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Prediction of Soil Organic Carbon across Different Land-use Patterns:
A Neural Network Approach

S. Somaratne, G. Seneviratne,* and U. Coomaraswamy

ABSTRACT ecosystem type and soil taxonomy has been compared,
and the taxonomic approach appeared to be more mean-Mathematical modeling has widely been used to predict soil organic
ingful in creating a real picture of spatial distributioncarbon (SOC). However, there are characteristics of the models such

as over simplification, ignorance of complex nonlinear interactions of SOC. Attempts have been made to estimate global
etc., which limit their use in accurately assessing the distribution of the SOC using the pedon database and extrapolating them
C across the landscapes. Artificial neural network (ANN) modeling to soil units of the world soil map (Bohn, 1976, 1982;
approach that provides a tool to solve complex problems related to Batjes, 1996; Buringh, 1984; Kimble et al., 1990). The
larger data sets was therefore used here to predict SOC contents pedon database of the USDA Soil Conservation Service
across different land use patterns in a study conducted in Sri Lanka. and related organizations has been used to estimate the
Selection of variables was made using a priori knowledge of the

regional distribution of organic C in the USA (Kern,relationships between the variables. Thus, soils of the sites were sam-
1994). However, previous studies indicated that therepled and analyzed for organic C by internal heat of dilution (Ci) and
are uncertainties associated with such SOC estimatesexternal heat of dilution (Ce), and the results were presented as grams
and often related to variations in soil map scales andper kilogram (g kg�1). In addition, some landscape attributes and

environmental parameters of the sites were also collected. The pre- series. As a whole the uncertainties associated with mea-
dictive performance of ANN was compared with multi-linear regres- suring and detecting changes in soil C pools remain
sion (MLR) models. The best ANN model predicted the measured high, both at individual sites and extrapolating site-level
Ci content with R2 of 0.92. However, comparison of the two types of data to regional, national, or global scales (Vance, 2003).
models indicated less bias and high accuracy of the ANN compared Accurate and precise approaches yet to be available for
with MLR in predicting Ci, but the reverse for Ce. In order to better assessing the effect of management practices and land
predict Ce, it is recommended to use other architectures of neural

use change on the soil C for the purpose of incorporationnetworks and training algorithms for improving predictive accuracy.
of this important pool into future C accounting systems.The predictive capability of the ANN developed with easily available
The Kyoto Protocol, for instance, limits reporting of Cclimatic and terrain data are of importance in predicting SOC with
sequestration activities to “measurable and verifiable”minimum cost, labor, and time.
pools (Vance, 2003).

Mathematical modeling has been used to predict soil
C evolution (Jenkinson and Rayner, 1977; Parton et al.,The soil system strongly influences the structure and
1988; Pastor and Post, 1985; Smith, 1982). These modelsfunction of ecosystems and acts as a buffer to global
possess the ability to simulate the complex processesclimatic change. Therefore, understanding of the pro-
in the formation and degradation of organic C and ofcesses in the soil is crucial in the context of the ecosystem
describing the relationship between a numbers of soilmanagement. The SOC is a vital component, since it
properties that control soil C evolution. In these modelsplays a key role in soil fertility and in hydrology and
empirical, stochastic, and mechanistic equations haveacts as a sink or source of terrestrial C, which affects
been used to describe the simultaneous interactions ofthe concentration of atmospheric CO2. Soil information
soil properties with SOC. These models rely on theis important in modeling ecological processes, vegeta-
available SOC data for predicting evolution in a givention dynamics, and forecasting agricultural potentials
area, and certain models incorporate a limited number(Adams et al., 1990; Levine et al., 1996; Dixon et al.,
of SOC data points. In other cases, some of the models1994).
use interpolated or extrapolated SOC values. As a re-The SOC estimates with certain degrees of uncertaint-
sult, the model predicts SOC evolution poorly for aies are available for regional to global scales. These
given area. Further, for a satisfactory prediction of SOCestimates have been made either based on the existing
evolution, it is necessary to increase the number of SOCsoil databases or modeling techniques. Post et al. (1992)
data points rather than interpolation or extrapolationused global soil data up to 1-m depth across Holdridge
of existing few SOC data points. The use of statistical orlife zones. The aggregation of soil data according to the
empirical models may also hinder the real relationships
between the SOC and soil properties because strict sta-S. Somaratne, Dep. of Botany, The Open Univ. of Sri Lanka, Nawala,
tistical sampling designs are not generally used in soilNugegoda, Sri Lanka; G. Seneviratne, Institute of Fundamental Stud-

ies, Hantana Road, Kandy, Sri Lanka; U. Coomaraswamy, Vice Chan- sampling.
cellor’s Office, The Open Univ. of Sri Lanka, Nawala, Nugegoda, Sri
Lanka. Received 21 Nov. 2003. *Corresponding author (gaminis@

Abbreviations: AIC, Akaike’s information criterion; ANN, artificialifs.ac.lk).
neural network; Ce, soil organic carbon determined by application of
external heat; CEC, cation exchange capacity; Ci, SOC determinedPublished in Soil Sci. Soc. Am. J. 69:1580–1589 (2005).

