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Abstract. This study was conducted to understand the role of bacterial–fungal interactions on heavy metal uptake
by Zea mays plants. A pot experiment was conducted for 90 days with Z. mays in serpentine soil inoculated with a Gram-
negative bacterium, fungus (Aspergilllus sp.) and both microbes to determine the effects of inoculation on nickel,
manganese, chromium and cobalt concentrations in plant tissue and soil. Soil nutrients and soil enzyme activities were
measured to determine the effect of inoculations on soil quality. Inoculation of microorganisms increased shoot and
root biomass, and the maximum biomass was in the bacterial–fungal inoculation. This could be due to the solubilisation
of phosphate and production of indole acetic acid. Although the combination treatment contributed to an increase in
heavymetal uptake inZ.mays plants, the lowest translocationwas observed in the combination treatment.Moreover, the soil
available nitrogen, available phosphorous and total organic carbon content were increased with the microbial inoculation.
Similarly, the soil dehydrogenase activitywas higher as a result ofmicrobial inoculation,whereas the highest dehydrogenase
activity was reported in the combination inoculation. This study confirms the synergistic effect of bacterial–fungal
inoculation as a soil-quality enhancer and as a plant-growth promoter in the presence of heavy metals.
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Introduction

Weathering of ultramafic rocks produces soils and sediments that
are non-anthropogenic sources of metal contamination. These
soils are generally nutrient poor and contain high magnesium
(Mg), iron (Fe), nickel (Ni), chromium (Cr) and cobalt (Co) and
a high magnesium : calcium (Mg : Ca) ratio (Alexander 1988;
Wenzel et al. 2003). In addition to the phytotoxic heavy metals,
the high concentrations of Mg in soil can restrict Ca uptake, a
limiting factor in plant tolerance to serpentine soils (Brady et al.
2005). Because of generally low organic matter and clay content
(Proctor and Woodell 1975), serpentine soils often have a low
water-holding capacity. Because of the high heavy metal
concentrations, the microbial diversity is often low compared
with non-serpentine soils (Panaccione et al. 2001; Southworth
et al. 2014). Infertility, metal toxicity, and often sandy, rocky and
shallow soils combinedwith lowmicrobial diversity contribute to
unique plant communities consisting of many rare and endemic
species (Harrison and Rajakaruna 2011). Only well adapted

species are able to tolerate the harsh chemical, physical and
biological properties characteristic of serpentine soils (Anacker
2014).

Theelevatedmetal concentrations associatedwith serpentinite
rocksmay cause ground-water pollution (Rajapaksha et al. 2012;
Vithanage et al. 2014) and human and animal toxicities through
plant uptake and foodwebs (Miranda et al. 2009). Thepresenceof
high concentrations of toxic metals can cause serious limitations
to the use of areas overlaying serpentinites for agriculture and
livestock farming (Shallari et al. 1998; Miranda et al. 2009).
Geochemical studies from an agricultural area in Mouriki–Thiva
in central Greece have revealed anomalous values of Ni
(621–2639mg kg–1) and Cr (134–856mg kg–1), where Cr and
Ni are primarily mobilised from chromite, olivine and serpentine
minerals (Antibachi et al. 2012). Ni is substantially more labile,
and, as a result, is readily available toplants in highconcentrations
(Antibachi et al. 2012; Vithanage et al. 2014). Ni is a known
neurotoxin, reproductive toxin, nephrotoxin, hepatotoxin and a
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carcinogenic agent (Denkhaus and Salnikow 2002). Cr is also a
potent carcinogenic agent (Dayan and Paine 2001). Exposure to
manganese (Mn) through drinking water can result in permanent
neurological disorders and cardiac, liver, reproductive and fetal
toxicities (Crossgrove and Zheng 2004).

