Journal of Environmental Management 220 (2018) 198-206

Contents lists available at ScienceDirect

Journal of Environmental Management

journal homepage: www.elsevier.com/locate/jenvman

Research article

Health risk assessment of heavy metals in atmospheric deposition in a congested city environment in a developing country: Kandy City, Sri Lanka

^a Environmental Chemodynamics Project, National Institute of Fundamental Studies, Kandy, Sri Lanka

^b Molecular Biology and Human Diseases Project, National Institute of Fundamental Studies, Kandy, Sri Lanka

^c Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Australia

^d Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka

^e School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Australia

ARTICLE INFO

Article history: Received 30 May 2017 Received in revised form 5 April 2018 Accepted 7 April 2018

Keywords: Heavy metals dry deposition Atmospheric pollution Human health risk Sri Lanka

ABSTRACT

This research study which was undertaken in a congested city environment in a developing country provides a robust approach for the assessment and management of human health risk associated with atmospheric heavy metals. The case study area was Kandy City, which is the second largest city in Sri Lanka and bears the characteristics of a typical city in the developing world such as the urban footprint, high population density and traffic congestion. Atmospheric deposition samples were collected on a weekly basis and analyzed for nine heavy metals common to urban environments, namely, Al, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb. Health risk was assessed using hazard quotient (HQ) and hazard index (HI), while the cancer risk was evaluated based on life time daily cancer risk. Al and Fe were found to be in relatively high concentrations due to the influence of both, natural and anthropogenic sources. High Zn loads were attributed to vehicular emissions and the wide use of Zn coated building materials. Contamination factor and geo-accumulation index showed that currently, Al and Fe are at uncontaminated levels and other metals are in the range of uncontaminated to contaminated levels, but with the potential to exacerbate in the long-term. The health risk assessment showed that the influence of the three exposure pathways were in the order of ingestion > dermal contact > inhalation. The HQ and HI values for children for the nine heavy metals were higher than that for adults, indicating that children may be subjected to potentially higher health risk than adults. The study methodology and outcomes provide fundamental knowledge to regulatory authorities to determine appropriate mitigation measures in relation to HM pollution in city environments in the developing world, where to-date only very limited research has been undertaken.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Atmospheric pollution is a serious problem in most cities around the world as it has a direct impact on human and ecosystem health (Gunawardena et al., 2013b). Among the various atmospheric pollutants, particulates are of significant concern because of their association with other chemical and microbial pollutants (Amodio et al., 2014; Anatolaki and Tsitouridou, 2007; Huang et al., 2009; Weerasundara et al., 2017). The atmospheric particulates can be either natural or anthropogenic in origin (Bermudez et al., 2012; Soriano et al., 2012). Natural atmospheric particulates primarily originate from roadside soil due to wind and vehicle related turbulence (Shi et al., 2008; Weerasundara et al., 2017), while anthropogenic particulates are generated by industrial activities, agricultural activities, domestic emissions, as well as automobile activities such as vehicle exhaust, tyre wear, brake wear and road pavement wear (Soriano et al., 2012; Wei and Yang, 2010; Liu et al.,

^{*} Corresponding authors. Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.

E-mail addresses: nayomam@yahoo.com (D.N. Magana-Arachchi), meththika@ sjp.ac.lk (M. Vithanage).

2018). These particulates are removed from the atmosphere through wet (precipitation scavenging) and dry deposition processes by turbulent vertical transport (Connan et al., 2013).

Heavy Metals (HMs) attached to atmospheric particulates are considered as a potential threat to human health as these can be inhaled, ingested and/or contacted via dermal pathway and accumulate in the fatty tissues and affect the central nervous system, or may act as cofactors in diseases (Huang et al., 2014; Lu et al., 2014; Ma et al., 2017). Potential sources of metals in the atmosphere are primarily vehicular and industrial activities (Connan et al., 2013; Weerasundara et al., 2017). Being non-degradable, significant levels of HMs can threaten the ecosystem through stormwater pollution (Gunawardena et al., 2013a; Ma et al., 2016). Past literature on atmospheric deposition has primarily focused on the concentration, distribution and source identification (Connan et al., 2013; Egodawatta et al., 2013; Soriano et al., 2012; Wei et al., 2009). Only limited studies have focused on the assessment of their potential health risks, despite health risk assessment being an essential foundation of risk management (Wei et al., 2015).

In Kandy, Sri Lanka, atmospheric pollution has become a serious issue during the past decade (Ileperuma, 2010). As Kandy is the second largest city in Sri Lanka, it can exert significant influence on the Country's economy. More than ten schools are located in the heart of the highly congested Kandy City. Children have increased vulnerability to atmospheric particulates due to the nature of their daily activities (USEPA, 2008). Kandy also has religious and historical importance and is listed as a UNESCO World Heritage City. Therefore, Kandy attracts a large number of local visitors, and foreign tourists, who could be affected by the polluted atmosphere. Kandy bears the characteristics of a typical city in the developing world such as high population density and traffic congestion. The major pollution source in the City is attributed vehicular emissions as industrial activities are very limited within the metropolitan area. A study undertaken in 2011 (Wickramasinghe et al., 2011), confirmed a daily traffic volume of 106,000 vehicles within the Kandy City limits. It is also important to note that this traffic volume is confined to a relatively limited land area of 4 km² (Wickramasinghe et al., 2011). Additionally, a transient population of about 100,000 visit the City on a daily basis, resulting in a total population of more than 250,000 (Wickramasinghe et al., 2011).