Pedology by internal heat of dilution; LSD, least significant difference; MLR,
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When dealing with an incomplete or imperfect data- MATERIALS AND METHODS
base, Beinroth (1990) suggested a solution of either col- Site Characteristics
lecting new data or making better use of existing data.

The landscape characteristics of the Kebithigollewa andWhen it is always important to supplement and improve
Polonnaruwa sites (KBC, KBF, PLP, and PLF) are flat todatabases by collecting new data, the time and resources
undulating with elevations ranged from 90- to 115-m abovemay not be available, and would be difficult to provide mean sea level (msl). Soils are Reddish Brown Earths and

the exact measurement required for modeling SOC Low Humic Gley soils (Rhodustalfs and Endoaqualfs, Soil
globally. To make better use of the soil data that have Survey Staff, 2003) typical of the northern lowland region, with

some alluvial soils occurring in the river valleys (Moorman andbeen collected to date, it is required to develop new
Panabokke, 1961; Panabokke, 1996). Reddish Brown earthstools for data analysis. Ideally, these tools should be
are well to imperfectly drained and occupy the crest, upper-able to input all of the data as a whole representation
and mid-slopes of the undulating landscape. Sites at Madugodaof C across the landscape and identify the complex linear
(HGF and HGG) are located at altitudes of 540 to 750 m msland nonlinear relationships between soil properties. in the Kandy District, facing to the east of the central highlands

They should be able to observe the existing conditions, of the island. The steep, dissected hilly and rolling terrains
which occur at the time of sampling, and use this infor- (Panabokke, 1996) characterize the topography of the area
mation to learn the relationships between SOC at the and, are located in the mid country wet agro-ecological region

(Panabokke, 1996). The area consists of Immature Brownsite and the other soil, landscape, and climate variables.
Loam soils (Dystrudepts, Soil Survey Staff, 2003), which areIn addition, they must be sensitive to missing data and
strongly acidic and developed from non-basic Precambrianmust be rigorous enough to handle large quantities of
crystalline rocks of the highland complex. The sites at Nuwaradata in to create scenarios, which may help in identifying Eliya (NEF and NET) are situated at Hakgala Strict Natural

key processes. With reference to such situations ANN Forest Reserve in the Nuwara Eliya district at an average
could be a useful tool in prediction of SOC values in elevation of 1800 m msl. The humid climate of the area has
an area where SOC measurements are not available. made the commonest soils found in the study area to become

strongly weathered and heavily leached. These soils belongThe ANNs are new analytical tools that are based on
to the Red Yellow Podsolic soils (Rhodudults and Kandiu-the models of neurological structures and processing
dults, Soil Survey Staff, 2003) (Panabokke, 1996). Dependingfunctions in the brain (Anderson, 1996, 2001; Churchland
on the local relief the rock material from which the soils haveand Sejnowski, 1993; Werbos, 1995). The neural net- been developed could be either in situ rock or slope colluviums

works have been widely used across different fields of or even both. In the profile the surface soil is brownish in
studies in solving complex problems involving nonline- color and sandy loam or sandy clay loam in texture. The
arity and uncertainty. The rapid increase in the compu- subsoil color varies from red to yellow and the texture is sandy

clay to sandy loam. The sites at Gilimale (GF and GR) aretation power and new algorithms has made it simple to
situated in a proposed forest reserve in the Ratnapura Districtuse the neural networks (De Wilde, 1996). There is an
of the Sabaragamuwa Province at an average elevation ofincreasing tendency in the application of ANN in soil
610 m msl. The forest reserve has the Red-Yellow Podzolicscience. These applications include predictions of soil (Rhodudults and Kandiudults) soils typical of the south west-

structure (Levine et al., 1996); hydraulic properties ern lowland region, with some Reddish-brown earth (Rhodus-
(Schaap et al., 1988; Pachepsky et al., 1996; Schaap et talfs) and Immature Brown loam soil (Dystrudepts) in rolling,
al., 2001; Schaap and Leij, 2000; Persson et al., 2002); hilly, and steep slope (Moorman and Panabokke, 1961; Pana-

bokke, 1996). The sites selected from the Sinharaja (SF andpedotransfer functions (Minasny and McBratney, 2002;
ST) are located in the southwestern lowland wet zone of theNemes et al., 2003); environmental correlation of three-
island at elevations from 300 to 1970 m msl. Soils of thedimensional soil spatial variability (Park and Vlek, 2002);
area belong to the Red-Yellow Podsolic (Rhodudults andand pedometric use in soil survey (McBratney et al., Kandiudults) soils (Moorman and Panabokke, 1961) and soil