The efficiency and the type ofmetal uptake depend not only on
the species of plant but also the action of rhizospheric organisms
(Abou-Shanab et al. 2003; Ma et al. 2009). The rhizosphere is
a complex and dynamic environment that involvesmany physical
and chemical reactions (Jones and Darrah 1994; Anjum et al.
2012; Neilson and Rajakaruna 2012). In recent years, the role of
rhizobacteria on plant heavy metal uptake has received some
attention (Burd et al. 1998;Burd et al. 2000;Rajkumar andFreitas
2008). Many rhizospheric bacteria have the ability to promote
plant growth through various mechanisms, including nitrogen
(N) fixation, utilisation of 1-aminocyclopropane-1-carboxylic
acid (ACC) and production of siderosphore and plant-growth
regulators (Burd et al. 1998; Ma et al. 2009). These mechanisms
increase the plant biomass and tolerance to heavy metal toxicity.
Even though several studies havebeen conductedon the influence
of bacteria in plant heavy metal uptake and immobilisation (Ma
et al. 2009), there are no published reports of bacterial–fungal
interactions on plant heavy metal uptake. Bacterial–fungal
interactions are more apparent as biofertilisers in the form of
biofilm (Seneviratne et al. 2009) and have shown their potential
to be used in waste-water reactors for heavy metal remediation
(Herathetal. 2013).Studieshavealsoshownthat theirperformance
is higher than that of mono- or mixed cultures of bacterial biofilms
(Herath et al. 2013). Thus, the present study was conducted to
examine the role of bacterial–fungal inoculation onNi,Mn, Cr and
Co uptake on Zea mays plants grown in serpentine soils.

Materials and methods
Study site
Serpentine soil samples were collected from the Yudhaganawa
serpentine site located within the Wasgamuwa National Park
(7�7106700N,80�9303300E) in theMatale andPolonnaruwadistricts
of north-central Sri Lanka (Vithanage et al. 2014), found in a
transitional zonebetween theHighland and theVijayanComplex.
The climate is tropical with a dry period of 8–9 months. Rainfall
is from the north-eastern monsoon from October to January and
mean temperature is uniformly high at 32�C throughout the year.
Mean annual rainfall ranges from 1750mm to 2250mm. The
vegetation is mostly a dry mixed evergreen forest (57%) and a
scrub jungle (27%).

Soil collection
Soil samples were collected within 10–15 cm from the surface
after clearing the surface litter from five random locations. The
samples were sealed in polythene bags and brought immediately
to the laboratory and bulked andmixed together. The initial metal
concentrations were 6567, 2609, 14 880 and 555mg kg–1 of Ni,
Mn, Cr and Co, respectively (Vithanage et al. 2014).

Preparation of microbial inoculums
Heavy metal-resistant bacteria were isolated in nutrient agar
(NA) from serpentine soil collected from the serpentinite
outcrop at Yudhaganawa. Dilution plating with serpentine soil

from Yudhaganawa (10�1
–10�3) was carried out to isolate the

heavy metal-resistant bacteria present in serpentine soil.
Fungal–bacterial biofilms were formed with an Aspergillus
fungus (known for metal-tolerant strains; Ahmad et al. 2006;
Anahid et al. 2011). The biofilms were subjected to a series
of Ni concentrations (50–500 ppm) and the adsorption was
determined. The biofilm with the highest adsorbing ability was
used in the experiment.

The Gram-negative bacterium isolated from Ni-rich
serpentine soil (currently, unidentified), a garden soil species
of Aspergillus, and both bacteria and fungi were used as
inoculums in the study. The bacterial cells were grown
overnight in 250-mL Erlenmeyer flasks containing 100mL of
sterilised nutrient broth on a rotary shaker at 100 rpmat 30�Cuntil
late log phase. The fungus was cultured in 250-mL Erlenmeyer
flasks containing 100mL of Czapek dox broth in a rotary shaker
at 100 rpm at 30�C for 48 h.

Glasshouse experiment
Serpentine soil was collected from Yudhaganawa outcrop and
sieved to obtain the <2mm fraction. The soils were inoculated
with bacteria (B) (10mL from the bradyrhizobium culture of
0.517 optical density at 600 nm), fungi (F) (10mLof fungal broth
culture containing 2 g of fungal mycelium) and bacteria and
fungi together (BF), in triplicate (3 pots, 25� 20� 10 in size,
per inoculum treatment). The control was filled with serpentine
soil, without any microbial treatment. Zea mays was selected
because it has the ability to tolerate heavymetal stress (Hall 2002;
Nocito et al. 2006). Surface-sterilised Z. mays seeds were soaked
in water overnight and allowed to germinate in a Petri dish lined
with filter paper. After 1 week, three seedlings of equal height
were planted in each pot. Plants were allowed to grow for 90 days
in a glasshouse at 26�30�C and 70% relative humidity, with 12 h
light/12 h dark conditions (natural light). Pots were watered
periodically to keep the soils moist.

