band gaps and band positions of composite catalysts, M/TiO_2 (M = V, Ce)

^{a)} From the sign of the Mott-Schottky plot slopes.

b) From Mott-Schottky plots cf. experimental section,

^{c)} From reflectance data.

^{d)} N_D, doping concentration determined from $n_D = (2/\epsilon\epsilon_0 eA^2)/m$.

value is -2.1 V (versus SCE), at ph 12. The corresponding value for TiO₂ (anatase) is -1.2 V (versus SCE). The consistently higher hydrogen evolution rates from V/TiO₂ catalyst when compared to Ce/TiO₂ catalyst (figs. 7 and 8) is consistent with the above data. However the NH₃ yields do not vary significantly between the two catalysts.

Acknowledgement

Financial assistance from a USAID-PSTC grant (No. 936-5542) is gratefully acknowledged.

References

- [1] G.N. Schrauzer and T.D. Guth, J. Am. Chem. Soc. 99 (1979) 7189.
- [2] G.N. Schrauzer, N. Strampach, L.N. Hui, M.R. Palmer and T. Salehi, Proc. Natl. Acad. Sci. USA 80 (1983) 3873.
- [3] F. Khan, P. Yue, L. Rizzuti, V. Augugliaro and M. Schiavello, J. Chem. Soc. Chem. Commun. (1981) 1049.
- [4] H. Miyama, N. Fuji and Y. Nagae, Chem. Phys. Lett. 74 (1983) 523.
- [5] Q. Li, K. Domen, S. Naito, T. Onishi and K. Tamaru, Chem. Lett. (1983) 321.
- [6] J.M. Lehn and R. Ziessel, Proc. Natl. Acad. Sci. USA 79 (1982) 701.
- [7] J. Hawcker, J.M. Lehn and R. Ziessel, J. Chem. Soc. Chem. Commun. (1985) 56.
- [8] I. Taniguchi and B. Aurian-Blajeni, Electrochim. Acta 29 (1984) 923.
- [9] N. Serpone, in: Photochemical Energy Conversion, Eds. J.R. Norris Jr. and D. Meisel (Elsevier, Amsterdam, 1989) p. 297.
- [10] E. Borgarello, N. Serpone, G. Emo, R. Haris, E. Pelizzetti and C. Minero, Inorg. Chem. 25 (1986) 4499.
- [11] T. Sakata and T. Kawai, Energy Resources through Photochemistry and Catalysis (Acadamic Press, New York, 1983) p. 331.
- [12] T. Sakata and T. Kawai, Chem. Phys. Lett. 80 (1981) 341.
- [13] J. Kiwi, E. Borgarello, E. Pelizzetti, M. Visca and M. Grätzel, in: Photogeneration of Hydrogen, Eds. A Harriman and M.A. West (Academic Press, New York, 1982) pp. 119-145.
- [14] P.. Maruthamuthu and A. Kumar, Sol. Energy Mater. 17 (1988) 433.

- [15] S. Li, X Wen, C. Cui and Z. Hue, Huaxue Tongbao 3 (1983) 13.
- [16] O.A. Ileperuma, W.D.D.P. Dissanayake and K. Tennakone, Appl. Catal. 62 (1990) L1.
- [17] D.F. Boltz and J.A. Howell, in: Colorimetric Determination of non-metals (Wiley, New York, 1978).
- [18] L. Xiao, D. Wang, S. Yu, H. Quan and T. Li, Taiyangneng Xuebao 7 (1986) 700.
- [19] G.N. Schrauzer, T.D. Guth, T. Salehi, N. Strampach, L.N. Hui and M.-R. Palmer, in: Homogeneous and Heterogeneous Photocatalysis, Eds. E. Pelizetti and N. Serpone (Reidel, New York, 1986) p. 509.