2002). Two studies have predicted SOC from soil param- depth varies significantly.
eters (Levine and Kimes, 1997), and from soil reflec-
tance data using a NIR-spectrophotometer (Ingleby and

Data SetCrowe, 2001) in temperate soils.
A total of 240 composite soil samples were collected fromA typical neural network consists of inputs receptors,

six natural forests and six land use patterns in three differenthidden layer(s) or neurons and output neurons (Haykin,
eco-climatic regions of Sri Lanka (Table 1). A 100 by 100 m1994). The number of input neurons and output neurons
primary plot was laid in each site and was divided into 25 (5

are indicated by the structure of the data (De Wilde, by 5) grids. Twenty grids were randomly chosen to collect 10
1996), and an empirical approach usually determines the soil cores from each. The soil samples were taken to a depth
number of neurons required in hidden layer(s) (Orchard of 10 cm by carefully driving PVC tubes (internal diameter

50 mm) into the soil. The soil cores were bulked to form oneand Phillips, 1991).
composite sample representing each grid. Elevation of theThe objectives of the present study were to (i) train
sampling sites was measured at sampling time and comple-ANN to predict SOC across different land use patterns
mented with topographic sheet (Survey Department, 1972).using easily available data in a tropical dataset, (ii) com-
Slope and aspect of the terrain of the sampling site were mea-pare the predictive performance of the conventional sured using a clinometer and compass, respectively. The trans-

MLR approach with the ANN and, (iii) investigate the formed aspect (TA), which aligns the index along a SW-NE
use of environmental parameters in predicting SOC by axis, for the sites was calculated according to Beers et al.

(1966) using the following equation:ANN with minimum labor and cost-effectively.



R
ep

ro
du

ce
d 

fr
om

 S
oi

l S
ci

en
ce

 S
oc

ie
ty

 o
f A

m
er

ic
a 

Jo
ur

na
l. 

P
ub

lis
he

d 
by

 S
oi

l S
ci

en
ce

 S
oc

ie
ty

 o
f A

m
er

ic
a.

 A
ll 

co
py

rig
ht

s 
re

se
rv

ed
.

1582 SOIL SCI. SOC. AM. J., VOL. 69, SEPTEMBER–OCTOBER 2005

TA � cos(45 � Aspect) [1]
Multiplying TA by sine value of slope angle was also per-
formed to incorporate the effect of slope on direct-beam radia-
tion. The mean annual rainfall and mean annual temperatures
were obtained from the nearest meteorological stations of
each sampling site.

The air-dried soil samples with gravel were ground and
sieved to pass through 2-mm sieve, and used for the determina-
tion of SOC. Organic C was determined using a colorimetric
method (Baker, 1976). Two methods of SOC oxidation (Walk-
ley and Black, 1934) were used in determining different forms
of organic C, which are easily oxidizable and inert forms in
soil; heat-of-dilution of H2SO4 (120�C), which recovers 60 to
86% of SOC (Ci), and the application of external heat (150�C),
as in the Schollenberger method (Schollenberger, 1927; Schol-
lenberger, 1945) that produces a higher recovery of organic
C and less variation in percentage of recovery among different
groups of samples (Ce). Organic C determined by the Ci con-
sists of a higher fraction of labile C than that determined by
the Ce, which better reflects total C. The results of the both
methods were corrected to oven dried (105�C for constant
weight) soil basis and expressed as grams per kilogram (g kg�1).
Mean comparisons of selected input and output variables were
performed with least significant difference (LSD) to assess
their variability across the different land use patterns.

Development of the Neural Networks
A typical ANN consists of interconnected processing ele-

ments that are arranged in layers: an input layer, one or more
hidden layers, and an output layer (Fig. 1). The input layer
contains the input variables for the network while output layer
contains the desired output system, and the hidden layer often
consists of a series of neurons associated with transfer func-
tions. Each layer of the ANN is connected by weights that
have to be determined through a learning algorithm. The
propagation of data through the network starts with the pre-
sentation of an input stimulus at the input layer. The data
then progress through, and are operated on by the network
until an output stimulus is produced at the output layer. In a
network, the individual processing elements of the network,
xi (i � 1, 2, 3,…N) are linked through weighted connections
(wji). Weighted inputs (i.e., wjixi) are summed and a bias value
(bj) is added to produce a single activation level for the pro-
cessing elements (Ij), input to the hidden unit, j (j � 1, 2,
3,…N), thus:

Ij � �
N

i�1

wi xi � bj0 [2]

Fig. 1. The structure of a typical neural network. Legend: wji � Initial
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There are number of transfer functions available to accommo- samples have been presented to the network, when the
Ep is sufficiently small or when there is no further im-date the nonlinearity of the input-output relationship of a

network (Demuth and Beale, 2000). However, the common provement in the prediction obtained using an indepen-
dent data set.function that has been widely used in the networks is the

sigmoid or hyperbolic tangent function. Application of tansig-
moid activation function to Ij produces the inputs to the hidden Determination of Network Architecture
units (ij).