Plant tissue analysis
After 90 days, Z. mays plants were uprooted, washed with
deionised water, and shoot and root samples were separated and
dried at 50�C.Dried plant sampleswereweighed and digestedwith
concentrated HNO3 acid in a close-vessel temperature-controlled
microwave digester system (Milestone ETHOS PLUS labstation
with HRP-1000/10S high-pressure segmented rotor, Milestone
Model START D, Italy). The digest was diluted to 100mL with
deionised water and Ni, Mn, Cr and Co concentrations were
determined using an atomic adsorption spectrophotometer
(GBC 933M, Melbourne, Vic., Australia). Plant accumulation
factor and translocation factor were calculated using the following
equations:

Plant accumulation factor ¼ metal concentration in root
metal concentration in soil

, and

ð1Þ

Translocation factor ¼ metal concentration in shoot
metal concentration in root

: ð2Þ

Analysis of soil nutrients
Available phosphorus (P) was measured by the sodium
bicarbonate extraction method. About 1.25 g of fresh soil was
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shaken at 180 rpm with 25mL of 0.5M sodium bicarbonate for
15min. The extract was filteredwithWhatmanNo. 42filter paper
and 1mL of it was used for analysis. To the filtrate, 4mL of
ascorbic acid and 3mL of molybdate reagent were added
and, after 1 h, absorbance was read at 880 nm (Watanabe and
Olsen 1965). Available N was measured using the colourimetric
method (Cataldo et al. 1975). A sample of 10 g of soil was
shaken with 20mL of K2SO4 for 30min at 60 rpm. An aliquot
of 0.5mL of the extract was mixed with 1.0mL of salicylic acid
and mixed well with a vortex mixture. After 10min, 10mL of
sodium hydroxide was added and mixed well. The mixture was
incubated for 1 h for colour development and absorbance was
read using a spectrophotometer (Shimadzu UV-2450, Japan) at
410 nm.

Measuring soil enzyme activities
To measure the polyphenol oxidase activity, ~5 g of soil was
mixed with 10mL H2O, 6mL 0.1% ascorbic acid and 10mL
0.02M catechol. It was incubated for 2min in a water bath at
30�C and 3mL of 10% phosphoric acid was added and finally
the filtrate was titrated with 0.005mol L�1 I2. For the catalase-
activity analysis, ~2 g of soil was mixed with 40mL water and
5mL 0.3% H2O2 for 20min in a shaker at 150 rpm. The filtrate
was titrated with 0.1M KMnO4 in the presence of H2SO4

(Achuba and Peretiemo-Clarke 2008). For dehydrogenase
analysis, 20 g soil was mixed with 0.2 g CaCO3 and 1mL of
3% triphenyltetrazolium chloride (TTC) was added to 6 g of the
mixture. It was incubated at 37�C for 24 h. A volume of 10mL
CH3OH was added and shaken for 1min. The absorbance was
measured at 482 nm, with CH3OH as the blank (Casida et al.
1964).

Fractionation of heavy metals
Sequential extraction of heavy metals was performed using the
method used by Vithanage et al. (2014), as follows:

(i) Exchangeable: soil was reacted at room temperature for 1 h
with 20mL of magnesium chloride solution (1M MgCl2,
pH 7.0) with continuous agitation.

(ii) Bound to carbonates: residue from (i) was leached at room
temperature for 2 h with 20mL of 1M sodium acetate
(NaOAc) adjusted to pH 5.0 with acetic acid (HOAc)
and with continuous agitation.

(iii) Bound to Fe–Mn oxide: residue from (ii) was treated with
20mL of 0.04M hydroxylamine hydrochloride (NH2OH –

HCl) in 25% (v/v) HOAc heated at 90�C, with slow
continuous agitation for 2 h.