Studies have been undertaken to assess atmospheric pollution through atmospheric deposition (Duan and Tan, 2013; El-Araby et al., 2011; Huang et al., 2014). Studies on atmospheric deposition of HMs and related risk assessments are limited in the context of a typical city in a developing country, particularly in the Sri Lankan context. This study was conducted to assess the human health impacts posed by HMs associated with atmospheric deposition in Kandy City and its environs. The study results provide important information to regulatory authorities to determine appropriate mitigation measures in relation to HM pollution of Kandy City atmosphere.

2. Materials and methods

2.1. Study area and sampling sites

Kandy is located at approximately 500 m above mean sea level. The average day time ambient temperature is in the range of 28–32 °C, monthly rainfall is in the range of 52–398 mm and the daytime relative humidity is in the range of 63–83%. The City is located in a valley surrounded by mountains, facilitating thermal inversions within the city atmosphere. Kandy is 26 km² in extent with a permanent population of more than 170,000 and a daily transient population of around 100,000 (Wickramasinghe et al., 2011). The City has four main entry points and the high daily

traffic flow and the limited land area as noted above, results in high traffic congestion and exceptionally high vehicular emissions (Wickramasinghe et al., 2011).

The sampling sites were spread around Kandy and its environs. Nine sampling sites were selected considering different traffic characteristics. These sites were designated as Children's Park Station (C), Dodanwela site (D), Fire Brigade Station (F), National Institute of Fundamental Studies (I), Lewalla (L), Police Station (P), Railway Station (R), Trinity college site (TC), and Tea Research Institute (TRI) (Fig. S1). Sites C, F, P, R, and TC are in high traffic volume areas, while sites D and I are in low traffic volume areas. Sites L and TRI were selected as control sites as these two sites are located away from arterial roads and have relatively low vehicular and other anthropogenic activities.

2.1.1. Sample collection

Atmospheric deposition samples were collected weekly as dry deposition. The samplers were constructed using high density polyethylene bottles with polyethylene funnels, connected to a star picket bar, and fixed at a height of 1.5 m above ground to minimize contamination from re-suspended particles. The sample collection system was previously described by Weerasundara et al. (2017). Prior to installation, the sampling bottles and funnels were washed with deionized water followed by an acid wash with 1:1 HNO₃ solution as part of the quality assurance measures. At the end of each sample collection, sample bottles and funnels were replaced. After collection, the funnels were enclosed in clean plastic bags and sealed to avoid contamination. Sample bottles were also sealed and transported to the laboratory immediately following standard quality control procedures. The dry deposition samples were collected on a weekly basis and the sample collection was undertaken for ten weeks (ten dry deposition samples). The samples affected by rainfall were discarded.

2.2. Laboratory analysis of heavy metals in atmospheric deposition

After the samples were brought to the laboratory, the funnels and bottles were washed with autoclaved deionized water in order to transfer samples to polyethylene bottles. The samples were stored at 4 °C temperature under >2 pH until laboratory analysis was carried out. The preserved 50 mL samples were digested with 1:1 HCl and 1:1 HNO₃ acid solutions, in a water bath at a temperature of <80 °C until the volume reached 20 mL (USEPA, 1994). The HM concentrations were determined according to Method 200.8 (USEPA, 1994) using an Agilent 8800 Triple Quadruple Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The quality assurance and quality control (QA/QC) samples were prepared and tested as specified in US EPA Method 200.8 (USEPA, 1994).

2.3. Contamination assessment

Metal concentration in a given environment is influenced by a range of factors such as the nature of the substrate, environmental conditions, availability of pollution sources, and distance from emission sources (Nobi et al., 2010). Contamination factor (CF) is a tool that can be used to determine the pollution status of a given environment over a period of time (Nobi et al., 2010; Varol, 2011). Using Eq. (1), CF was calculated to determine whether a particular site is polluted with HMs (Nobi et al., 2010; Varol, 2011).

$$CF = \frac{C_n}{B_n} \tag{1}$$

where, C_n is the concentration of contaminant in dust, and B_n is the background concentration for the particular contaminant.

A CF value > 1 for a particular metal indicates that the site is contaminated by the metal, while CF < 1 suggests that there is no metal enrichment by outside sources (Nobi et al., 2010). Similarly, it is important to assess the level of contamination by a particular metal. Accordingly, the geo-accumulation index (I_{geo}) is used to assess the contamination levels. Equation (2) was used to determine I_{geo} (Ma and Singhirunnusorn, 2012; Zheng et al., 2015).

$$I_{geo} = \log_2 \left[\frac{C_n}{1.5B_n} \right] \tag{2}$$

 C_n is the concentration of a particular metal in atmospheric deposition and B_n is the geochemical background concentration of the HM (crustal average). A constant of 1.5 is introduced to minimize the effect of possible variations in the background values (Ma and Singhirunnusorn, 2012; Zheng et al., 2015).

The I_{geo} is classified into the following 7 classes to categorize the HM pollution levels in atmospheric deposition (Ma and Singhirunnusorn, 2012; Zahra et al., 2014; Zheng et al., 2015).