It has been suggested by Hetch-Nielsen (1987) that the
following upper limit for the number of hidden units in theij � f(Ij ) � tahn(Ij ) � 1 � � 2

1 � exp(2Ij )
� [3] hidden layer to ensure that the ANN is able to approximate

any continuous function.
Therefore, output of the input units serves as an input for the

N h � 2N i � 1 [9]hidden layer, that is, output of the hidden layer is computed
by applying the activation function to the input ij. where N h is the number of hidden layer units and N i is the

The outputs (ij) of the hidden units (L) pass to the output number of inputs.
unit k (k � 1, 2, 3,...N0) through another transfer function. However, to ensure that the networks do not over fit the
The outputs of the hidden units could be indicated as: training data, the following relationship should be satisfied

(Rogers and Dowla, 1994).
ik � �

L

j�1

wkj ij � bk0 [4]
N h � N tr/(N i � 1) [10]

and the output (Ok) of the output units of the hidden layer where N tr is the number of training samples.
is in the following form: Consequently, the number of hidden layer units was chosen

to be the smaller of the values for N h obtained using Eq. [9]Ok � f(ik) [5]
and [10]. The structure of the network constructed (Fig. 1)

The weights are the adjustable parameters of the network and consisted four input units in the input layer, four units in
determined from a set of data through the process of training. hidden layer, and two units in the output layer.
The completion of training is accomplished by another process The Akaike information criterion (AIC, Akaike, 1973) is
called optimization. Its objective is to minimize the sums of a performance measure that facilitates the determination of
squared errors between the actual and predicted outputs. The the best network size with maximum parsimony and goodness-
desired relationship is “learned” by repeatedly presenting ex- of-fit for a particular problem. The AIC measure appreciates
amples of the desired input–output relationship to the network a network with low mean sums of squared error (MSE) but
and adjusting the model coefficients (i.e., the weights) to get punishes networks with a large number of weights. For prob-
the best possible agreement between the observed values and lems with a limited amount of data, AIC measurement can
those predicted by the model. This training technique is, in be used to determine the network that is least prone to over-
general, referred to as the supervised training. fit the data. Thus, it may be possible to avoid using the valida-

The training process is involved the following basic steps: tion set and instead use all of the available data for training.
Therefore, goodness-of-fit and parsimony of the network were
assessed by calculating AIC, which was estimated according1. Assignment of small arbitrary values for connection
to Webster and McBratney (1989).weights.

2. Presentation of a training sample to the network and
AIC � Nln� �

N

k�1

(yk � Ok)2� � 2p [11]producing a network output.
3. Adjustment of the connection weights (w) according to

the Levenberg–Marquardt algorithm (Marquardt, 1963), where N is the total number of data in the training set. The
a combination of Newtonian gradient descent algorithm p is the number of weights used in the network:
to minimize the objective function as follows:

p � (I � 1) � H � (H � 1) � O [12]
wij(k � 1) � wij(k) � �(�Ep /�wij)

where I is the number of input units, H is the hidden units,
� �[wij(k) � wij(k � 1)] [6] and O is the number of output units and 1 is due to bias.

The lower values of AIC indicate the reasonable goodness-where � and � are coefficients known as learning rate and
of-fit and the parsimony of the network. Considering the per-momentum term respectively, and k is epoch counter.
formance and the simplicity of the network architecture, the4. Calculations of the global error function (Ep) and root
best network was selected and tested for its performance andmean sums of square error (RMSE) are as given below:
accuracy in predictions of SOC.

Ep �
1
2 �

L

k�1

(yk � Ok)2 [7]
Selection of Inputs

Selection of model inputs plays an important role in devel-
RMSE � √ 1

2 �
L

k�1

(yk � Ok)2 [8] oping predictive models (Faraway and Chatfield, 1998; Kaas-
tra and Boyd, 1995). The importance of selection of appro-
priate model inputs has been indicated by the differences inwhere yk is the predicted value of the network. The

weight is updated after the presentation of each training the predictability between ANN and conventional statistical
methods. The ANNs are based on the data driven approachessample or after a number of training samples has been

presented to the network. The number of training sam- whereas the statistical methods are based on model driven
procedures (Chakraborty et al., 1992). In the conventional sta-ples presented to the network between weight updates

is called the epoch size (ε). Steps 2 to 4 are repeated tistical methods, the structure of the model has to be predeter-
mined using empirical or analytical approaches before theuntil certain stopping criteria are met. For instance, train-

ing may be stopped when a fixed number of training unknown model parameters could be estimated. However, the
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data driven approaches have the ability to determine which were extracted from the total dataset for training (120), valida-
tion (60), and test (60).model inputs are critical and there is no need for a priori

