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Abstract A new way of constructing SUSY partner

potentials with PT symmetry is proposed. In this con-

struction, PT symmetric superpotentials generate PT sym-

metric SUSY partners and supercharges that satisfy

commutator-anti-commutator relations of close superalge-

bra SL(1/1). Conversely, every PT symmetric Hamiltonian

having zero or non zero ground state energy can be gen-

erated using PT symmetric superpotentials. Further,

superpotentials having separate P and T symmetries can

generate strictly isospectral SUSY partners if the wedge of

integration can accommodate two asymptotically opposite

quantization contours.
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1 Introduction

Lack of evidence for existence of SUSY partners of quarks,

leptons and gauge bosons strongly suggest that if SUSY

exists, it must have been spontaneously broken in nature.

Possible mechanisms of breaking down SUSY are

therefore of great interest [1, 2]. In order to study the

breaking down of SUSY, conventional supersymmetric

quantum mechanics was proposed by Witten [3]. Since

conventional quantum mechanics mainly deals with Her-

mitian Hamiltonians due to reality of their spectra, con-

ventional SUSY quantum mechanics has advanced along

the lines of real superpotentials and Hermitian SUSY

partners particularly after the work of Gendenshtein [4, 5],

who introduced the concept of shape invariance. Later on

Oikonomou [6] modified the shape invariance SUSY sys-

tem using Z3-graded symmetry using Lie algebra. Further

the algebra of Z3-graded quantum symmetry can lead to

some constraints in SUSY QM [6]. Other interesting papers

[7–12] on conventional SUSY deals with either reflec-

tionless potential or non-reflectionless potentials, scraf II

potential, spectral bifurcation, complex optical potential,

square well potential, optical couplers etc.

Bender and Boettcher [13] have introduced PT invari-

ance condition ½H;PT � ¼ 0 in PT symmetric quantum

mechanics, which lifts the requirement of Hermiticity of

conventional quantum mechanics and replaces it with

unbroken PT symmetry to preserve the reality of quantum

spectra. Since its inception, PT symmetric quantum

mechanics developed slowly into one of the active areas of

research in quantum mechanics. During the last decade

there has been an increased interest in non-Hermitian PT-

symmetric Hamiltonian systems due to possible applica-

tions of non-Hermitian models in particle-physics [14],

quantum optics [15], supersymmetric [16], and magneto-

hydrodynamics [17] models. PT symmetric Hamiltonians

are invariant under space-time reflection: for P, p ! �p;

x ! �x and for T , p ! �p; x ! x and i ! �i and satisfy

the commutation relation ½x; p� ¼ i.

In recent years, several attempts have been made to

introduce PT symmetry into the SUSY quantum mechanics
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[18–21] . Andrianov et al. [18] has extended the standard

intertwining relations used in SUSY quantum mechanics

for non-Hermitian Hamiltonians by introducing complex

superpotentials in the place of real superpotentials. In

conventional SUSY quantum mechanics, real superpoten-

tials produce Hermitian superpartner Hamiltonians and

supercharges which satisfy commutator- anticommutator

relations of close superalgebra SL(1/1). However, the

extension made by Andrianov et al. [18] does not show

such a clear relationship between superpotentials and the

corresponding non-Hermitian superpartner Hamiltonians

especially in the context of PT symmetry. On the other

hand in [19, 20] Supersymmetry has been introduced to

non-Hermitian PT symmetric systems by combining con-

ventional SUSY quantum mechanics with the time reversal

operator T to create nonstandard creation and annihilation-

type operators. These new nonstandard operators preserve

the underlying supersymmetric algebra SL(1/1) and extend

the concept of the supersymmetric partners to non-Her-

mitian Hamiltonians. However, in this construction also,

relationship between PT symmetric nature of the partner

Hamiltonians and the Hermiticity of corresponding super-

potential is not clear. In [21], Mostafazadeh has general-

ized the SUSY quantum mechanics for pseudo-Hermitian

Hamiltonians by introducing a z3-grading operator and an

even Hermitian linear automorphism with pseudosuperal-

gebra. Further recent experimental demonstration of a

unidirectional reflectionless parity-time meta material at

optical frequencies by Feng et al. [22] and above survey of

literature, we feel that something new can be added to this

PT symmetric systems involving SUSY behavior [1, 2].

