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ABSTRACT 

A mathematical model is constructed to illustrate that an arbitrarily small differ- 
ence in the rate constants for parallel autocatalytic reactions involving L and D 

isomers is sufficient to cause chiral selection in biochemical evolution. It is shown 

that the selection is not suppressed by instabilities leading to chaos or heavy external 

noise. 

Models of dynamical systems exhibiting competitive selection have at- 
tracted much attention in the context of ecology, evolution, cellular differen- 
tiation, and autocatalytic chemical reactions [l-6]. An especially important 
problem is the competitive interaction between two species in the presence 
of heavy external noise, when one species has a slight advantage over the 
other. One of the most interesting puzzles falling into this category is 
biochemical chiral selection [6-111. As a result of weak neutral currents 
[lo-111 or the presence of P-radiation from radioactive sources [g-11], the 
rates of parallel chemical reactions involving L and D isomers could differ by 
a small amount. If a dynamical system spontaneously breaks the symmetry 
under the parity operator, i.e., P(D, L) = (L, D), then constant chiral perturba- 
tions are expected to cause stereoselection. 
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Investigations by Kondepudi and Nelson [6] have shown that selection 
could result even in the presence of thermal fluctuations in the rate con- 
stants. Also, according to their model, for the selection to occur the noise 
level should not exceed a certain critical limit. The Kondepudi-Nelson [6] 
model is based on two coupled differential equations governing the time 
evolution of the concentrations of the L and D isomers. Obviously the actual 
reaction schemes leading to biochemical chiral selection is much more 
complicated. Dynamical systems in general exhibit complex behavior giving 
rise to instabilities and chaos greater than those manifested in models based 
on two coupled differential equations [12]. In this note we present a model to 
illustrate the effect of instabilities and chaos on chiral selection in the 
presence of heavy external noise and conclude that arbitrarily small chiral 
perturbations could lead to complete stereoselection. 

The model is based on two coupled difference equations, 

D tt1 = D,exp[r,(l- L,)], 
(1) 

L t+1 =LtexP[rL(l- D,)], 

where D,, L, are the concentrations of D, L isomers at time t, and the rate 
parameters rn, rL are such that rL - rn = Ar, Ar +Z rL (Ar > 0). When 
rL=rD= r, the solution of (1) with the initial condition D, = L, is equiva- 
lent to the solution of 

X t+1 =-%exp[r(l--X,)], (2) 

which is extensively studied as an alternative to the logistic map [I3-151. 
Solutions of (2) are stable (stable point X, = 1) asymptotically if 0 < r < 1, 

and show oscillations about the equilibrium position if 1 < r < 2. The chaotic 
region begins (i.e., the point of accumulation of cycles of period 2” occurs) at 
r = 2.6924, and cycles with period 3 appear at r = 3.1024 [14-151. When 
Ar -=c rL, the initial behavior of the solutions of (1) is almost identical to that 
of (2>, but they have the property L --) m, D + 0 as t -+m. The results of a 
computer experiment with (1) when Ar/r = lo-i5 (the estimate of At-/r 
for weak neutral current efforts is N 10-17, and of that originating from 
P-radiation in the environment is N lo-l2 [g-lo]) is presented in Figure 1. 
If r < 2, L and D both increase with t, keeping the difference L - D 
positive but insignificantly small, until L = D = 1, when L begins to increase 
while D decreases, approaching zero. The number of interactions needed for 
D to reach the limit of accuracy of the computer (10-7a> decreases with the 
increase of r. When r > 2, the trajectories for L and D rapidly diverge from 
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FIG. 1. Plots of time variation of L (full line) and D (dotted line) versus the iteration 

number (horizontal axis) when Ahr = lo-‘s and the initial values are D,=O.l, L,= 0.1: 

(a) r = 10e4, (b) r = lo-‘, (c) r = 2.1, (d) r = 2.6, (e) r = 2.8, (0 r = 3.3. (Initially the two 

curves are very close to each other and only the full line is indicated.) 

each other (i.e., L + 03, D -+ 0) with oscillations or chaotic behavior. Figure 2 
gives a plot of the number of iterations required for D to reach a value 
- 10P7’, as a function of r when Ar = lo- 15. It is important to note that in 
the chaotic region, the curve is noisy but the chaos does not suppress the 
selection arising from a minute difference in the rate parameters. The phase 
diagrams for different values of r are presented in Figure 3. 

It is interesting to examine the manner in which the selection is affected 
by external noise. Thermal fluctuations can cause random changes in the rate 
parameters ro and rL many orders of magnitude larger than Ar. To study 
the effect of such noise we carried out a computer experiment with (1) 
setting 

rx=r+Ex(o), 

rr = r + Ar + E,(a), 
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FIG. 2. A plot of t (number of iterations needed to reduce D to a value less than lO_‘“) 

versus r when Ar = lOma. 

FE. 3. Phase diagrams, i.e., computer graphics of the plots of L (vertical axis) versus D 
(horizontal axis) for different values of r when Ar = 10-‘5. The initial values are D, = L, = 0.1, 

and iterations are carried out until D - 10m7”. (a) r = 0.1, (b) r = 2.1, Cc) r = 2.6, Cd) r = 3.3. 
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FIG. 4. Variation of the selection parameter S (%I with r. (a) Ar = lo-“, D = 10m3 

(b) Ar = lo-*, CT = 10-3. 

where (JoI and (r( 1 u are two uncorrelated Gaussian white noises of zero 
mean 0 and variance a2 (U > Ar). The result was that in each run either L 
or D wins, but when the probabilities are worked out, there is a distinct bias 
towards L. We define the selection probability as 

s= NL - ND 

[ 1 NL + ND WL+NDhm’ 

where NL (ND) is the number of instances where L (D) has won the 
competition. The selection probability depends on r, Ar, and u, and Figure 
4 shows its variation with r. S increases with the decrease of r, and for given 
r decreases when u increases. The asymptotically stable region (i.e., r < 1) is 
least sensitive to external noise. Again S remains positive and nonzero for all 
values of r, including those in the chaotic region. The values of S for 
different values of r, Ar, and u are given in Table 1. 
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TABLE 1 

SELECTION PARAMETER S FOR VARIOUS VALUES OF r, Ar, AND U 

r Ar u na 

10-3 10-15 10-5 105 

10-l lo-‘5 10-5 105 

10-l 10-g 10-3 105 

2.2 10-1s 105 106 

3.3 lo-‘5 10-5 106 

aNumber of runs carried out to determine S. 

s (%I 

21.4 

2.5 

4.2 

0.03 

0.01 

The above model takes into account only the temporal variation of the 
concentrations of the two species. As S < 1, an element of volume of the 
reacting medium at any instant of time will include points where D has won 
the competition, in addition to points where L has won, which are in excess. 
The equations (1) are highly sensitive to small differences in the initial 
values of L and D (i.e., if L, - D, = 6 > 0, L wins the competition even if 
?-L = rD). The selection is strongly biased towards L in subsequent iterations. 
Thus an arbitrarily small difference between rL and rD can eventually lead 
to complete stereoselection even in the presence of heavy external noise. We 
have also noted that selection biased by Ar or 6 persists when noise terms 
are added to D and L. 
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