- a. $I_{geo} \leq 0$ class 0, uncontaminated
- b. $\vec{0} < I_{geo} \le 1$ class 1, uncontaminated to moderately contaminated
- c. 1<I_{geo}≤2 class 2, moderately contaminated
- d. $2 < I_{geo} \leq 3$ class 3, moderately contaminated to heavily contaminated
- e. 3<Igeo≤4 class 4, heavily contaminated
- f. $4 < l_{geo} \le 5$ class 5, heavily contaminated to extremely contaminated
- g. 5<Igeo class 6, extremely contaminated.

2.4. Health risk assessment

2.4.1. Exposure dose

Exposure to HMs in atmospheric deposition was assessed based on models developed by USEPA (2001). The average daily dose (ADD) of a particular HM via ingestion, inhalation and dermal contact pathways were calculated using Eqs. (3)-(5) (USEPA, 2001).

$$D_{ing} = C_n \times \frac{IngR \times EF \times ED}{BW \times AT} \times 10^{-6}$$
(3)

$$D_{inh} = C_n \times \frac{InhR \times EF \times ED}{PEF \times BW \times AT}$$
(4)

$$D_{dermal} = C_n \times \frac{SL \times SA \times ABS \times EF \times ED}{BW \times AT} \times 10^{-6}$$
(5)

 D_{ing} is the daily dose via ingestion of atmospheric deposition; D_{inh} is the daily dose via inhalation through mouth and nose; and D_{dermal} is the daily dose via dermal absorption of trace elements in deposition adhering to exposed skin. The definitions and values of the other parameters are given in Table S1.

Lifetime average daily dose of cancer elements (LADD) was calculated for the inhalation route using Eq. (6) (Ma and Singhirunnusorn, 2012).

$$LADD = \frac{C_n \times EF}{AT \times PEF} \times \left(\frac{InhR_{child} \times ED_{child}}{BW_{child}} + \frac{InhR_{adult} \times ED_{adult}}{BW_{adult}}\right)$$
(6)

2.4.2. Risk assessment

The Hazard Quotient (HQ) was calculated to assess the noncancer risk posed by the nine metals. The ADD for the three exposure pathways was divided by the specific reference dose (RfD) (mg/kg/day) for a particular metal to obtain the HQ (Du et al., 2013; Ma and Singhirunnusorn, 2012; USEPA, 2001) (Eq. (7)). The RfD threshold determines the possibility of occurrence of health effects during a life time due to a particular pollutant (Du et al., 2013). If ADD < RfD, the HQ value will be lower than 1. HQ < 1 suggests that there is no possibility of occurrence of any adverse health effect due to the specific pollutant. If the HQ > 1, most probably the exposure pathway will cause adverse human health impacts (Du et al., 2013).

The hazard index (HI) is the sum of HQs (Eq. (8)). HI is used to assess the cumulative non-cancer risk from a single metal (Du et al., 2013; Lu et al., 2014; Ma and Singhirunnusorn, 2012). Similar to the interpretation of HQ, if HI < 1, it is considered that there is no significant risk from non-carcinogenic effects. If HI > 1, there is a possibility for non-carcinogenic effects to occur, with the probability tending to increase as HI increases (Du et al., 2013; Lu et al., 2014; USEPA, 2001).

$$HQ = \frac{ADD}{RfD}$$
(7)

$$HI = \sum_{i=1}^{3} HQ_i \tag{8}$$

To assess the cancer risk from carcinogenic metals, the calculated daily dose was multiplied by the corresponding slope factor (SF) (mg/kg/day) for a particular carcinogen (Du et al., 2013; Lu et al., 2014; USEPA, 2001).

3. Results and discussion

3.1. Heavy metal concentrations

The average HM concentrations in atmospheric deposition at the nine sampling sites are presented in Fig. 1. Al and Fe, which are present in significantly higher concentrations at all the sampling sites, were in the ranges of 507 - 43,328 and 770 - 43,922 mg/kg, respectively. The geogenic origin of these two metals would be the primary reason for the high concentrations (Bhuiyan et al., 2010; Ziyath et al., 2016).

The results of EF assessment also suggest that Al is of crustal origin. However, these metals could be re-suspended by disturbed soils through anthropogenic activities such as traffic, and eventually deposit on ground surfaces (Weerasundara et al., 2017). Other than Al and Fe, Zn was found in relatively higher concentration than the rest of the metals with the average being in the range of 137–3331 mg/kg. Zn is a major constituent in lubrication oil additives, tyre and brake wear, and galvanized automobile components (Duan and Tan, 2013).

Additionally, the wide use of Zn coated roofing materials and galvanized building components could also be attributed to the Zn loads in atmospheric deposition (Duan and Tan, 2013). Although, leaded gasoline has been phased out, the roadside soil could be enriched with Pb from past usage of leaded fuel and disturbance from traffic activities could result in re-suspension in the atmosphere (Egodawatta et al., 2013). Other HMs were reported in relatively low concentrations in weekly atmospheric deposition samples and decreased in the order, Mn > Cu > Cr > Ni > Cd. Spatial distribution of HMs in dust samples are presented in Fig. 2.

The spatial distribution maps were created using ArcMap 10.2.1 GIS software. Interpolated raster data with coordinates of 80° 37' 55" E, 7° 18' 25" N in the upper left corner, and 80° 39' 04" E, 7° 17' 05" N in the lower right corner were employed. Kriging interpolation was used for the raster interpolation from the point source

Fig. 1. Heavy metal concentrations at the nine sampling locations in Kandy and its environs. (a) Children's park (site C), (b) Dodanwela (site D), (c) Fire brigade station (site F), (d) National Institute of Fundamental Studies (site I), (e) Lewalla (site L), (f) Police station (site P), (g) Railway station (Site R), (h) Trinity college station (site TC), and (i) Tea Research Institute (site TRI).