2 Generation of PT Symmetric SUSY Partners

First we construct general SUSY theory for PT symmetric

Hamiltonians by defining two operators A and B such that

A � i
d

dx
þW ð1Þ

and

B � i
d

dx
�W ð2Þ

where W is a complex function. Then A does not commute

with B (AB 6¼ BAÞ and unlike in the case of conventional

supersymmetric quantum mechanics, A and B are not

Hermitian conjugates of each other (i.e. Ay 6¼ B or By 6¼ AÞ:
Next we define pairs of operators Hþ and H� as

Hþ � AB ¼ � d2

dx2
�W2 � i

dW

dx
ð3aÞ

and

H� � BA ¼ � d2

dx2
�W2 þ i

dW

dx
: ð3bÞ

Obviously Hþ and H� are not Hermitian when W has

non vanishing real and imaginary parts. Further if we

impose the condition that W is PT symmetric,

PTWPT ¼ W : ð4Þ

then Hþ and H� also become PT symmetric (W is PT

symmetric implies that both W2 and i dW
dx

are also PT

symmetric). As in the case of conventional supersymmetric

quantum mechanics, we can construct SUSY algebra for

PT symmetric systems by defining operators H, Q and eQ as

H ¼
H� 0

0 Hþ

� �

; ð5Þ

Q ¼
0 0

A 0

� �

ð6Þ

and

eQ ¼
0 B

0 0

� �

ð7Þ

and they satisfy usual commutation and

anticommutation relations of closed superalgebra sl(1/1),

½H;Q� ¼ 0; ½H; eQ� ¼ 0; Q; eQ
n o

¼ H ; Q;Qf g ¼ 0 and
eQ; eQ

n o

¼ 0.

Definitions of A, B;H� and Hþ show that if the eigen-

value problem can be defined for H� in some region of the

complex plane, then it has a zero energy eigenstate and the

function W is not only PT symmetric, but also a superpo-

tential generating H� and Hþ as PT symmetric SUSY

partners. To see this in detail we assume that the eigen-

value problem can be well defined for H� in some region

of the complex plane and define /�
0 ðxÞ as

/�
0 ðxÞ � e

i
R x

WðtÞdt: ð8Þ

Then

d2/�
0 ðxÞ

dx2
¼ �W2 þ i

dW

dx

� �

/�
0 ðxÞ ð9Þ

and hence

H�/
�
0 ðxÞ ¼ 0: ð10Þ

In order for /�
0 ðxÞ to become a normalizable

eigenfunction of H�, it should satisfy the condition that

/�
0 ðxÞ ! 0 as xj j ! þ1 in some region in the complex

plane. First we assume that such region exist and none of

the eigenvalues of Hþ is zero. (Later we give the condition

for both Hþand H� to have zero energy eigenstates.). By

following usual supersymmetric arguments, we can see that

eigenvalues and eigenfunctions of Hþ and H� are related.

Let the eigenvalues and eigenfunctions of Hþ and H� be
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fEþ
n ;/

þ
n ðxÞg and fE�

n ;/
�
n ðxÞg respectively. Then E�

0 ¼ 0

and for n[ 0;

HþA/
�
n ðxÞ ¼ ABA/�

n ðxÞ ¼ E�
n A/

�
n ðxÞ ð11Þ

and

H�B/
þ
mðxÞ ¼ BAB/þ

mðxÞ ¼ Eþ
mB/

þ
mðxÞ ð12Þ

and therefore the eigenvalues and eigenfunctions of the

two Hamiltonians Hþ and H� are related by

E�
0 ¼ 0;Eþ

n ¼ E�
nþ1;/

þ
n ðxÞ ¼ A/�

nþ1ðxÞ ð13Þ

and

/�
nþ1ðxÞ ¼ B/þ

n ðxÞ ð14Þ

for n ¼ 0; 1; 2; . . . Hence energy levels of Hþ and H�
are supersymmetric and Hþ and H� are not only PT

symmetric but also supersymmetric partners. This is the

first result of this paper.

3 PT Symmetric Superpotentials and Isospectral
Partners

Now we consider a Hamiltonian H which is PT symmetric

and has zero energy ground state W0ðxÞ. Then HW0 ¼ 0;

and since H is PT symmetric, PTHW0 ¼ HPTW0 ¼ 0:

Therefore PTW0 is also a zero energy eigenstate. If we

assume that the ground state is non-degenerate, then

PTW0 ¼ kW0. Since WðxÞ ¼ i dW0

dx
=W0; PTWðxÞ ¼ WðxÞ

and henceW(x) is also PT symmetric. Therefore for a given

PT symmetric Hamiltonian with zero energy ground state,

the corresponding superpotential is PT symmetric and

further from (3) and (4) SUSY partner of H is also PT

symmetric.