A number of networks were developed for inputs variablesknowledge on the variables. However, presenting large num-
using built-in function of neural network toolbox of MATLABber of inputs to the ANN models and relying on the network
(Demuth and Beale, 1998, 2000). The best performance ofto determine the critical inputs often increase the network
network is often determined by constructing a layered networksize. This may lead to decrease processing speed and increase
using Levenberg–Marquardt algorithm (trainlm). The hyper-the amount of data required to estimate the weights efficiently
bolic tangent-sigmoid transfer function (tansig) and linear(Lachtermacher and Fuller, 1994).
transfer function were used in the hidden and output layers,In an ecological point of view, the abiotic and biotic compo-
respectively (Hagen et al., 1996). The trainlm was selectednents, and disturbance regime interact each other in formation
and other network architecture variables were set at defaultof patterns in landscapes. The landform heterogeneity contrib-
values (Hagen et al., 1996), unless the network performanceutes much to the variation in climate as expected over the
was satisfactory.landscape-scale in a terrain. Each of the main components of

Adjustment of the weight was repeated, attempting to mini-climate such as temperature, radiation, and precipitation var-
mize the MSE between the model and the set of known out-ies with landforms generating landscape-scale heterogeneity
puts. The training set consisting of the inputs and knownin the physical aspect of the terrain. The temperature varies
outputs, was repeatedly presented to the network. An errorwith the radiation loading of a particular terrain, and the
associated with each weight update was checked with a numer-slope and aspect of the terrain play an important role in the
ical optimization technique that is used to minimize the MSEvariations of such parameters in a complex terrain. Further,
for the training set, which is termed as epoch. The MSE fortemperature varies with the latitude and elevation of the ter-
the training set approaches zero after sufficient training butrain. The precipitation varies at continental scale in response
at that stage the network will have lost generality and hasto the interactions of prevailing winds and orography of a
become a poor predictor for data not used in the training. Toterrain. In a mountainous landscape, the orographic effect
prevent such training, network performance is tested at eachmay exert a profound influence in precipitation patterns even
epoch by computing MSE for a separate set of inputs andover a few kilometers. The influence of the slope aspect has
known outputs, which is called the validation set, and is notan important effect on the characteristics of the vegetation
used to adjust the weights in the network. At certain points(Kutiel, 1992; Sternberg and Shosany, 2001). The vegetation
in the training, the MSE for validation set begins to increase,(above- and belowground biomass) plays an important role
which indicates a loss of generality, therefore, training is nor-as a sole input of SOC, thus any changes in the vegetation
mally stopped when the MSE for the validation set is mini-are obviously reflected in the quality and the quantity of SOC. mized (Demuth and Beale, 1998, 2000). Initially, the experi-Therefore, climatic parameters that potentially influence the mental trials were set to 1000 epochs. The MSE used as the

characteristics and the distribution of vegetation, determine goal was 0.01. Training process was stopped if the goal was
the amount of SOC in a given region or an area. The terrain met before 1000 epochs. The MSE or RMSE were calculated
attributes except slope angle have been shown to exhibit spa- from the differences between the network output and the
tial dependence within the scale of sampling interval of 200 target using Eq. [7] and [8], and were also used as indicators
to 1000 m (Hongqing et al., 2002). In this study, the spatially of performance of the network.
structured variance (the variance due to the location of sam- Comparing the simplicity and parsimony of network archi-
pling sites) accounted for a large proportion of the sample tecture, training, and validation MSE values, and the best
variance for elevation (99%), bulk density (90%), SOC (68%), network were selected and subjected to a number of trials
aspect (56%), and soil moisture (44%). Further, the ranges with the test data set. The performance of the best architecture
of spatial dependence (the distances within which parameters was judged by relationship between the output and the target
are spatially dependent) for aspect, SOC, elevation, soil mois- that is by a low final MSE. In addition, an assessment of the
ture, and bulk density were 9810, 3070, 1120, 930, and 430 m, performance of the neural network was made using a test data
respectively. Most of the ecological processes depend on the set and a regression analysis of output of the network, and
physical variables, which are logistically difficult to measure. the predicted and the observed SOC.
The soil variables are especially problematic over large scales, The trained ANN model was used to predict the SOC con-
at least at the level of spatial resolution. Considering these tents of the 60 soil samples (test dataset) of the different land
facts selection of inputs in the present study was made with use patterns. The accuracy of the prediction of a network is
a priori knowledge of the correlations of climatic parameters measured by the mean residual (MR), which quantifies the
and the SOC contents. systematic errors between measured and predicted values. A

