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1 INTRODUCTION

Carbohydrates constitute 5 to 25% of the organic
matter in most soils [8]. Their significance largely
stems from the ability of complex polysaccharides to
bind inorganic soil particles into stable aggregates
[14]. They also form complexes with metal ions, and
serve as building blocks for humus synthesis [14, 28].
Other soil properties influenced by carbohydrates
include cation exchange capacity (attributed to –COOH
groups of uronic acids), and biological activity (energy
source for microorganisms) [18, 44].

Carbohydrates are degraded by microorganisms to
metabolizable substances, which are the most readily
available food for soil organisms [16]. Plant�derived
sugars, especially pentose polymers (arabinose and
xylose) serve as the major source of energy and C for
soil microorganisms. In turn, the microorganisms syn�
thesize primarily hexose polymers (e.g., galactose,
mannose, fucose, rhamnose) and release them into
the soil [8, 22, 23]. Guggenberger [10] and Amelung
[4] showed that plant�derived sugars were concen�
trated in sand�sized particulate organic matter
whereas microbe�derived carbohydrates are accumu�
lated in the clay fraction. Alekseev [2] studied the pos�
sibilities of interaction of natural carbohydrates

1 The article is published in the original.

(mono–, oligo–, and poly–saccharides, amino sug�
ars, and natural organic acids of carbohydrate origin)
with metal cations and explained that the structural
diversity of carbohydrate�metal complexes was caused
mainly by their action as ligands. These metal com�
plexes could play an important role in soil nutrient
availability. However, these are complicated possibili�
ties, which have not been thoroughly investigated.

Land use changes result in significant decreases in
soil carbohydrates due to enhanced mineralization
attributed to increased tillage and decreased organic
matter inputs [27]. The decreased inputs are also asso�
ciated with shifts in organic matter quality to more
resistant fractions such as clay bound organic forms as
more labile pools are decomposed [27]. Soils high in
clay and silt are generally higher in SOM than sandy
soils, which are attributable to the binding of humus to
clay particles, protecting them from further decompo�
sition [19]. Hassink [11] reported that SOM associated
with the clay fraction is better protected against
decomposition compared to the silt fraction. The
CBO is also resistant to the oxidative treatment by
interaction with soil minerals [21]. Thus, CBO consti�
tutes an important component in agricultural soils.

Litter particles in the soil constitute another
important component in the carbohydrate dynamics.
Soil litter has a wide range in its particle sizes. Soil�lit�
ter has been defined as the ‘light fraction’ organic
material which passes a 2 mm, but not a 0.25 mm sieve
[5]. It consists of particles which are only slightly
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transformed by decomposition. From a study by using
scanning electron microscopy, Wattel�Koekkoek [41]
reported that CBO fraction indicated free plant
remains. Thus, soil litter material serves as an impor�
tant source for long�term supply of nutrients [40].
Humic substances, CBO and soil litter establish the
entire pool of organic matter which could be impor�
tant in determining the availability of carbohydrates in
soil.

Carbohydrates have an important role on SOM
dynamics in tropical soils and some studies have been
done on this [1, 16, 24, 25, 29, 44]. Most of them are
restricted to study their composition and dynamics
under different land uses. No attention has been paid
to study the effect of the concentration of soil carbo�
hydrates on nutrient availability.

OBJECTS

In this study it is hypothesized that carbohydrates
play an important role in governing soil nutrient avail�
ability. Limitations of soil carbohydrates are known to
constrain mineralization and hence nutrient availabil�
ity [8]. Also it is hypothesized that different SOM frac�
tions govern the availability of carbohydrates. There�
fore in this study soil carbohydrate content and their

effects on soil nutrient availabilities were evaluated in
forests and adjacent cultivated lands with a view to
understand their existing relationships in natural and
managed ecosystems. The SOM fractions and their
contribution to the availability of soil carbohydrates
were also investigated.