(iv) Bound to organic matter: residue from (iii) was treated with
3mL of 0.02M HNO3 and 5mL of 30% H2O2 adjusted to
pH 2 with HNO3, heated to 85�C for 2 h with occasional

agitation. Then 3mL aliquot of 30% H2O2 (pH 2 with
HNO3)was added and the sample was heated again to 85�C
for 3 h, with intermittent agitation. After cooling, 5mL of
3.2M NH4OAc in 20% (v/v) HNO3 was added and the
sample was diluted to 20mL and agitated continuously.

Statistical analysis
Data were analysed by ANOVA in SAS statistical package
(version 9.1, Statistical Analysis System Institute Inc, NC,
USA). Means were compared using Duncan’s multiple-range
test (DNMRT) at P = 0.05.

Results

Plant dry weight and height

Both shoot and root dry weights were higher in plants with
microbial inoculation than in the control treatment
(Table 1). Root dry weight showed a significant increase in B
and BF treatments. The maximum root dry weight was recorded
from BF treatment, which was 160% higher than that in the
control. The shoot dry weight of microorganism-inoculated
samples showed a significant increase over the control. The
highest shoot dry weight was recorded for the F treatment. It
was 73% higher than in the control. Both of the other microbial
treatments (B andBF) showed a 63% increase of shoot dryweight
over the control. There was a significant difference in shoot
lengths among the treatments, with the highest shoot length
reported in the F treatment, showing an increase of 29%
compared with the control.

Even though not significant, the highest root length was
observed in the BF treatment, with a 32% increase over the
control.

Heavy metal accumulation in plant roots and shoots

Plant roots, irrespective of treatments, absorbed Ni in higher
concentrations than other metals (Fig. 1). Shoot samples showed
significantly higher concentrations of both Ni and Mn than Cr
and Co, irrespective of the treatments. Plants treated with BF
increased their uptake by 13% for Ni, 52% for Mn, 83% for
Cr and 56% for Mn compared with control plants where no
inoculum was added (Fig. 1). Even though it was not significant,
the translocation factor (Table 2) was lowest in the BF treatment,
for Ni and Mn, whereas it was second-lowest for Cr and not
detected for Co. Among the heavy metals tested, the highest
translocation factor was observed for Mn, suggesting higher
accumulation in shoots. Although not significant, the plant
accumulation factor was higher in the BF treatment than in the
other treatments (Table 2). This indicated that the presence
of microbes increased the heavy metal bioavailability and
decreased translocation of Ni, Mn and Cr.

Table 1. Shoot and root lengths of Zea mays plants in different treatments
Values in parentheses represent standard deviation

Treatment Root weight (g) Shoot weight (g) Root length (cm) Shoot length (cm)

Control 0.05c ± (0.02) 0.19b± (0.06) 14.6c ± (5.34) 9.6a ± (1.08)
Bacteria 0.09b ± (0.03) 0.31a ± (0.07) 18.8ab ± (7.91) 12.1a ± (1.24)
Fungi 0.06bc ± (0.02) 0.33a ± (0.08) 15.2a ± (4.54) 12.7a ± (0.97)
Bacterial–fungal inoculation 0.13a ± (0.03) 0.31a ± (0.07) 18.9b ± (3.29) 12.2a ± (1.47)
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Soil nutrients

The total organic carbon (TOC) content was 2.3% in the
serpentine soil from Yudhaganawa. After inoculation of
microbes, F treatment showed a significant increase in TOC
content, which showed a 15% increase over the control
(Table 3). The B and BF treatments showed a significant
reduction in TOC over the control by ~7.5% and 5%,
respectively. Moreover, the inoculation of microbes led to an
increase in both available N and P. Even though there was
no significant difference in available N content among the
treatments, the highest value was obtained in B treatment and
the available P content was significantly higher in the BF
treatment.

Soil enzyme activities

The dehydrogenase activity did not show a significant difference
among the treatments. However, it was highest in the BF
treatment. The polyphenol oxidase activity was significantly
higher in the BF treatment, whereas, the catalase activity was
significantly lower in the control (Fig. 2).