In addition, correlations between the input and output vari- negative value of MR indicates an underestimation and a
ables were also accessed and care was exercised to select the positive value indicates overestimation.
variables that easily measurable or readily available for the The root of the mean square of residual (RMSR), between
selected sites. On this basis, four variables such as elevation, the observed and predicted values, and the coefficient of deter-
slope with aspect of the terrain, mean annual temperature, mination or goodness-of-fit (R2) were also calculated. The
and mean annual rainfall were selected to serve as inputs to RMSR represents the bias of the network indicating the ten-
the ANN and MLR models. dency of under- or overestimation. The RMSE calculates

mean accuracy, the probable magnitude of error.
The limitations of the ANN include large number of neu-Preprocessing Data and Training Networks

rons requiring a significant computer memory, long training
Preprocessing of the data for the neural network analysis times, and convergence to local minima (Anderson, 1996).

was performed in such a way that the efficiency in network Techniques to overcome these problems include the use of
training procedure is improved. In this process, the data set a momentum factor, an adaptive learning rate and refined
was standardized to have a zero mean and the standard devia- algorithms. The Levenberg–Marquardt method significantly
tion of one. Subsequently, input dataset was fully randomized reduces training time, although it demands a large computer

memory (Demuth and Beale, 1998, 2000).before presenting to the network and subsets of data records
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Multilinear Regression

For the purpose of comparison of ANN with conventional
MLR, two equations were constructed one for each SOC type,
Ci and Ce. The MLR analyses were performed on the training
set that was already used to develop the neural networks. Two
sets of coefficients were estimated using maximum R square
model selection option in PROC REG of SAS (SAS, 1989). A
validation dataset was used to validate the two MLR equations
whereas test dataset was used to test the performances of the
MLR equations. For the purpose of evaluation of the accuracy
of the prediction of MLR models, MR and RMSR were calcu-
lated. In addition, R2 between the measured and estimated
values (SAS, 1989), and the AIC values for each model were
also calculated. An analysis of variance was carried out on
the mean sums of square errors (MSE) of ANN and MLR,
and F-test at the probability level of 0.05 was employed.

RESULTS AND DISCUSSION
Variations of the selected variables across different

land use patterns are given in Table 1. The variables of
the sites greatly varied among the land-use patterns (e.g.
slope-aspect and elevation from �0.29 to 0.98 and from
70 to 1874 m, respectively), and reflected the hetero-
geneity of the topography of the sites included in the
study. The mean annual temperature and mean annual
rainfall of the study sites ranged from 15.4 to 27.3�C,
and 1358 to 3740 mm, respectively, indicating the clima-
tological variation within the sampling sites. The SOC
content as evaluated by Ci varied from 1.05 g kg�1 for
grassland soils of the abandoned tea plantations to 7.53 g
kg�1 in the montane forest soils. The SOC contents as
evaluated by Ce varied from 5.27 g kg�1 in soils of the

Fig. 2. Relationships between the observed and MLR model pre-rice field in the dry zone to 14.18 g kg�1 in the montane dicted soil organic carbon (SOC). The SOC measured by (A)
forest soils. Higher SOC contents were limited to the internal heat of dilution (Ci) and (B) application of external heat

(Ce) across different land use patterns of Sri Lanka.higher elevations and it is simply due to slow microbial
decomposition of soil organic matter with relatively low
temperatures at higher elevations than that of the lower tion (training) and validation and test MSE values dur-
elevations. The SOC contents are often lower for Ci ing the training of network is shown in Fig. 4. The
than Ce. Increased organic matter oxidation by addi- training was stopped after 37 epochs because the valida-
tional heat supplied in the external-heat method can tion error increased. The figure indicates that the errors
explain this difference. The analysis of variance of the associated with validation and test set are similar in
MLR models of Ci and Ce indicated that the models characteristics. It seems that there is no significant over-
are highly significant (P 	 0.01). The models of Ci and fitting during the training process. The plot of the pre-
Ce explained 73 and 82%, respectively of the variations dicted and observed Ci is shown in Fig. 5A. There is a
of the observed C contents of the different land use
patterns (Fig. 2). Table 2. Estimated parameters of multi-linear regression (MLR)

models developed from training data set of soil organic CThe p-values of the parameters included in the MLR
measured by internal heat of dilution (Ci) and application ofmodel of Ci indicated that all the parameters, including
external heat (Ce).intercept are highly significant (P 	 0.01; Table 2). The

Parameter StandardCe model indicated similar significant levels except for
Variable estimate error F value P 
 Felevation (P 
 0.05). The residual plots of Ci and Ce

Ciare shown in Fig. 3. They reveal that there is a random
Intercept 14.48603 1.53212 89.39 0.0001distribution of residuals. However, Ci indicated a trend
Aspect 2.25259 0.18327 151.08 0.0001in which an increase in the magnitude of residues with Elevation �0.00135 0.00039 11.96 0.0008
Temperature �0.47822 0.05576 73.57 0.0001increasing predicted SOC levels. In this regard, qua-
Rainfall 0.00027 0.00000 7.91 0.0058dratic models are important in establishing the variation