Fig. 2. Spatial distribution of heavy metal at the nine sampling locations in Kandy and its environs. (a) Cr, (b) Al, (c) Mn, (d) Fe, (e) Ni, (f) Cu, (g) Zn, (h) Cd, and (i) Pb; (C) Children's park, (D) Dodanwela, (F) Fire brigade station, (I) National Institute of Fundamental Studies, (L) Lewalla, (P) Police station, (R) Railway station, (TC) Trinity college station, and (TRI) Tea Research Institute (The contours in each map are represent the concentrations of HM loads).

data. The point and raster data were obtained from the world geographic coordinate system of WGS 1984 and the z factor designates the contaminant level and the contours define the concentration and risk ranges. The sample sites C, F, P, R and TC with high traffic volumes were found to have higher metal loads than the other sampling sites. The sample sites identified as having medium traffic activities were also found to have considerable HM concentrations, but lower than those having relatively higher traffic activities. Due to the absence of industrial activities, traffic and other vehicular activities are considered to be the major sources of HMs in Kandy and its environs (Weerasundara et al., 2017).

3.2. Contamination assessment of atmospheric deposition

The CF values for the investigated HMs are shown in Table 1. The data presented show that there is significant enrichment of Pb, Zn, Ni, Cu and Cd. However, Cr and Mn are at low contamination levels, whilst Fe is at the uncontaminated level. These outcomes were further categorized into contamination levels using I_{geo} values, based on which, it can be concluded that Fe is at an uncontaminated

 Table 1

 Contamination factor (CF) values for heavy metals at different sampling sites.

Site	Metal						
	Cr	Mn	Fe	Ni	Cu	Zn	Pb
С	0.83	0.76	0.09	2.33	2.89	5.38	20.45
D	1.61	0.42	0.03	4.10	4.13	2.64	11.13
F	4.77	3.10	0.48	9.87	16.02	28.33	40.08
I	2.51	1.33	0.26	4.91	5.75	10.46	13.21
L	1.07	0.32	0.02	3.64	2.91	0.02	11.00
Р	11.3	5.64	1.07	25.16	26.50	49.25	100.27
R	12.96	4.45	0.81	26.51	25.47	20.11	179.62
TC	13.86	4.31	0.23	49.51	39.35	27.35	221.93
TRI	0.45	0.33	0.04	1.44	2.88	3.07	8.72

level and Pb is at an extremely contaminated level (Fig. 3a).

The boxplot for Igeo values for atmospheric deposition is presented in Fig. 3a. The mean Igeo values were 0.96, -0.15, -0.29, 2.33, 2.51, 2.68 and 4.45 for Cr, Mn, Ni, Cu, Zn and Pb, respectively. The contamination level ranking for the nine sampling sites is shown in Fig. 3b. Comparatively, the maximum Igeo values were reported for Pb, Zn, Mn and Cu as shown in Fig. 3a. In the ranking for Pb, all the sampling sites can be categorized into class 3 to 6, indicating that they are in a contaminated state. Interestingly, the sites located in places where the vehicular activities are low, also have moderate contamination levels for Pb. Wind and long-term transportation of dust are attributed to be the reasons for this observation. However, the sites having heavy traffic activities are in the category of extremely contaminated, confirming that contamination is due to vehicular activities. Zn, Mn and Cu are also at the contaminated level in addition to Pb, according to Igeo values. Although Fe has high metal concentration in deposition samples, it is in the uncontaminated category, further confirming its crustal origin (Wei et al., 2009; Wei and Yang, 2010). Cr has moderate to heavy contaminated status at the sites with heavy traffic activities. According to the results obtained, the atmosphere in Kandy can be considered as being HM contaminated.

3.3. Health risk assessment

The values of HQ and HI for the nine HMs for the different sampling sites are presented in Table 2 for the three daily dose

models. The highest average values of HQ were found to be through the ingestion pathway and decrease in the order of ingestion > dermal contact > inhalation. The contribution of ingestion HQ to HI is the highest among the three exposure pathways. More than 95% of the contribution is through the ingestion pathway for the overall human health risk. Previous studies which investigated atmospheric dust also derived similar results (Du et al., 2013; Lu et al., 2014; Zheng et al., 2010). Therefore, it can be concluded that in the urban environment in Kandy, the ingestion pathway has high possibility to impact on human health. Table 3 shows HI and HQ values reported for a selection of past studies. Compared with HM concentrations in sites from China, where a range of different anthropogenic activities were prominent, such as heavy industrial activities, were much higher than that obtained in this study (Du et al., 2013; Sun et al., 2014; Zahra et al., 2014). Although the data from this study report relatively high HM concentrations, in respect to human health risk, the levels are still within safe limits. According to Table 3, past studies conducted in Angola (Ferreira-Baptista and De Miguel, 2005), Turkey (Kurt-Karakus, 2012), and Australia (Ma et al., 2016), also show similar results. Therefore, though there is environmental pollution, the current impact on human health may not be very severe. A human health risk assessment is generally needed to determine the appropriate risk mitigation strategies.