MATERIALS AND METHODS

Field Sites

Study sites were located in the main climatic
regions of Sri Lanka (5°54′ N—9°52′ N latitude and
79°39′ E—81°53′ E longitude). Descriptive informa�
tion of the field sites is given in Table 1. In each loca�
tion, two sites were selected; a natural forest and an
adjacent, cultivated land. The natural forests included
were tropical wet evergreen (2 forests), semi evergreen,
moist monsoon, dry monsoon, montane and dry
mixed evergreen forests. Cultivated lands were planta�
tions of 10 year old tea, 20 year old rubber, 40 year old
coconut and 25 year old export agricultural crops
(pepper, cardamom and cacao), potato, home garden
and chena (slash and burn vegetable cultivation). The
gardens in turn are surrounded by forests, parts of
which were temporarily cleared for slash�and�burn
cultivation.

Table 1. Descriptive information of the field sites studied

Ecosystem ELE 
(m)

MAR 
(mm)

MAT 
(°C)

Soil

Great group, FAO, 
1993 pH  Organic mat�

ter, g × 100 g–1
 Total N, 

g × 100 g–1
Total P, 

g × 100 g–1

Forests

Tropical wet evergreen, WL 1000 5000 25 Haplic Acrisols 4.57 4.05 0.27 0.04

Tropical semi evergreen, IM 700 2500 24.8 Cambisols 6.13 4.10 0.16 0.05

Moist monsoon, IU 1300 2500 22 Chromic Luvisols 6.98 4.79 0.23 0.04

Dry monsoon, IL 221 2000 27.4 Haplic Acrisols 6.08 2.79 0.11 0.01

Montane, WU 2000 2500 15 Haplic Acrisols 5.74 7.26 0.37 0.04

Dry mixed evergreen, DL 300 1400 28.4 Chromic Luvisols 6.87 1.59 0.23 0.05

Tropical wet evergreen, WM 600 3000 20 Rhodic Nitisols 6.37 3.58 0.29 0.05

Cultivated lands

Rubber tree, WL 1000 5000 25 Haplic Acrisols 4.63 3.30 0.19 0.05

Export agricultural crops, IM 700 2500 24.8 Cambisols 5.64 2.07 0.07 0.06

Potato farm, IU 1300 2500 22 Chromic Luvisols 6.07 3.78 0.22 0.06

Coconut, IL 221 2000 27.4 Haplic Acrisols 5.19 2.19 0.11 0.03

 Tea, WU 2000 2500 15 Haplic Acrisols 5.06 3.56 0.05 0.07

Chena cultivation, DL 300 1400 28.4 Chromic Luvisols 6.71 1.42 0.16 0.04

Home garden, WM 600 3000 20 Rhodic Nitisols 6.00 2.78 0.17 0.06

Note: ELE, Elevation; MAR, Mean annual rainfall; MAT, Mean annual temperature; Climatic regions: WL, Wet zone low country; IM,
Intermediate zone mid country; IU, Intermediate zone up country; IL, Intermediate zone low country; WU, Wet zone up coun�
try; DL, dry zone low country; WM, Wet zone mid country.
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Soil Sampling and Analysis 

Twenty composited soil samples were collected
from 0–20 cm depth at each site, dried and sieved
(2 mm). Soils were then ground and sieved (<0.15 mm)
prior to the analysis. Macronutrients extracted by
modified Morgan extractant [20] and DTPA extract�
able micronutrients [35] were analysed using an
atomic absorption spectrophotometer (GBC 933 AA).

Soil P  (molybdenum blue method [40]) and

organic C content (colorimetry [6]) were also mea�
sured. The soil was extracted for fulvic fraction and
humic acid type substances using the International
Humic Substances Society method (IHSS) [36].

Extraction of Clay Bound Organic Matter (CBO)

The separation of clay was done by sedimentation
method [39]. Free organic matter in the soil sample
(40 g) was first removed by treating with 30% H2O2.
The amount of CBO in the separated clay fraction was
quantified by using weight loss on ignition method.

O4
3–

Extraction of Soil Litter

A sample of soil (100 g) was also extracted to obtain
the soil litter for the analysis using the method
described by Smucker [32]. The soil sample was agi�
tated in water to separate soil particles and soil litter
particles. Organic matter in suspension was carefully
decanted onto a 0.25 mm sieve. Soil litter materials
collected on the sieve were washed with distilled water
and oven dried at 85°C.