Cein the predicted values. The comparison of models indi-
Intercept 12.70144 2.545159 24.9 0.0001cates that both models could be reasonably used to
Aspect 3.98194 0.304440 171.07 0.0001

model the SOC in the soils of the different land use Elevation 0.00041 0.000647 0.39 0.5324
Temperature �0.35822 0.092621 14.96 0.0002patterns.
Rainfall 0.00095 0.000158 36.07 0.0001The relationship between the epoch and the calibra-
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Fig. 4. Plot of training, validation and test errors during the training
process of the network constructed for the prediction of soil organic
C measured by internal heat of dilution (Ci) across different land-
use patterns of Sri Lanka.

and ANN models indicated that there was a marginalFig. 3. Plot of residuals of multi-linear regression (MLR) model pre-
dicted soil organic carbon (SOC) as measured by (A) internal heat difference between the MLR and ANN model outputs
of dilution (Ci) and (B) application of external heat (Ce) across for Ci (F � 3.777; P � 0.054). However, the difference
different land use patterns of Sri Lanka. between MLR and ANN model outputs for Ce was

highly significant (F � 9.851; P 	 0.01).
considerable agreement between the values with a R2 The MR and RMSR values for the MLR and ANN
of 92%. The relationship between ANN predicted and models are shown in Table 3. The MR values of MLR
observed Ce is shown in Fig. 5B. The R2 value for the models indicate that they underestimate Ci and overesti-
predicted and observed Ce was 83%. Comparison of mate Ce, representing a considerable tendency for bet-
the R2 values indicates that the ANN model is better in ter prediction of Ce. Their RMSR values indicate mean
predicting Ci than Ce in the land-use patterns studied. inaccuracies and bias in predicting the SOC. On the
Further, use of other network architectures with more other hand, MR values of the ANN are lower than that
hidden layers and different stopping criteria for network of MLR. As such, comparison of MLR and ANN models
training is worthy to try out for better prediction of Ce reveals that MLR models are more prone to underesti-
in the land use patterns of Sri Lanka. mate the SOC contents. The RMSR values of ANN and

The AIC values of the MLR model developed for MLR models for Ce are 1.01062 and 0.000213, respec-
predicting Ci and Ce were �35 and 87, respectively tively, which indicates that the ANN is poor in pre-
(Table 3). The comparison of AIC values reveals that dicting Ce, compared with MLR. Considering the over-
the MLR model is better in predicting Ce than Ci. This all performances, the network that consists of four
indicates that the MLR model is more suitable in pre- variables that is, slope-aspect, elevation, mean annual
dicting total C than labile C. The labile or active soil temperature, and mean annual rain fall showed best
organic matter fractions are generally sensitive to the performance with four-input units and one hidden layer
environmental parameters (Franzluebbers et al., 2001). consisting four units (Fig. 1).
Further, composition of microbial population that is Using soil parameters such as percentage of N, cation-
responsible for decomposition of active soil organic mat- exchange capacity (CEC)/clay ratio, and depth, Levin
ter also varies with the change in environmental parame- and Kimes (1997) showed that they are important in
ters, making it a complex system with nonlinear relation- predicting SOC in Mollisols with a reasonable accuracy.
ships that are difficult to model using existing methods. The R2 value obtained by them for predictive accuracy
The AIC values of the ANN models of Ci and Ce were of the network that used percentage of N and CEC/clay
�63 and �48, respectively. These values indicate that ratio was 0.89. The number of samples included in their
the neural networks perform better than the MLR mod- study was 2100 whereas that in the present study was
els in predicting both Ci and Ce. only 240. The measures on simplicity and parsimony of

the model(s) they used are not available in their reportThe analysis of variance of predicted values by MLR
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Table 3. Comparison of performances of MLR and ANN models
in predicting soil organic carbon (SOC) measured by internal
heat of dilution (Ci) and application of external heat (Ce)
across different land use patterns of Sri Lanka.

Model

MLR ANN

Performance criteria Ci Ce Ci Ce

MR �1.068 �2.5316 �0.5076 2.0106
RMSR 0.00588 0.000213 0.00215 1.01062
R2 0.73 0.82 0.92 0.83
AIC �35 87 �63 �48

(Fig. 2 and Fig 5). Comparison of measured and the
ANN model predicted Ci and Ce values are shown in
Table 4. The ANN model predicted the SOC contents
better for the Gilimale forest reserve and Sinharaja for-
est in the wet zone, grassland in the intermediate zone
and dry zone forest at Kebithigollewa than the rest of
the natural ecosystems in the study. On the other hand,
SOC contents predicted by the ANN model indicated
that they were very close to the observed SOC contents
of natural forest sites, which are less disturbed by human
interference. The SOC contents of chena soils in the
dry zone, rubber plantation at Gilimale in the wet zone,
and soils of the upcountry tea plantation were also well-
predicted by the model.