Fractionation of heavy metals

The sequential extraction results revealed that the inoculation
of microbes into soil does not show significant differences
of fractionation in Ni, Mn, Cr and Co among the treatments.

However, exchangeable fractions of Ni and Mn were higher
(132 and 47mg g–1, respectively) in the B treatment than in
the other treatments. Carbonate-bound fraction was higher in the
BF treatment for Ni, Mn and Co than in the other treatments.
Similarly, both Fe–Mn-bound and organic matter-bound
fractions were higher in the BF treatment (Fig. 3).

Discussion

Even though heavy metals are toxic to living cells, the
microorganisms that inhabit heavy metal-contaminated areas
are resistant to metal toxicity (Haferburg and Kothe 2007;
Gadd 2010). Therefore, several studies have focussed on the
application of thesemicrobes in bioremediation (Burd et al. 1998;

2500

Ni Mn Cr Co

(a) (b)
140

120

100

80

60

40

20

0

2000 a

bc bc

b

b

cc

bc
bc

c c

a

a

a a

a

c

c

c

c

b
ab

ab

ab
ab

ab

b b

1500

1000

P
la

nt
 r

oo
t d

ig
es

tio
n 

(m
g 

kg
–1

)

P
la

nt
 s

ho
ot

 d
ig

es
tio

n 
(m

g 
kg

–1
)

500

0
C B F

Treatments

BF C B F BF

Fig. 1. Concentrations (mg kg–1) of nickel (Ni), manganese (Mn), chromium (Cr) and cobalt (Co) in (a) roots and (b) shoots of Zea mays after 90 days
of growth in serpentine soil inoculated with bacteria (B), fungi (F) and both bacteria and fungi (BF). Control (C) plants were provided with no inoculum.
Different letters indicate significant differences (P= 0.05, d.f. = 8). Error bars represent the standard error of the mean.

Table 2. Plant accumulation factor and translocation factor of Zea mays plants in different treatments
Note: Values in parentheses represent standard deviation

Treatment Plant accumulation factor Translocation factor
Ni Mn Cr Co Ni Mn Cr Co

Fungi 0.24a ± (0.02) 0.14a ± (0.03) 0.02a ± (0.01) 0.08a ± (0.04) 0.03a ± 0.01 0.13a ± 0.03 0.02a ± 0.02 n.d.
Bacteria 0.24a ± (0.05) 0.18ab ± (0.07) 0.03a ± (0.01) 0.11a ± (0.03) 0.03a ± 0.01 0.11a ± 0.02 0.02a ± 0.02 n.d.
Bacterial–fungal inoculation 0.30a ± (0.07) 0.23b± (0.05) 0.04a ± (0.01) 0.16b ± (0.04) 0.03a ± 0.01 0.10a ± 0.04 0.02a ± 0.02 n.d.
Control 0.26a ± (0.02) 0.15a ± (0.02) 0.02a ± (0.01) 0.10a ± (0.01) 0.05a ± 0.02 0.20a ± 0.05 0.06a ± 0.02 n.d.

Table 3. Total organic carbon, available nitrogen (N) and available
phosphorus (P) content in soil treated with bacteria, fungi, both bacteria

and fungi and control without inoculation
Values in parentheses represent standard deviation

Treatment %Organic carbon Available N Available P

Fungi 2.2a ± (0.65) 23.39a ± (5.63) 0.41a ± (0.15)
Bacteria 1.85b ± (0.07) 30.46a ± (4.92) 2.66a ± (0.20)
Bacterial–fungal

inoculation
1.9b ± (0.07) 25.43a ± (7.54) 2.93a ± (0.66)

Control 2.0ab ± (0.12) 17.46a ± (5.23) 0.16a ± (0.22)
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Rajkumar and Freitas 2008). Belimov et al. (2005) reported that
the inoculation of the cadmium (Cd)-resistant bacterial strains
isolated from the rooting zone of Indian mustard (Brassica
juncea) grown in Cd-contaminated areas enhances its growth
under toxic heavy metal concentrations. Similarly, Jiang et al.