Determination of Soil Carbohydrates [3]

Individual sugars were released from soil carbohy�
drates by treatment with 4M trifluoroacetic acid, the
extractant at 105°C for 4 h. The resulting monosac�
charides were then converted into alditols acetate
derivatives by using acetylation as derivatisation pro�
cedure. Reference alditol acetates of rhamnose,
fucose, ribose, arabinose, xylose, mannose, galactose,
and glucose were used as standards. These derivatives
were then separated on a Shimadzu GC–9AM gas
chromatograph equipped with a hydrogen flame ion�
ization detector. Separation of the monosaccharide
units was achieved with a SPB 1701 fused silica capil�

Table 2. Concentrations of soil carbohydrates in different land uses studied

Ecosystem

Sugars of plant origin, SPO Sugars of microbial origin, SMO

 Arabinose Xylose Rhamnose Fucose Ribose Manose Galactose Glucose

ng g soil–1

Forests

Tropical wet evergreen 2.69b 3.52b 5.83b 1.99b 4.24b 4.63b 38.06b ND

Tropical semi evergreen ND 1.44b 3.44b 0.93b 3.20b 6.96b ND ND

Moist monsoon 14.25b 2.24b 32.13a 598a 182a 374a  1818a 911a

Dry monsoon 96.65a 22.2a 5.76b 12.27b 50.3b 33.03b 92.52b 19.58b

Montane 1.98b 8.69b 3.52b 20.57b 13.44b 19.94b 22.82b 7.52b

Dry mixed evergreen 2.86b 17.15a 5.44b 27.16b 18.29b 9.63b 0.44b 1.14b

Tropical wet evergreen 4.82b 2.63b 6.04b 2.30b 16.21b 2.88b 0.48b 7.44b

CV (%) 114 124 71 78 68 81 128 133

Cultivated lands

Rubber tree 10.23a 7.58a 48.86a 34.64a 42.5a 26.0c ND 31.65a

Export agricultural crops 1.45b ND 1.99e ND ND ND ND 5.68b

Potato farm ND ND 5.95c 7.95c 1.03c 37.6b 130a ND

Coconut 14.98a 22.19a 36.45b 1.69d 29.40b 51.28a 57.79b 7.79b

Tea 0.192d 1.42b 1.75e 0.49e ND 1.41d 0.12c ND

Chena cultivation 1.18b 5.54b 4.25c 12.41b 17.52b 3.04d ND 1.94c

Home garden 0.534e 21.24a 3.17d 0.98e 16.14b ND ND 2.5c

CV (%) 89 47 36 66 89 94 178 138

Note: Values in the same column followed by the same letter are not significantly different at P < 0.05. ND, not detected.
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lary column. Carrier gas was Helium with a total flow
rate of 80 mL min–1.

Statistical Analysis

The relationships between concentrations of differ�
ent sugars and SOM fractions as well as elemental con�
centrations were established through correlation and
regression analyses [30]. The comparison of carbohy�
drates among different land uses was done using GLM
procedure and Tukey’s HSD test [30]. A t�test was car�
ried out to compare SOM fractions between the natu�
ral forests and the adjacent cultivated lands. Sugar
concentrations were transformed to logarithmic scale
[log10(x + 1)].

RESULTS

Table 2 shows the concentration of sugars of plant
and microbial origin in the different land uses. The
SMO were detected in most of the forest types and
they showed a similar pattern among the forest types.
Unlike the forests, sugar quantities in cultivated lands
were highly variable among sites. Rhamnose showed
the highest variation (1.75–48.80 ng g soil–1) among
the sites. Arabinose and xylose, the SPO were signifi�

cantly high in rubber (10.23 and 7.58 ng g soil–1,
respectively) and coconut (14.98 and 22.19 ng g soil–1,
respectively) plantations, and xylose was high in home
garden (21.24 ng g soil–1). The SMO were generally low
in cultivated lands. They varied between 0.12 ng g soil–1

and 37.6 ng g soil–1, except 130 ng g soil–1 galactose in
potato land. However, they were comparatively high
in rubber (26.0–48.8 ng g soil–1) and coconut (1.69–
51.28 ng g soil–1) plantations. The lowest concentra�
tion of microbial sugars was found in tea soil (i.e.1.75
ng g soil–1) and Ribose and glucose were not detected.