There were slight differences in the network output
with the same data set in a number of the network trials.
This is because the network is automatically initialized
with random weights and bias values at the start of
network training. Thus, slightly different results are
achieved even under training networks with identical
architectures on the same data. However, the available
multiple training procedures of the current software
often allowed multiple training sessions to be carried out
within short-time periods. The ANN model predicted
average SOC approximately to those of the training and
test datasets. However, networks did not predict the
spread of the actual observations, that is, the range of
SOC in different land-use patterns. Thus, networks are
good at predicting average values, rather than the vari-
ability in a data set.

Further, comprehensive studies are required to deter-
mine the optimum number of records for the trainingFig. 5. Relationships between the observed and ANN model pre-

dicted soil organic carbon (SOC). The SOC measured by (A) of neural networks in predicting SOC contents in the
internal heat of dilution (Ci) and (B) application of external heat different land use patterns in the present study. Combi-
(Ce) across different land use patterns of Sri Lanka. nations of training and test datasets and training archi-

tectural parameters that indicated more robust pre-
and that prevents a direct comparison of the two models dictive ability will provide guidelines for structuring
for effectiveness of predictability. However, R2 of the data, and designing and implementation of networks
best model developed in the present study was 0.92, that could be generalized for other datasets. Mean time
which was higher than that of Levine and Kimes (1997). it is worthy to develop land-use specific ANN models for
That may be due to the difference in the parameters better prediction of SOC of different land use patterns.
included in the network. The calculated AIC value of On the data structure and feature selection, Haykin
the ANN model developed in the present study indi- (1994) is in the opinion that the number of training
cated that the model predicts the SOC particularly Ci, examples is proportional to the number of synaptic
reasonably avoiding a considerable under or overesti- weights in the network, which is inversely proportional
mation. to the error goal. For instance, a 0.01 (1%) mean square

The overall performances of the models developed error goal indicates the number of training examples,
indicate that ANN models are better than the MLR which should be 100 times the number of synaptic

weights in the network. The results of the present studymodels in predicting SOC across the land use patterns
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Table 4. Comparison of observed soil organic carbon (SOC) measured by internal heat of dilution (Ci) and application of external heat
(Ce) with ANN model predicted SOC. Values within parentheses are standard error of the means.

Land use Observed SOC-Ci Predicted SOC-Ci Observed SOC-Ce Predicted SOC-Ce

g kg�1

Natural vegetation
Forest (GF) 4.086 (0.401) 4.061 (0.009) 11.346 (0.511) 11.725 (0.0064)
Forest (KBF) 2.854 (0.276) 2.968 (0.234) 8.510 (0.806) 7.677 (0.551)
Forest (HGF) 2.438 (0.190) 2.909 (0.115) 6.193 (0.285) 6.717 (0.235)
Forest (PLF) 2.461 (0.370) 2.745 (0.183) 6.379 (1.164) 6.264 (0.323)
Forest (SF) 4.449 (0.411) 3.868 (0.215) 12.486 (1.502) 12.73 (0.000)
Forest (NEF) 6.620 (0.923) 5.114 (0.000) 18.981 (2.594) 12.684 (0.0001)
Grassland (HGG) 1.436 (0.105) 1.363 (0.002) 5.473 (0.461) 4.995 (0.00008)

Crops and plantations
Chena (KBC) 2.116 (0.225) 2.228 (0.000) 4.297 (0.253) 5.934 (0.000)
Rice field (PLP) 1.571 (0.280) 1.359 (0.000) 4.949 (0.807) 4.994 (0.000)
Rubber (GR) 1.828 (0.166) 1.930 (0.000) 5.462 (0.2833) 5.705 (0.00002)
Tea Upcountry (NET) 6.112 (0.544) 5.114 (0.000) 12.693 (1.270) 12.701 (0.000)

Tea
Low country (ST) 2.100 (0.233) 2.011 (0.000) 10.897 (0.621) 10.731 (0.000)
Total 2.964 (0.244) 2.767 (0.168) 8.706 (0.579) 8.333 (0.407)

tory facilities; R.C.K. Karunaratne for assisting in laboratoryindicate that environmental parameters co-vary consid-
analysis of soil samples; A. Lal, K.S.N. Kumara, W.R.N. Aro-erably among the sites selected and it was problematic
shana, M.A. Wijesekera for field work; K.L.A. Somapala, A.for SOC prediction in the case of general feed forward
Parameshwaran and P.S.K. Rambadagalla for assisting in dataarchitectures. As such few environmental parameters
entry, and N.M.I.U.K. Piyasena, Elementary Computer Labo-were selected from the dataset using a priori knowledge
ratory, The Open University of Sri Lanka for helping inand the readiness of the availability. However, it is wor- data analysis.thy to try out the effect of individual input variables in

the model and the sensitivity of the model as stated by
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