Next we investigate the condition for which Hþ and H�
are strictly isospectral. First we note that when E�

0 ¼ 0 and

Eþ
0 ¼ 0; Hþ and H� are strictly isospectral. If SUSY is not

broken, H�/
�
0 ðxÞ ¼ 0 and /�

0 ðxÞ ! 0 as xj j ! þ1 in

some regions of the complex plane. As in the case of H�,
we express /þ

0 ðxÞ as

/þ
0 ðxÞ � e

�i
R x

WðtÞdt ð15Þ

and it satisfies the equation

Hþ/
þ
0 ðxÞ ¼ 0: ð16Þ

Therefore, if /þ
0 ðxÞ ! 0 as xj j ! þ1 in the same region

in the complex plane where /�
0 ðxÞ ! 0 as xj j ! þ1 then

Hþ and H� become strictly isospectral. Now suppose the

superpotential W(x) of Hþ and H� is parity invariant

ðPWðxÞ ¼ Wð�xÞ ¼ WðxÞÞ: Let

XðxÞ ¼ i

Z x

WðtÞdt ð17Þ

then

XðxÞ ! �1 as xj j ! þ1 ð18Þ

along some directions h: Since W is PT symmetric and

parity invariant,

�XðxÞ ¼ Xð�xÞ þ C ð19Þ

and

/þ
0 ðxÞ ¼ C0eXðe

ipxÞ ð20Þ

where C0 ¼ eC is a constant. Therefore

/þ
0 ðxÞ ! 0 as xj j ! þ1 ð21Þ

along contours which are asymptotically opposite to the

directions of h. If these directions are also inside the wedge

of integration then Hþ and H� are strictly isospectral.

Next we give some examples which illustrate results

presented in this paper. First system is generated by the

complex PT symmetric superpotential

WðxÞ ¼ ixþ 1 ð22Þ

Hþ and H� for this system are given by

p2 þ ðx� iÞ2 þ 1 ð23Þ

and

p2 þ ðx� iÞ2 � 1 ð24Þ

respectively. Exact eigenenergies are Eþ
n ¼ ð2nþ 2Þ

and E�
n ¼ 2n where n ¼ 0; 1; 2:::: The supersymmetric

partners Hþ and H� are PT symmetric and satisfy the

conditions Eþ
n ¼ E�

nþ1 and E�
0 ¼ 0: Similarly the complex

PT symmetric superpotential

WðxÞ ¼ ix3 þ 1 ð25Þ

will produce supersymmetric partner potentials

Hþ ¼ p2 þ x6 � 1� 2ix3 þ 3x2 ð26Þ

and

H� ¼ p2 þ x6 � 1� 2ix3 � 3x2 ð27Þ

Eigenspectra of these Hamiltonians are obtained using

matrix diagonalization method [23] and given in Table 1.

Obviously Hþ and H� are PT symmetric and It is evi-

dent from Table 1 that eigenenergies satisfy the super-

symmetric conditions Eþ
n ¼ E�

nþ1 and E�
0 ¼ 0: In the last

illustration we consider a PT symmetric superpotential

which is invariant under both parity and time reversal

symmetry separately. Let

WðxÞ ¼ x2 ð28Þ

then
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PWðxÞ ¼ Wð�xÞ ¼ WðxÞ; ð29Þ

and

TWðxÞ ¼ WðxÞ; ð30Þ

Hþ ¼ p2 � x4 � 2ix ð31Þ

and

H� ¼ p2 � x4 þ 2ix: ð32Þ

Let x ¼ reih: Eigenspectra of this system is obtained by

numerical integration of Schroedinger equation [24]

asymptotically along the lines h1 ¼ �p=6 and h2 ¼
�5p=6 for H� and h3 ¼ p=6 and h4 ¼ �7p=6 for Hþ .

Eigenspectra of both Hþ and H� are shown in Table 2.

It is important to note that eigenvalue problems of both

Hþ and H� can be defined in either stoke’s wedge and

h3 � h2 ¼ h1 � h4 ¼ p: Hence the strict isospectral condi-

tions for partner potentials have been satisfied.