Soil litter contents were significantly high in all for�
ests compared to the adjacent cultivated lands (Table 3).
The CBO fraction showed a variation among field sites
(Table 3). It was high in most of the cultivated lands
compared to the forests.

Exchangeable Cu and Zn in the soils of the forests were
positively related to the soil fucose contents (Fig. 1a). The
exchangeable Mn content was positively related to the
soil glucose content (Fig. 1b). Other nutrients did not
show significant relationships with the sugars (P >
0.05). The soil litter content was negatively related to
rhamnose, fucose, ribose and mannose (Fig. 2).

In the cultivated soils, exchangeable Ca was posi�
tively related to the xylose content (Fig. 3a) and
exchangeable P was negatively related to the arabinose
content (Fig. 3b). The soil litter of the cultivated lands
was positively related to the soil arabinose and xylose
contents (Fig. 4a). The CBO fraction showed a nega�
tive relationship to the soil glucose content (Fig. 4b).
Humic substances did not show significant relation�
ships with the sugars (P > 0.05).

DISCUSSION

The observed differences in soil sugars between for�
ests and the adjacent cultivated lands at each location
were mainly due to differences in litter inputs. Soil dis�
turbances due to different management practices of
cultivated lands widen the differences in soil carbohy�
drates among the sites [33]. Low biomass return
reduces the concentration of carbohydrates in tea
soils. The heavy use of agrochemicals reduces the
decomposition processes by lowering the microbial
activities, which in turn reduce the concentration of
CMO as observed in tea soils. However, there was a
lesser deviation among the concentrations of sugar
types in the forests as there were no such soil distur�
bances. This further shows that carbohydrates are sen�
sitive parameters and useful in detecting land use
changes [13].

Positive relationships between soil litter and SPO
(arabinose and xylose) indicated that soil litter is the
major source of the sugars in the cultivated lands [8,
18, 28]. In the cultivated lands direct litter incorpora�
tion into the soil with management– induced mixing,
generally enhances the amount of SPO [33]. However,
in the forests, carbohydrates are depleted due to min�
eralization processes during litter humification [10]

Table 3. Magnitudes of soil organic matter (SOM) fractions
of the natural forests and the adjacent cultivated lands

Ecosystem

Free soil litter, 
FSL

Clay bound organic 
matter, CBO

g × 100 g–1

Tropical wet evergreen 0.96 (0.15) 1.02 (0.41)

Rubber tree 0.41 (0.08) 1.67 (0.21)

Difference 0.55* 0.68

Semi evergreen 1.3 (0.07) 1.46 (0.02)

Export agricultural crops 0.54 (0.09) 1.96 (0.12)

Difference 0.76** 0.5**

Moist monsoon 1.14 (0.1) 1.15 (0.09)

Potato farm 0.33 (0.05) 1.18 (0.1)

Difference 0.81** 0.04

Dry monsoon 1.19 (0.27) 0.65 (0.06)

Coconut 0.47 (0.06) 0.68 (0.06)

Difference 1.29** 0.01

Montane 0.64 (0.61) 0.63 (0.03)

Tea 0.29 (0.06) 2.10 (0.66)

Difference 0.35* 1.47

Dry mixed evergreen 0.62 (0.11) 0.77 (0.1)

Chena cultivation 0.28 (0.03) 0.83 (0.03)

Difference 0.34* 0.04

Note: Values within parentheses are standard errors. ** signifi�
cant at P < 0.01, * significant at P < 0.05
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with high microbial activities compared to the culti�
vated lands. These processes reduce the amount of
SPO in the forests. Therefore, the dominant sugars in
the forests are microbial in origin. This was reflected in
the present study by the relationships in the forest soils
with SMO. Further, the negative relationships
between soil litter and the SMO (rhamnose, fucose,
mannose, ribose) indicated exploitation of the sugars
as energy sources by litter decomposing microorgan�
isms, because it has been shown that when there is a
high soil litter content, microbial respiration could
also be high in forest ecosystems [37, 38].