(2008) reported that the inoculation of Burkholderia sp. isolated
from a lead (Pb)- andCd-contaminated field enhanced the growth
of tomato and maize under Pd and Cd stress. Serpentine soil is a
naturally metal-contaminated soil and, therefore, the microbes
that live in this habitat are likely to be more resistant to heavy
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metals than those in more recently contaminated areas. (Ma et al.
2014) reported that Psychrobacter sp. and Pseudomonas sp.
isolated from serpentine soil improved the growth of B. juncea
and Ricinus communis grown in serpentine soil.

In the present study, the bacterial strains were isolated from
serpentine soils with an objective to assess the effects of the
metal-resistant and plant growth-promoting bacteria (PGPB) on
plant growth and uptake of Ni, Mn, Cr and Co by Z. mays. The
study showed that the inoculation of microorganisms increased
the growth of Z. mays and was also effective in protecting plants
from growth inhibition caused by heavy metals. Both shoot and
root dry weight and shoot length and root length were higher in
microorganism-inoculated samples than in the control. Similarly,
a significant increase in shoot and root was observed with the
inoculation ofMethylobacterium oryzae strain and Burkholderia
sp. into tomato plants grown under Ni and Cd stress (Madhaiyan
et al. 2007). In our study, the highest root weight was observed
in the bacterial–fungal treatment (BF), which was 2.6 times
higher than in the control. This may be due to the secretion of
plant growth hormones (IAA) by the synergistic effect of the
bacterial–fungal interaction (Glick 2012).

Heavy metal-tolerant bacteria in the rhizosphere play an
import role in growth promotion by possessing many different
mechanisms, such as siderophore production, utilisation of
ACC and by the production of growth-promoting substances
(Sheng et al. 2008). Most of the plant growth-promoting bacteria
contain the enzymeACCdeaminase, which hydrolyses ACC and
thereby decreases ACC within the plant, including a reduction
of plant ethylene (Grichko andGlick2001). The loweringofACC
levels within the plant results in a reduction of plant ethylene
and decreases the extent of ethylene inhibition of seedling
root elongation (Burd et al. 1998). Similarly, the present
study showed that microorganism-inoculated treatments induce
root elongation of plants. The B and BF treatments showed
a significant increase in root elongation, which implies growth
promotion and stress reduction by microorganisms. The metal-
resistant bacteria belonging to different genera such as
Pseudomonas, Mycobacterium, Agrobacterium and Arthrobacter
have been found to have plant growth-promoting features that
can potentially promote plant growth and reduce stress in plants
(Dell’Amico et al. 2005; Rajkumar et al. 2005). The heavy metal
uptake and accumulation depends on availability of heavymetals
in soil, metal speciation, plant species and rhizospheric activity
(Gupta and Sinha 2006). The rhizospheric microbes can affect
mobility and availability of tracemetals to the plant, by producing
siderophores for ensuring iron availability, reducing soil pH, or
by solubilising phosphates (Smith andRead 1996; Sheng andXia
2006; Zaidi et al. 2006).

In the present study, inoculation by both fungi and bacteria
together influenced the quantity of accumulation of Ni, Cr, Mn
and Co in the root system. This may be due to the mobilisation
of heavy metals and increasing their availability to plants by
lowering the soil pH. The addition of Cd-resistant bacterial
strains to Brassica napus grown in metal-contaminated soil
significantly increased the plant Cd uptake when compared
with non-inoculated controls as a result of pH reduction (Gadd
and Sayer 2000; Sheng and Xia 2006). Similar results were
obtained for the inoculation of Psychrobacter to B. juncea,
resulting in higher Ni accumulation in both the shoots and

roots of B. juncea with the inoculation of Psychrobacter (Ma
et al. 2009). However, contradictory results were obtained
with the inoculation of both bacteria and fungi separately.
Many studies have reported that rhizobacteria are able to
reduce the heavy metal uptake in plants in the presence of
siderophores (Burd et al. 1998, 2000). Even though there are
several studies on bacterial influence on heavy metal uptake in
soil, very few have focussed on fungi. However, studies have
reported the effect of mycorrhizal fungi on heavy metal uptake;
uptake bymycorrhizal fungi depends on plant growth conditions,
the fungal partner, heavy metal and amount of metal present in
soil (Weissenhorn et al. 1995; Southworth et al. 2014).