HQs and HIs for the nine HMs are lower than the safe level for children, indicating that there are no significant health risks from these metals. However, P and R that were categorized as high traffic volume sites show possible health risk from ingestion of Fe (HOs are 1.8 and 1.4, respectively). Atmospheric deposition in Kandy City has high Fe content as shown in Fig. 1. Almost all the sampling sites demonstrated a similar trend. In the ingestion pathway, the average HI ranged as, Fe > Cu > Al > Cd > Ni > Zn > Pb > Cr > Mn. Although CF assessment and Igeo assessment showed that Fe has uncontaminated status, Fe is present in atmospheric deposition and can impact on people in the region. Therefore, attention should be given to the health impacts of Fe. As P and R sampling sites are located in the centre of Kandy City, the children who are exposed to the city atmosphere, are at risk due to increased Fe concentrations. Other than Fe, Cu and Al could also exert a significant influence on children's health in the near future as these metals have HI values near to 1 at some of the sampling sites. Through the inhalation

Fig. 3. (a) I_{geo} of heavy metals in atmospheric deposition in Kandy. (b) Pollution levels at the nine sample collection points. Numbers indicate the 7 classes of pollution classified based on I_{geo}. 0 - Practically uncontaminated, 1 – uncontaminated to moderately contaminated, 2 – Moderately contaminated, 3 – Moderately contaminated to heavily contaminated, 4 – Heavily contaminated, 5 – Heavily contaminated to extremely contaminated, 6 – Extremely contaminated.

Table 2

Average Hazard Quotient (HQ) and Hazard Index (HI) values for nine heavy metals based on three daily dose models via ingestion pathway, dermal contact pathway and inhalation pathway.

Metal	Metal Concentration mg/kg		$HQ_{ing} (10^{-4})$		$HQ_{inh}(10^{-4})$	$HQ_{inh}(10^{-4})$		$HQ_{dermal}(10^{-4})$		HI (10 ⁻⁴)	
			Children	Adult	Children	Adult	Children	Adult	Children	Adult	
Al	Min	507.2	284	6	0.00122	0.00103	0.538	0.347	65	7	
	Max	43327.6	5539	539	0.104	0.0879	49	29	5589	623	
	Mean	10119.7	1193	138	0.0245	0.0205	11	6	1305	145	
Cr	Min	8.5	3	1	0.0000001	0.0000005	0.00007	0.000183	3	1	
	Max	261.8	95	40	0.000004	0.000017	0.00237	0.00564	95	41	
	Mean	103.0	37	16	0.000001	0.000006	0.00932	0.00222	37	16	
Mn	Min	38.5	0.3	0.008	0.311	0.0894	0.00493	0.00293	0.624	0.101	
	Max	672.1	5	0.144	5	1	0.0859	0.0511	11	1	
	Mean	273.6	2	0.05	2	0.635	0.035	0.0208	4	0.714	
Fe	Min	770.8	328	35	0.000474	0.00223	1	0.754	329	35	
	Max	43922.5	18718	2005	0.0122	0.127	72	42	18791	2048	
	Mean	13774.9	5870	628	0.00508	0.0399	22	13	5893	642	
Ni	Min	8.9	56	6	0.00003	0.0000254	1	0.609	57	6	
	Max	306.4	1959	209	0.00105	0.00876	35	20	1994	230	
	Mean	87.6	560	60	0.000299	0.000251	10	6	570	66	
Cu	Min	25.5	651	69	0.0123	0.0103	5	3	657	73	
	Max	347.7	8892	952	0.168	0.141	80	47	8972	1000	
	Mean	123.6	3161	338	0.0599	0.0502	28	16	3190	355	
Zn	Min	136.9	58	6	0.00101	0.000842	0.478	0.284	58	6	
	Max	3331.4	1419	152	0.0244	0.0205	11	6	1431	159	
	Mean	1116.9	476	51	0.0082	0.00687	3	2	479	53	
Cd	Min	6.5	70	30	0.0000001	0.0000004	0.00006	0.000155	70	30	
	Max	386.5	4235	1815	0.0000081	0.00027	0.00389	0.00926	4235	1815	
	Mean	68.8	754	323	0.0000014	0.000004	0.000693	0.00165	754	323	
Pb	Min	30.3	36	3	0.0000042	0.000014	0.00199	0.00475	36	3	
	Max	772.1	940	101	0.000107	0.00035	0.0508	0.121	940	100	
	Mean	234.4	285	30	0.000032	0.000109	0.0154	0.0367	285	30	

pathway, the HI values decrease in the order of Mn > Cu > Al > Zn > Fe > Ni > Pb > Cr > Cd. However, all the HI values are far less than 1. Therefore, the health risk through inhalation pathway is not significant in Kandy and its environs. Similarly, the dermal HI values are lower than 1 and there is no significant health risk through dermal contact of atmospheric HM. HI_{dermal} decreases as Cu > Fe > Al > Ni > Zn > Mn > Pb > Cr > Cd.

For adults, HQ and HI values are below 1, which suggests that there are no significant adverse health impacts on adults due to HMs in atmospheric deposition. The changing pattern of HI was observed to be similar to that for children. For adults, the highest HI for the ingestion pathway was recorded for Fe (HI = 0.2) and it is also much lower than the threshold safe level. For the inhalation pathway, the highest HI was recorded for Mn (HI = 0.0001) and for dermal contact the highest HI was for Cu (HI = 0.004) and these values are also lower than the threshold levels. Therefore, the potential health risk to adults due to atmospheric pollution of HMs is not significant. Compared to children, the health risk for adults is much lower.