4 Shape Invariance Potential: SUSY EC

For this, we consider two different types of superpotential

to generate SUSY EC or Iso-EC. Here we consider a

modification of superpotential given in ref. [25, 26] i.e

WðxÞ ¼ ix� ik
x

ð33Þ

which has been used later in a modified form by Bazeia

et al. [27]. In this case we notice

PTWðixÞPT ¼ WðixÞ ¼ ix� ik
x

ð34Þ

Here the generalized Hamiltonian becomes

Hþ ¼ p2

2
þ x2

2
þ kðkþ 1Þ

2x2
� kþ 0:5 ð35Þ

and

H� ¼ p2

2
þ x2

2
þ kðk� 1Þ

2x2
� k� 0:5 ð36Þ

In this case, we get

Eþ
n ¼ 2nþ 1:5þ 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4kðkþ 1Þ
p

� k ð37aÞ

and

E�
n ¼ 2nþ 0:5þ 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4kðk� 1Þ
p

� k ð37bÞ

For any value of k� 2, the energy levels satisfy the SUSY

energy conditions as

Eþ
n ðk� 2Þ ¼ 2nþ 2 ð37cÞ

and

E�
n ðk� 2Þ ¼ 2n ð37dÞ

with

E�
0 ðk� 2Þ ¼ 0 ð37eÞ

Here interesting point is that the eigenvalues are

independent of k.

5 Shape Invariance Potential and Isospectral
Condition

Here we consider the same potential but replaced k by �k.
The resulting superpotentials become

WðixÞ ¼ ixþ ik
x

ð38Þ

Here

Hþ ¼ p2

2
þ x2

2
þ kðk� 1Þ

2x2
þ kþ 0:5 ð39Þ

and

H� ¼ p2

2
þ x2

2
þ kðkþ 1Þ

2x2
þ k� 0:5 ð40Þ

In this case, one can see that

Eþ
n ðk� 2Þ ¼ E�

n ðk� 2Þ ¼ 2nþ 2kþ 1 ð41Þ

as

Eþ
n ¼ 2nþ 0:5þ 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4kðkþ 1Þ
p

þ k ð42Þ

and

Table 1 First five eigenenergies of H� and first four eigenenergies of

Hþ calculated using matrix diagonalization method described in [18]

with the matrix size 1000 � 1000

Eigenenergies of H� Eigenenergies of Hþ

0 1.022 551

1.022 551 5.573 211

5.573 211 11.004 746

11.004 746 17.370 778

17.370 778

Spectra of Hþ and H� show the SUSY energy conditions

Table 2 Energy levels of the isospectral Hamiltonians Hþ ¼ p2 �
x4 � 2ix and H� ¼ p2 � x4 þ 2ix

Energy level EðþÞ
n Eð�Þ

n

0 0 0

1 3.398 150 3.398 150

2 8.700 453 8.700 453

3 14.977 808 14.977 808

4 21.999 601 21.999 601
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E�
n ¼ 2nþ 1:5þ 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4kðk� 1Þ
p

þ k ð43Þ

Here the energy levels are parameter dependent. we show

that by simply changing of k by �k one can achieve

SUSY-EC !Iso-EC.

6 Comparison

After completion of this work, we came across the SUSY

PT symmetric proposition of Bazeia et al. [27]. We discuss

below the basic difference between the two SUSY theories:

(i) Previous operators dependent [27]:

In the work of Bazeia et al. [27], the operators are

dependent:

A1 ¼
1
ffiffiffi

2
p ðpþWþðixÞÞ ¼ 1

ffiffiffi

2
p ðpþWð�ixÞÞ: ð44Þ

B1 ¼
1
ffiffiffi

2
p ðp�WðixÞÞ: ð45Þ

and constitute the SUSY partners as

Hþ ¼ Aþ
1 B1 ð46Þ

H� ¼ B1A
þ
1 ð47Þ

Here A1 and B1 are generated from each other through the

parity operator (P) as

A1 ¼ �PB1P ¼ pþWð�ixÞ ð48Þ

(ii) Present operators independent

Here operators A and B are independent where

A ¼ i
d

dx
þWðixÞ

and

B ¼ i
d

dx
�WðixÞ

constitute the SUSY partner as

Hþ ¼ AB and H� ¼ BA

In the present work, no such relation has been made or no

such relation can be found out i.e. �PBP 6¼ A. In fact our

choice of W is PT invariant as stated in Eq. (4).