The plant accumulation factor was highest with Ni, followed
by Mn, showing the favourability of Ni and Mn uptake over
other metals (Table 3). The plant accumulation factor was
lowest with Cr and this could be due to the toxic nature of Cr.
It is reported thatMn is a readily translocatable metal, whereas Ni
is intermediate and Cr is categorised as the least translocatable
metal (Alloway 1995). The amount of heavy metal translocation
is a critical consideration for both phytoremediation and
vegetative consumption. Higher translocation is favourable
in phytoremediation processes, whereas it is less desirable in
edible plants used for consumption. In the present study,
the translocation of Ni, Mn, Cr and Co was lowest in the
BF treatment, showing the lowest accumulation in shoots.
Translocation factor, the ratio of shoot to root for metals,
indicates internal metal transportation (Kabata-Pendias 2010).
It is mainly dependent on heavy metal mobility and toxicity. We
report the maximum translocation forMn, a micronutrient, likely
explaining the higher translocation we observed. Ni, which also
showed considerable translocation, is also reported as a plant
micronutrient important for growth and metabolism (Mishra and
Kar 1974; Brown et al. 1987; Barker and Pilbeam 2014). Our
results indicated thatmetals accumulatedbyZ.maizewere largely
retained in roots, as shown by values of translocation factor of <1.

The F-treatment was more effective than the other treatments
with increasing TOC. The secretion of mucilage/polysaccharides
by inoculated fungi could be the reason for the increase in the
TOC concentration (Srivastava et al. 2012). The content of
available N did not show a significant increase or decrease
with the introduction of microbes. However, the P availability
was higher in the B and BF treatments. Soil microorganisms
produce a range of phosphatases, which have the capacity to
utilise P from various forms of organic P that occur in soil.
Enhanced phytase activity in the rhizosphere is responsible for
P deficiency across awide range of plant species and is commonly
reported to be higher in P-deficient soils (Richardson and
Simpson 2011). A wide range of microorganisms able to
solubilise inorganic P have been cultured from soil, including
bacteria (e.g. Actinomycetes, Pseudomonas and Bacillus spp.)
and fungi (e.g.Aspergillus andPenicillium spp.) (Richardson and
Simpson 2011).

Soil enzyme activities are directly related to soil
physiochemical characteristics, soil microbial diversity, and
soil nutrients (Caldwell 2005). Among the different soil
enzyme activities, dehydrogenase activity is an indicator for
potential non-specific intracellular enzyme activity of the total
microbial biomass (Ladd 1978; Chu et al. 2007). In the present
study, the microorganism-innoculated samples showed a higher
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dehydrogenase activity than did the control, which reflects the
increase of microbial activity as a result of inoculation.

The results obtained in the present study indicated that the
inoculation of microbes seemed to be very effective in growth
promotion of plants under heavy metal stress. The BF treatment
showed the highest growth promotion and the highest heavy
metal accumulation in the roots. Interestingly, the lowest
translocation factor was also recorded in the BF treatment.

Conclusions

Although the Gram-negative bacterial strain we have extracted
and used in the present study is unidentified (to be identified via
DNA sequencing), our study demonstrated that the inoculation of
heavy metal-resistant and serpentine-associated bacterial strains,
in association with a common and metal-tolerant soil fungus
(Aspergillus sp.), seemed to be very effective in protecting plants
from growth inhibition caused by Ni, Mn Cr and Co. The BF
treatment also increased the root biomass and enhanced root
architecture. An increase in plant growth promotion was also
observed with microbial treatments compared with the control.
Even though the highest plant accumulation factor was recorded
for the BF treatment, the translocation factor was lowest in the
BF treatment. This treatment led to a reduction of heavy metal
accumulation in plant shoot, a beneficial feature for crop plants
grown for consumption. We also observed that the BF treatment
increased soil nutrients, such as available N and P. Moreover,
the microbial inoculation increased dehydrogenase activity,
reflecting the increase of soil microbial activity. Current
research is aimed at confirming the taxonomic status of the
bacterial strain we have isolated as well as testing the efficacy
of the biofilm against a range of other heavy metals commonly
found in metal-contaminated soils in Sri Lanka.
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