Considering carcinogenic health impact, the HI for carcinogenic metals also have lower HI values (HI < 1) indicating that there is no significant cancer risk due to HMs in atmospheric deposition in Kandy. The lifetime average cancer risk also falls within the threshold range $(10^{-6} - 10^{-4})$ or below. This means that currently there is no cancer risk to the population in Kandy City and its environs in relation to the nine heavy metals investigated in the atmospheric deposition.

However, past studies have shown that on a yearly basis, particulate matter emissions from traffic sources have an increasing trend in the Kandy area (Seneviratne et al., 2017). In a study conducted over 2 years from 2012 to 2014, traffic based particulate matter concentrations were found to have increased considerably. In 2012, particulate matter concentrations were in the average range of $0.0-0.5 \,\mu g/m^3$, and by 2014 it had increased to $0.75-1.7 \,\mu g/m^3$ (Seneviratne et al., 2017). Therefore, appropriate measures are needed to mitigate the currently increasing pollution trends in order to prevent serious health issues into the future.

Moreover, it is important to note that with this increasing trend of atmospheric pollution, the entire population may not face the risk in a similar manner as the lifestyle and the occupation has a significant influence in this regard. Considering the residents in the Kandy area who reside near roadways and spend most of the day at home such as the elderly and little children, and street vendors would be at a higher risk from heavy metals in the atmosphere due to their long exposure periods (Wickramasinghe et al., 2012). School children are the next population group that would be at considerable risk from atmospheric heavy metals as they are exposed to polluted atmosphere during peak hours in the morning and midday. Also, many schools in Kandy City are located near roads with heavy traffic congestion. Working population in Kandy City also having great deal with atmospheric heavy metal deposition but not much as lifetime city personals as most of their exposure time limit to more or less 8 h.

4. Conclusions

Al and Fe, from both geogenic and anthropogenic sources, were found to be in significantly higher concentrations in atmospheric deposition compared to the other seven metals investigated. Zn also had elevated concentrations in the atmosphere. All the other metals investigated, namely, Cr, Mn, Ni, Cu, Pb and Cd were reported in lower concentrations in the atmospheric deposition in the study area. Sample sites, which were categorized as having high traffic activities, exhibited increased heavy metal concentrations in deposition samples. Contamination Factor (CF) values and I_{geo} values confirmed that Al and Fe are in the 'no contamination' range. The major exposure pathway of heavy metals for both, children and adults is ingestion. The hazard quotient for the pathways investigated in this study was in the order of ingestion > dermal contact > inhalation. Both, hazard quotient and hazard index were less

Table 3

 Comparison of Hazard Quotient (HQ) and Hazard Index (HI) values for heavy metals reported in different studies.

Children Adult Children Adult Children Adult Children Adult Al Kandy, Sri Lanka 1293 138 0.0245 0.0205 11 6 1305 145 This	nis study
Al Kandy, Sri Lanka 1293 138 0.0245 0.0205 11 6 1305 145 Thi	nis study
Cr 37 16 0.000196 0.000006 0.00932 0.0022 37 16	
Mn 2 0.05 2 0.635 0.035 0.0208 4 0.714	
Fe 5870 628 0.00508 0.0399 22 13 5893 642	
NI 560 60 0.000299 0.000251 10 6 570 66	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
211 470 51 0.0062 0.00667 5 2 479 55 Cd 754 222 0.000001 0.000004 0.000602 0.00165 754 222	
Cu 754 525 0.00000 0.00004 0.00005 0.0010 754 525 Db 295 30 0.00003 0.0011 0.0154 0.0367 285 30	
ru 263 30 0.0000 0.001 0.0134 0.0507 263 30	1 ot al (2013)
Ni 166 223 0.00305 0.0027 2.00 2.23 106 44.6	a et al. (2015)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Zn 9330 125 0.00177 0.0019 4.20 3.13 975 156	
Cd 818 11 000155 000116 147 11 965 22	
Ph 7370 989 0139 0149 42 330 7410 1320	
Cr Nanjing China 2460 345 590 590 590	in et al. (2014)
Ni 70.1 981 615 615	
Cu 5250 736	
Mn 324 45.4 7040 7040	
Zn 1440 202	
Cd 3390 470 2840 2840	
Pb 57600 8070	
Cr Taiyuan, China 8300 1100 28 30 1500 1100 Zha	nang et al. (2016)
Ni 510 69 0.0095 0.01 93 69	
Cu 470 62 0.0081 0.0089 82 61	
Mn 2600 350 160 180 460 340	
Zn 570 77 0.011 0.012 26 19	
Cd 1300 170 0.024 0.026 230 170	
Pb 23000 3100 0.44 0.49 1400 1000	
Al Luanda, Angola 333 6.5 9.32 349 Fer	rreira-Baptista and
Cr 580 1.7 81.2 663 De	e Miguel (2005)
Ni 35.2 0.00098 0.365 35.5	
Cu 0.0072 0.0202 0.675 73	
Mn 386 34.7 27 448	
Zn 73 0.00204 1.02 74	
Cd 79.1 0.0022 22.1 101	
Pb 7100 0.198 132 7320	
Cr Istanbul, Turkey 310 58 0.0029 0.0028 25 180 Kur	urt-Karakus (2012)
Mn 130 26 0.0012 0.0013 10.3 82	
Ni 1200 180 0.011 0.0089 106 58	
$C_{\rm U}$ 1200 130 0.011 0.0064 91.2 420	
Zn 380 49 0.0035 0.0024 29 160	
Ca 350 3.4 0.0033 0.0017 27.7 110	
PD 1500 230 0.014 0.011 119 /40	a at al (2010)
Ai Gold Coast, Australia 0/2 Ma	a et al. (2016)
Li (Avelage values) 2050	
Viii 1120	
Ni 30	
та 50 Сп. 55	
Zn	
Cd169	
Pb 1110	