(iii) PT symmetric Hamiltonian generated through

similarity transformation by Bazeia et al. [27]

PT symmetric Hamiltonian is related to a Hermitian

Hamiltonian through a similarity transformation as

H ¼ shs�1 ð49aÞ

where

h ¼ aþa ð49bÞ

and

a ¼ ðp� iWðxÞÞ
ffiffiffi

2
p ð49cÞ

considering Harmonic oscillator as an example, one can

notice that

h ¼ ðpþ ixÞðp� ixÞ
2

ð50Þ

therefore

a ¼ ðp� ixÞ
ffiffiffi

2
p ð51aÞ

so also the operators

B1 ¼ sas�1 ð51bÞ

and

A1 ¼ ðsþÞ�1
asþ ð51cÞ

Further authors have stated that if the similarity

transformation s (or s�1) does not take a state out of the

Hilbert space then the Hamiltonian for the PT symmetric

theory would have the same spectrum with the Hermitian

Hamiltonian as well as inherit its various nice features.

This implies that if one can not find (or face difficulty)

generating similarity transformation then it is obvious that

A1 and B1 can not be constructed.

On the otherhand, we would like to state here that there

is no restriction in the present work for generating SUSY

Hamiltonians. Further the Hamiltonian generated in our

case, can hardly be generated using similarity transforma-

tion. The only condition is that it should be PT symmetric.

(iv). Present work:

Zero ground state energy

Here we consider the form of potential as

WðixÞ ¼ f ðik; xr;CÞ, where k þ r ¼ even number and C ¼
arbitrary constant, to generate SUSY Hamiltonians having

zero ground state energy and non-zero ground state energy.

For Example 1. WðixÞ ¼ ixþ 1 Here k ¼ 1; r ¼ 1 and

C ¼ 1 so that k þ r ¼ 2 ¼ even number Example 2.

WðixÞ ¼ ix3 þ 1 Here k ¼ 1, r ¼ 3 and C ¼ 1 so that k þ
r ¼ 4 ¼ even number Example 3: WðixÞ ¼ x2 Here k ¼ 0,

r ¼ 2 so that k þ r ¼ 2 ¼ even number. In the work of

Bazeia et al. [27], no such proposition nor discussion has

been used in selection of superpotential W. From the best

of our knowledge, no literature on SUSY deals with the

generation of superpotentials considering the selection of

k,r and C in WðixÞ ¼ f ðik; xr;CÞ. However in the present

work, if one will select two PT functions simultaneously

like WðixÞ ¼ yn � ym with y ¼ f ðik; xr;CÞ: n ¼ k þ r, m ¼
k þ r with n[m and jnþ mj[ 0. In order to give one

example, we propose WðixÞ ¼ ix3 þ x2 such that

PTWPT ¼ W Here yn ¼ ix3 and ym ¼ x2 hence n ¼ 4 and

SUSY Quantum Mechanics for PT Symmetric Systems 637
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m ¼ 2. Similarly, if one consider WðixÞ ¼ ixþ i k
x
=yn � ym

then n ¼ 2 and m ¼ 0. In this formalism, n ¼ 0 and m ¼ 0

are not allowed simultaneously.

7 Summary

In this paper we present SUSY quantum mechanics for PT

symmetric systems in a consistent manner. We showed that

PT symmetric SUSY partner potentials can be generated by

PT symmetric superpotentials. Further, it was shown that if

a PT symmetric Hamiltonian has zero energy eigenstate,

then a PT symmetric superpotential can be constructed and

it generates a super partner Hamiltonian which is also PT

symmetric. Strict isospectral condition for PT symmetric

SUSY partner Hamiltonians has been obtained and shown

that the superpotentials having separate P and T symme-

tries can generate strictly isospectral SUSY partners if the

wedge of integration can accommodate two asymptotically

opposite quantization contours. Further we feel reflection-

less potentials with PT symmetric term as discussed in

isospectral case can be experimentally demonstrated using

suitable metamaterial at optical frequencies. In the context

of zero groundstate energy referring to iso-spectral models

may find new perspective in Quantum Cosmology [28],

where H�jw[ ¼ 0 plays an important role in finding out

tunneling models(with a well behaved wave function w, a
system H tunnels from nothing). Lastly, we would like to

state that present theory is new to the literature of SUSY

quantum mechanics.
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