The negative relationship between CBO and glu�
cose content indicates that higher the SOM incorpo�
ration to clay, lower the availability of soil glucose in
cultivated lands. This may be due to the fact that once
the SOM was encapsulated within clay particles forming
CBO [31], they could not further release their sugars.

In the forests, fucose and glucose increased the
availability of Cu, Zn and Mn by enhanced mineral�
ization processes possibly due to high substrate utiliza�
tion and oxygen consumption. It is reported that the
addition of glucose enhanced the growth of white rot
fungi in soil via increased secretion of Mn peroxidase
enzyme which breaks down lignin [43]. This implies
the possible relationship between glucose and soil Mn

that was observed in our results. In addition, the sugars
increased the availability of micronutrients probably
by forming soluble complexes with micronutrients
[17]. It has been suggested that microbial release of
simple carbohydrate molecules with chelating proper�
ties can accelerate chemical weathering and conse�
quently nutrients release [17].

In general, it is reported that the nutrient availabil�
ity is increased by sugars [8, 13, 18, 25, 42]. However,
microbially derived sugars may be stabilized by inter�
action with soil minerals, limiting their availability
[15]. It therefore seems that in the forests the SMO
(fucose and glucose) are the major monosaccharides
that limit nutrient availability, especially micronutri�
ents.

In the cultivated lands the SPO (xylose and arabi�
nose) governed nutrient availability. Xylose increased
the availability of Ca probably by reducing Ca fixation
[17]. Sugars are generally expected to increase the
availability of cations by coating clay particles forming
amino sugar compounds and preventing fixation [13,
34]. Arabinose reduced the available P content in the
soil. This may be due to heavy utilization of P in the
presence of arabinose, which is reported to be major
carbon source for soil respiration [7].

The results showed that there was a higher contri�
bution of SMO to the nutrient availability in the forest,
as their availability is high compared to the SPO [15].
Sugars act as a source of energy for microbes, support�
ing nutrient mineralization in C limiting tropical soils.
Solomon [33] reported that the clay fraction is
enriched with microbially derived carbohydrates
whereas coarse and fine sand fractions of soil are
enriched with plant�derived carbohydrates. Since the
dominant sugars in the forest soils are microbial in ori�
gin, which are associated with clay, the fine soil frac�
tion would be the most suitable fraction to study the
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existing relationships. In this fraction, all microbially
derived sugars are concentrated in the clay particles. In
contrast, in the cultivated lands the nutrient availabil�
ity is determined by the plant derived sugars. Correla�
tions found in the study confirm that the effect of the
SOM on the availability of nutrients is through the
effects of soil carbohydrates under these tropical cli�
matic conditions. As many other organic substances,
sugars also can serve as chelates for micronutrient
metals [26]. Chelates are soluble organic compounds
that bind metals such as Cu, Fe, Mn, and Zn, and
increase their solubility and availability to plants [9,
12]. In our study, the correlations observed between
sugars and the micronutrients could possibly be due to
this.

CONCLUSIONS

The study confirmed that in the forests there was a
greater influence of SMO to nutrient availability, while
in the cultivated lands the nutrient availability was
determined by SPO. Soil litter was the major source of
sugars in both ecosystems. In the cultivated lands, soil
litter enhanced the sugar availability whereas in the
forests soil litter decreased it by altering microbial
activities. Thus, soil litter is an important indicator of
soil quality in terms of soil carbohydrate and nutrient

availability. The effect of the SOM on the availability
of nutrients was found to be through the effects of soil
carbohydrates in these tropical climatic conditions.
Therefore, soil carbohydrates and their relationships
with soil nutrients in different land use practices may
provide vital information regarding the availability of
limiting nutrients in natural and managed ecosystems
in the tropics. This is the first study of this nature in
which, relationships among SOM fractions, soil car�
bohydrates and nutrients have been established. Fur�
ther experiments that directly evaluate carbohydrate
controls over nutrient cations are however needed to
fully understand the mechanisms behind these rela�
tionships.
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