than 1. The lifetime daily cancer risk also ranged within the acceptable limit, indicating that there is no immediate possibility of cancer risk due to the presence of heavy metals in the atmosphere, but this could change in the long-term with increased air pollution in Kandy, unless appropriate mitigation measures are implemented. Considering the patterns of heavy metal loads within Kandy City, it can be concluded that mitigation strategies such as easing of traffic congestion, providing bypass arrangements and improving fuel and vehicle quality, and phasing out the use of Zn coated roofing materials will be able to change the current situation in a positive way. Hence, the study findings are of value to regulatory authorities for the implementation of appropriate strategies to alleviate heavy metal pollution in the Kandy City environment. The study clearly identifies the locations with high pollution levels

and the risk levels in the City.

Acknowledgment

The Authors wish to offer a special acknowledgment to National Science Foundation (NSF), Sri Lanka, for providing funds for undertaking this research study (Grant number RG/2014/EB/03).

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.jenvman.2018.04.036.

206

Amodio, M., Catino, S., Dambruoso, P., De Gennaro, G., Di Gilio, A., Giungato, P., Laiola, E., Marzocca, A., Mazzone, A., Sardaro, A., 2014. Atmospheric deposition: sampling procedures, analytical methods, and main recent findings from the scientific literature. Adv. Meteorol. 2014, 1–27.

- Anatolaki, C., Tsitouridou, R., 2007. Atmospheric deposition of nitrogen, sulfur and chloride in Thessaloniki, Greece. Atmos. Res. 85, 413–428.
- Bermudez, G.M., Jasan, R., Plá, R., Pignata, M.L., 2012. Heavy metals and trace elements in atmospheric fall-out: their relationship with topsoil and wheat element composition. J. Hazard. Mater 213, 447–456.
- Bhuiyan, M.A., Parvez, L., Islam, M., Dampare, S.B., Suzuki, S., 2010. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J. Hazard. Mater. 173, 384–392.
- Connan, O., Maro, D., Hébert, D., Roupsard, P., Goujon, R., Letellier, B., Le Cavelier, S., 2013. Wet and dry deposition of particles associated metals (Cd, Pb, Zn, Ni, Hg) in a rural wetland site, Marais Vernier, France. Atmos. Environ. 67, 394–403.
- Du, Y., Gao, B., Zhou, H., Ju, X., Hao, H., Yin, S., 2013. Health risk assessment of heavy metals in road dusts in urban parks of Beijing, China. Procedia Environ. Sci. 18, 299–309.
- Duan, J., Tan, J., 2013. Atmospheric heavy metals and arsenic in China: situation, sources and control policies. Atmos. Environ. 74, 93–101.
- Egodawatta, P., Ziyath, A.M., Goonetilleke, A., 2013. Characterising metal build-up on urban road surfaces. Environ. Pollut. 176, 87–91.
- El-Araby, E., El-Wahab, M.A., Diab, H., El-Desouky, T., Mohsen, M., 2011. Assessment of Atmospheric heavy metal deposition in North Egypt aerosols using neutron activation analysis and optical emission inductively coupled plasma. Appl. Radiat. Isot. 69, 1506–1511.
- Ferreira-Baptista, L., De Miguel, E., 2005. Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmos. Environ. 39, 4501–4512.
- Gunawardena, J., Egodawatta, P., Ayoko, G.A., Goonetilleke, A., 2013a. Atmospheric deposition as a source of heavy metals in urban stormwater. Atmos. Environ. 68, 235–242.
- Gunawardena, J., Ziyath, A.M., Bostrom, T.E., Bekessy, L.K., Ayoko, G.A., Egodawatta, P., Goonetilleke, A., 2013b. Characterisation of atmospheric deposited particles during a dust storm in urban areas of. East. Aust. Sci. Total Environ. 461, 72–80.
- Huang, S., Tu, J., Liu, H., Hua, M., Liao, Q., Feng, J., Weng, Z., Huang, G., 2009. Multivariate analysis of trace element concentrations in atmospheric deposition in the Yangtze River Delta, East China. Atmos. Environ. 43, 5781–5790.
- Huang, W., Duan, D., Zhang, Y., Cheng, H., Ran, Y., 2014. Heavy metals in particulate and colloidal matter from atmospheric deposition of urban Guangzhou, South China. Mar. Pollut. Bull. 85, 720–726.
- Ileperuma, O., 2010. Environmental pollution in Sri Lanka: a review. J. Natl. Sci. Found. 28, 301–325.
- Kurt-Karakus, P.B., 2012. Determination of heavy metals in indoor dust from Istanbul, Turkey: estimation of the health risk. Environ. Int. 50, 47–55.
- Liu, A., Mummullage, S., Ma, Y., Egodawatta, P., Ayoko, G.A., Goonetilleke, A., 2018. Linking source characterisation and human health risk assessment of metals to rainfall characteristics. Environ.l Pollut. https://doi.org/10.1016/ j.envpol.2018.03.077.
- Lu, X., Zhang, X., Li, L.Y., Chen, H., 2014. Assessment of metals pollution and health risk in dust from nursery schools in Xi'an, China. Environ. Res. 128, 27–34.
- Ma, J., Singhirunnusorn, W., 2012. Distribution and health risk assessment of heavy metals in surface dusts of Maha Sarakham municipality. Procedia Soc. Behav. Sci. 50, 280–293.
- Ma, Y., Egodawatta, P., Mcgree, J., Liu, A., Goonetilleke, A., 2016. Human health risk assessment of heavy metals in urban stormwater. Sci. Total Environ. 557, 764–772.
- Ma, Y., Liu, A., Egodawatta, P., Mcgree, J., Goonetilleke, A., 2017. Assessment and management of human health risk from toxic metals and polycyclic aromatic hydrocarbons in urban stormwater arising from anthropogenic activities and traffic congestion. Sci. Total Environ. 579, 202–211.

- Nobi, E., Dilipan, E., Thangaradjou, T., Sivakumar, K., Kannan, L., 2010. Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuar. Coast. Shelf. Sci. 87, 253–264.
- Seneviratne, S., Handagiripathira, L., Sanjeevani, S., Madusha, D., Waduge, V. a. A., Attanayake, T., Bandara, D., Hopke, P.K., 2017. Identification of sources of fine particulate matter in Kandy, Sri Lanka. Aerosol Air Oual. Res. 17, 476–484 (i.
- Shi, G., Chen, Z., Xu, S., Zhang, J., Wang, L., Bi, C., Teng, J., 2008. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ. Pollut. 156, 251–260.
- Soriano, A., Pallarés, S., Pardo, F., Vicente, A., Sanfeliu, T., Bech, J., 2012. Deposition of heavy metals from particulate settleable matter in soils of an industrialised area. J. Geochem. Explor 113, 36–44.
- Sun, Y., Hu, X., Wu, J., Lian, H., Chen, Y., 2014. Fractionation and health risks of atmospheric particle-bound as and heavy metals in summer and winter. Sci. Total Environ. 493, 487–494.
- USEPA, 1994. Method 200.8: Trace Elements in Waters and Wastes by Inductively Coupled Plasma-mass Spectrometry. US Environmental Protection Agency, Washington, DC.
- USEPA, 2001. Risk Assessment Guidance for Superfund: Volume III Part a, Process for Conducting Probabilistic Risk Assessment. US Environmental Protection Agency, Washington, D.C.
- USEPA, 2008. Child-specific Exposure Factors Handbook (Final Report. U.S. Environmental Protection Agency, EPA/600/R-06/096F). Washington, DC.
- Varol, M., 2011. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 195, 355–364.
- Weerasundara, L., Amarasekara, R., Magana-Arachchi, D., Ziyath, A.M., Karunaratne, D., Goonetilleke, A., Vithanage, M., 2017. Microorganisms and heavy metals associated with atmospheric deposition in a congested urban environment of a developing country: Sri Lanka. Sci. Total Environ. 584, 803–812.
- Wei, B., Jiang, F., Li, X., Mu, S., 2009. Spatial distribution and contamination assessment of heavy metals in urban road dusts from Urumqi, NW China. Microchem. J. 93, 147–152.
- Wei, B., Yang, L., 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 94, 99–107.
- Wei, X., Gao, B., Wang, P., Zhou, H., Lu, J., 2015. Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicol. Environ. Saf. 112, 186–192.
- Wickramasinghe, A., Karunaratne, D., Sivakanesan, R., 2011. PM 10-bound polycyclic aromatic hydrocarbons: concentrations, source characterization and estimating their risk in urban, suburban and rural areas in Kandy, Sri Lanka. Atmos. Environ. 45, 2642–2650.
- Wickramasinghe, A., Karunaratne, D., Sivakanesan, R., 2012. PM 10-bound polycyclic aromatic hydrocarbons: biological indicators, lung cancer risk of realistic receptors and 'source-exposure-effect relationship'under different source scenarios. Chemosphere 87, 1381–1387.
- Zahra, A., Hashmi, M.Z., Malik, R.N., Ahmed, Z., 2014. Enrichment and geoaccumulation of heavy metals and risk assessment of sediments of the Kurang Nallah—feeding tributary of the Rawal Lake Reservoir, Pakistan. Sci. Total Environ. 470, 925–933.
- Zhang, Y., Ji, X., Ku, T., Li, G., Sang, N., 2016. Heavy metals bound to fine particulate matter from northern China induce season-dependent health risks: a study based on myocardial toxicity. Environ. Pollut. 216, 380–390.
- Zheng, N., Liu, J., Wang, Q., Liang, Z., 2010. Heavy metals exposure of children from stairway and sidewalk dust in the smelting district, northeast of China. Atmos. Environ. 44, 3239–3245.
- Zheng, X., Zhao, W., Yan, X., Shu, T., Xiong, Q., Chen, F., 2015. Pollution characteristics and health risk assessment of airborne heavy metals collected from Beijing bus stations. Int. J. Environ. Res. Public Health 12, 9658–9671.
- Ziyath, A.M., Egodawatta, P., Goonetilleke, A., 2016. Build-up of toxic metals on the impervious surfaces of a commercial seaport. Ecotoxicol. Environ. Saf. 127, 193–198.